Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 39(6): 3563-3577, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38477077

RESUMEN

Lysine specific demethylase 1 (LSD1) is a histone demethylase that specifically catalyzes the demethylation of histone H3K4 (H3K4me1/2) and regulates gene expression. In addition, it can mediate the process of autophagy through its demethylase activity. Sestrin2 (SESN2) is a stress-induced protein and a positive regulator of autophagy. In NaAsO2-induced mouse fibrotic livers and activated hepatic stellate cells (HSCs), LSD1 expression is decreased, SESN2 expression is increased, and autophagy levels are also increased. Overexpression of LSD1 and silencing of SESN2 decreased the level of autophagy and attenuated the activation of HSCs induced by NaAsO2. LSD1 promoted SESN2 gene transcription by increasing H3K4me1/2 in the SESN2 promoter region. 3-methyladenine (3-MA) and chloroquine were used to inhibit autophagy of HSCs, and the degree of activation was also alleviated. Taken together, LSD1 positively regulates SESN2 by increasing H3K4me1/2 enrichment in the SESN2 promoter region, which in turn increases the level of autophagy and promotes the activation of HSCs. Our results may provide new evidence for the importance of LSD1 in the process of autophagy and activation of HSCs induced by arsenic poisoning. Increasing the expression and activity of LSD1 is expected to be an effective way to reverse the autophagy and activation of HSCs induced by arsenic poisoning.


Asunto(s)
Arsenitos , Transducción de Señal , Compuestos de Sodio , Animales , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Arsenitos/toxicidad , Autofagia/efectos de los fármacos , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Transducción de Señal/efectos de los fármacos , Compuestos de Sodio/toxicidad
2.
Front Mol Neurosci ; 16: 1274268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908486

RESUMEN

Background: This study aims to utilize Weighted Gene Co-expression Network Analysis (WGCNA) and Support Vector Machine (SVM) algorithm for screening biomarkers and constructing a diagnostic model for Parkinson's disease. Methods: Firstly, we conducted WGCNA analysis on gene expression data from Parkinson's disease patients and control group using three GEO datasets (GSE8397, GSE20163, and GSE20164) to identify gene modules associated with Parkinson's disease. Then, key genes with significantly differential expression from these gene modules were selected as candidate biomarkers and validated using the GSE7621 dataset. Further functional analysis revealed the important roles of these genes in processes such as immune regulation, inflammatory response, and cell apoptosis. Based on these findings, we constructed a diagnostic model by using the expression data of FLT1, ATP6V0E1, ATP6V0E2, and H2BC12 as inputs and training and validating the model using SVM algorithm. Results: The prediction model demonstrated an AUC greater than 0.8 in the training, test, and validation sets, thereby validating its performance through SMOTE analysis. These findings provide strong support for early diagnosis of Parkinson's disease and offer new opportunities for personalized treatment and disease management. Conclusion: In conclusion, the combination of WGCNA and SVM holds potential in biomarker screening and diagnostic model construction for Parkinson's disease.

3.
Toxicol Ind Health ; 38(11): 745-756, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36120900

RESUMEN

C/EBP-homologous protein (CHOP) and histone H3 lysine 4 (H3K4) methylation have been verified to be correlated with apoptosis, whereas their biological function in arsenic-induced hepatocyte apoptosis through the mitochondrial pathway is still unclear. This study aimed to explore the specific regulatory mechanism of CHOP and H3K4me1/2 in arsenic-induced mitochondrial apoptosis in hepatocytes. Apoptosis and proliferation results showed arsenic promoted apoptosis and inhibited cell growth in BRL-3A cells. Meanwhile, arsenic treatment significantly upregulated the 78-kDa glucose-regulated protein (GRP78), CHOP, su(var)-3-9,enhancer-of-zeste,trithorax (SET) domain containing 7/9 (SET7/9), H3K4me1/2, BIM and BAX expression, while markedly downregulated lysine-specific histone demethylase 1 (LSD1) and BCL2 expression. After down-regulating CHOP, LSD1, and (su(var)-3-9,enhancer-of-zeste,trithorax) domain-containing protein 7/9 (SET7/9) in BRL-3A cells by siRNA, silencing CHOP and SET7/9 notably attenuated the pro-apoptotic and anti-proliferative effects of arsenic treatment on BRL-3A cells, which was reversed after inhibiting LSD1. In addition, our results suggested that knockdown of CHOP altered the expression of mitochondrial-associated proteins BCL2 and BIM, whereas knockdown of LSD1 and SET7/8 regulated the level of H3K4me1/2 modification and BAX protein. Coupled with chromatin immunoprecipitation results, we found that the level of CHOP in the promoter regions of BCL2 and BIM was significantly increased in BRL-3A cells exposed to 30 µmol/L NaAsO2 for 24 h, whereas the levels of H3K4me1/2 in the promoter regions of BAX were unchanged. Collectively, these data indicated that arsenic triggered the mitochondrial pathway to induce hepatocyte apoptosis by up-regulating the levels of CHOP and H3K4me1/2.


Asunto(s)
Arsénico , Histonas , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Metilación , Histonas/metabolismo , Lisina/metabolismo , Arsénico/toