Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 676: 110-126, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39018804

RESUMEN

Developing nanozymes for cancer therapy has attracted great attention from researchers. However, enzymes-loaded magnetic particles triggered by both a low-frequency vibrating magnetic field (VMF) and laser for inhibiting tumor growth have never been reported. Herein, we developed a magnetic nanozyme with 3D flower-like nanostructures for cancer therapy. Specifically, the flower-like nanozymes exposed to a VMF could efficiently damage the mitochondrial membrane and cell structure, and inhibit tumor growth through magneto-mechanical force. In parallel, magnetic nanozymes in a weak acid environment containing glucose could generate abundant hydrogen peroxide through glucose oxidase-catalyzed oxidation of glucose, and further significantly promote the Fenton reaction. Interestingly, both glucose oxidase- and Fenton-based catalytic reactions were significantly promoted by the VMF exposure. Flower-like magnetic nanospheres upon a near-infrared laser irradiation could also damage cancer cells and tumor tissues through photothermal effect. The cell-killing efficiency of magnetic nanozymes triggered by the VMF or laser significantly increased in comparison with that of nanozymes without exposures. Mouse tumors grown after injection with magnetic nanozymes was inhibited in a significant way or the tumors disappeared after exposure to a VMF and laser due to the synergistic effect of four major stimuli, viz., magneto-mechanical force, photothermal conversion, improved Fenton reaction, and intratumoral glucose consumption-based starvation effect. This is a great platform that may be suitable for treating many solid tumors.

2.
Heliyon ; 10(12): e32523, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38952369

RESUMEN

Rhamnus utilis Decne. (Family Rhamnaceae Juss.) leaf is commonly prepared as a anti-inflammatory herbal medicine and used for tea production. To investigate the mechanism of Rhamnus utilis Decne. aqueous extract (RDAE) against acute alcoholic liver disease (ALD) in mice. The ALD mouse (Male ICR) model was induced via intragastric administration of 52 % alcohol. Mice in each group were treated by gavage once daily with the RDAE (1.12, 2.25, 4.500 g/kg). The expression of proteins involved in the MAPKs/NF-κB/COX-2-iNOS pathway was measured by western blotting. Non-targeted metabolomics was used to determine metabolic profiles and critical pathways, while targeted metabolomics validated key amino acid metabolites. After administration of RDAE, the body mass of mice was significantly increased. The liver index was significantly decreased. Meanwhile, the serum levels of AST, ALT, TG, TC, MDA, TNF-α, IL-1ß and IL-6 were significantly decreased (P < 0.05, P < 0.01), but GSH level was inversely increased (P < 0.05). Metabolomic analysis revealed nine major pathways involved in the therapeutic effect of RDAE, including fructose and mannose metabolism. The levels of 7 amino acids including leucine, proline and alanine/sarcosine were significantly upregulated. Additionally, protein levels of p-NF-κB (p65)/NF-κB (p65), p-ERK1/2/ERK1/2, p-JNK/JNK, p-p38/p38, COX-2 and iNOS were significantly decreased (P < 0.01, P < 0.05). RDAE is used to treat acute ALD by improving lipid metabolism, inhibiting the expression of pro-inflammatory cytokines and regulating MAPKs/NF-κB/COX-2-iNOS signalling pathway. These findings provide valuable insights for acute ALD therapy based on traditional Chinese medicine (TCM).

3.
Diagnostics (Basel) ; 14(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39061645

RESUMEN

The current methods to generate projections for structural and angiography imaging of Fourier-Domain optical coherence tomography (FD-OCT) are significantly slow for prediagnosis improvement, prognosis, real-time surgery guidance, treatments, and lesion boundary definition. This study introduced a robust ultrafast projection pipeline (RUPP) and aimed to develop and evaluate the efficacy of RUPP. RUPP processes raw interference signals to generate structural projections without the need for Fourier Transform. Various angiography reconstruction algorithms were utilized for efficient projections. Traditional methods were compared to RUPP using PSNR, SSIM, and processing time as evaluation metrics. The study used 22 datasets (hand skin: 9; labial mucosa: 13) from 8 volunteers, acquired with a swept-source optical coherence tomography system. RUPP significantly outperformed traditional methods in processing time, requiring only 0.040 s for structural projections, which is 27 times faster than traditional summation projections. For angiography projections, the best RUPP variation took 0.15 s, making it 7518 times faster than the windowed eigen decomposition method. However, PSNR decreased by 41-45% and SSIM saw reductions of 25-74%. RUPP demonstrated remarkable speed improvements over traditional methods, indicating its potential for real-time structural and angiography projections in FD-OCT, thereby enhancing clinical prediagnosis, prognosis, surgery guidance, and treatment efficacy.

4.
Nanotechnology ; 35(37)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38857588

RESUMEN

The development of electrochemical energy storage devices has a decisive impact on clean renewable energy. Herein, novel ultrafast rechargeable hybrid sodium dual-ion capacitors (HSDICs) were designed by using ultrathin carbon film (UCF) as the cathode material. The UCF is synthesized by a simple low temperature catalytic route followed by an acid leaching process. UCF owns a large adsorption interface and number of additional active sites, which is due to the nitrogen doping. In addition, there exists several short-range order carbons on the surface of UCF, which are beneficial for anionic storage. An ultrafast rechargeable remarkable performance, remarkable anion hybrid storage capability and outstanding structure stability is fully tapped employing UCF as cathode for HSDICs. The electrochemical performance of UCF in a half-cell system at the operating voltage between 1.0 and 4.8 V, achieving an admirable specific discharge capacity of 358.52 mAh·g-1at 500 mA·g-1, and a high capacity retention ratio of 98.42% after cycling 2500 times at 1000 mA·g-1, respectively. Besides, with the support ofex-situTEM and EDS mapping, the structural stability principle and anionic hybrid storage mechanism of UCF electrode are investigated in depth. In the full-cell system, HSDICs with the UCF as cathode and hard carbon as anode also presents a super-long cycle stability (80.62% capacity retention ratio after cycling 1300 times at 1000 mA·g-1).

5.
Pharmacoeconomics ; 42(7): 811-822, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38771521

RESUMEN

BACKGROUND AND OBJECTIVES: Fremanezumab is an effective treatment for episodic (EM) and chronic migraine (CM) patients in Japan, but its cost effectiveness remains unknown. The objective of this study was to determine the cost effectiveness of fremanezumab compared with standard of care (SOC) in previously treated EM and CM patients from a Japanese healthcare perspective. METHODS: Estimated regression models were implemented in a probabilistic Markov model to inform effectiveness and health-related quality-of-life data for fremanezumab and SOC. The model was further populated with data from the literature. The adjusted Japanese healthcare perspective included productivity losses. The main model outcomes were quality-adjusted life-years (QALYs), costs (2022 Japanese Yen [¥]), and incremental outcomes including the incremental cost-effectiveness ratio (ICER). Analyses were performed separately for the EM and CM patients and combined. Costs and effects were discounted at an annual rate of 2.0%. RESULTS: The mean QALYs over a 25-year time horizon for the EM and CM populations combined were 13.03 for SOC and 13.15 for fremanezumab. The associated costs were ¥27,550,292 for SOC and ¥28,371,048 for fremanezumab. QALYs were higher and costs lower for EM patients compared with CM patients for both fremanezumab and SOC. The deterministic ICERs of fremanezumab versus SOC were ¥6,334,861 for EM, ¥7,393,824 for CM, and ¥6,530,398 for EM and CM combined. Indirect costs and choice of mean migraine days model distribution had a substantial impact on the ICER. CONCLUSION: Using fremanezumab in a heterogeneous mixture of Japanese EM and CM patients resulted in a reduction of monthly migraine days and thus more QALYs compared with SOC. The cost effectiveness of fremanezumab versus SOC in EM and CM patients resulted in an ICER of ¥6,530,398, from an adjusted Japanese public healthcare perspective.


Fremanezumab is an effective treatment for episodic and chronic migraine patients in Japan, but it is unknown how the costs relate to the health benefits. The current research determined the relation between costs and effects of fremanezumab compared with the current standard of care in Japanese clinical practice, to see if the costs are justified by the health benefits. A model was used to inform the treatment effect of fremanezumab and standard of care. Data on costs, the frequency in which health care was used, and impairment of work due to migraine were also included in the model and obtained from the literature. The main outcomes were the number of years that patients were alive while taking their quality of life into account, costs, and the difference in these outcomes between patients who were treated with fremanezumab and those receiving standard of care. Subsequently, it was estimated how costs and effects related to one another and whether the costs were justified by the health benefits. The outcomes showed that patients treated with fremanezumab had a better quality of life compared with those receiving standard of care, while the costs associated with fremanezumab were higher. Compared with standard of care, the health benefits of treating patients with fremanezumab were justified by the costs within an acceptable range. Taking the absence from work due to illness into account had a substantial impact on the model outcomes.


Asunto(s)
Anticuerpos Monoclonales , Análisis Costo-Beneficio , Cadenas de Markov , Trastornos Migrañosos , Años de Vida Ajustados por Calidad de Vida , Humanos , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/economía , Japón , Anticuerpos Monoclonales/economía , Anticuerpos Monoclonales/uso terapéutico , Modelos Económicos , Enfermedad Crónica/tratamiento farmacológico , Calidad de Vida , Nivel de Atención/economía , Masculino , Femenino , Análisis de Costo-Efectividad , Pueblos del Este de Asia
6.
Stat Theory Relat Fields ; 8(1): 1-14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800501

RESUMEN

Missing data is unavoidable in longitudinal clinical trials, and outcomes are not always normally distributed. In the presence of outliers or heavy-tailed distributions, the conventional multiple imputation with the mixed model with repeated measures analysis of the average treatment effect (ATE) based on the multivariate normal assumption may produce bias and power loss. Control-based imputation (CBI) is an approach for evaluating the treatment effect under the assumption that participants in both the test and control groups with missing outcome data have a similar outcome profile as those with an identical history in the control group. We develop a robust framework to handle non-normal outcomes under CBI without imposing any parametric modeling assumptions. Under the proposed framework, sequential weighted robust regressions are applied to protect the constructed imputation model against non-normality in the covariates and the response variables. Accompanied by the subsequent mean imputation and robust model analysis, the resulting ATE estimator has good theoretical properties in terms of consistency and asymptotic normality. Moreover, our proposed method guarantees the analysis model robust-ness of the ATE estimation in the sense that its asymptotic results remain intact even when the analysis model is misspecified. The superiority of the proposed robust method is demonstrated by comprehensive simulation studies and an AIDS clinical trial data application.

7.
Sci Rep ; 14(1): 5909, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467679

RESUMEN

The mining of the protective coal seam usually produces different pressure relief effects on the different areas of protected coal seam, the reason is that the stress paths of protected seam coal body in different areas caused by mining effect are different. In order to explore the differential pressure relief damage effect of coal body under different pressure relief conditions, the stress evolution path of coal body in different areas of the protected coal seam is obtianed by using theoretical analysis and the macro-micro damage characteristics of coal body under different stress paths by using numerical simulation in this paper. The results show that: The damage characteristics of the sample models are basically the same in the in-situ stress recovery stage and the mining disturbance stage of the two stress paths. With ith the sequence of stress stages experienced by the sample model, the distribution of acoustic emission events concentrates in the high-intensity area and the porosity continues to decrease. The number of cracks increases slowly in the stage of in-situ stress recovery stage, most of which are tensile cracks, while the number of cracks increases sharply in the mining disturbance stage, most of which are shear cracks. The difference of the deformation and macro meso damage characteristics of the sample models under the two stress paths is mainly reflected in the post mining pressure relief stage. At the post mining pressure relief stage of path 1, the number of cracks in the sample has little growth, and most of them are small energy tensile cracks, and the porosity increases, which verifies its obvious pressure relief activation antireflection effect; At this stage of path 2, the crack growth of the sample is obvious, and most of them are high-energy shear cracks, and the porosity continues to decrease. Compared with path 1, the pressure relief expansion effect of the sample model is suppressed and the compression damage continues to develop in this stage of path 2.

8.
Biometrics ; 80(1)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38393335

RESUMEN

Longitudinal studies are often subject to missing data. The recent guidance from regulatory agencies, such as the ICH E9(R1) addendum addresses the importance of defining a treatment effect estimand with the consideration of intercurrent events. Jump-to-reference (J2R) is one classical control-based scenario for the treatment effect evaluation, where the participants in the treatment group after intercurrent events are assumed to have the same disease progress as those with identical covariates in the control group. We establish new estimators to assess the average treatment effect based on a proposed potential outcomes framework under J2R. Various identification formulas are constructed, motivating estimators that rely on different parts of the observed data distribution. Moreover, we obtain a novel estimator inspired by the efficient influence function, with multiple robustness in the sense that it achieves n1/2-consistency if any pairs of multiple nuisance functions are correctly specified, or if the nuisance functions converge at a rate not slower than n-1/4 when using flexible modeling approaches. The finite-sample performance of the proposed estimators is validated in simulation studies and an antidepressant clinical trial.


Asunto(s)
Antidepresivos , Modelos Estadísticos , Humanos , Simulación por Computador , Estudios Longitudinales , Proyectos de Investigación
9.
Sci Total Environ ; 919: 170799, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38336049

RESUMEN

Nitrate, which poses a serious threat to the drinking water supply, is one of the most prevalent anthropogenic groundwater contaminants worldwide. With the development of the chemical industry, the nitrate pollution of groundwater in the Piedmont strong runoff zone of the Hohhot Basin, which is the main groundwater extraction area, is becoming increasingly severe. The special hydrogeological and complex pollution conditions in the study area make it difficult to identify nitrate sources and transformation processes. In order to identify the results more accurately, this study combined water chemistry, multivariate statistical analysis and isotope tracer methods to determine the sources and transformation processes of nitrate in the study area. The results showed that the groundwater in the eastern part of the study area (ESA) was clearly affected by anthropogenic activities, and its nitrate was mainly from nitrification of ammonia in industrial wastewater, nitrate in industrial wastewater (the sum of the two contributions was 62.2 %), and nitrate in manure (20.5 %). The hydrogeochemical characteristics of groundwater in the western part of the study area (WSA) are the same as those of natural groundwater in the Piedmont strong-runoff zone. The nitrate in groundwater in the WSA was mainly derived from soil nitrogen (63.8 %) and ammonia fertilizer (28.8 %). Nitrification and denitrification occurred only locally in the aquifer of the study area and were more pronounced in the ESA. Meanwhile, the transformation processes of nitrate in groundwater in the ESA and WSA was significantly influenced by contamination with chlorinated hydrocarbon volatile organic compounds and hydrogeological conditions, respectively. These findings provide a scientific basis for the development of groundwater pollution prevention measures in the study area and guide the traceability of nitrate in groundwater in areas with similar hydrogeological and pollution conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...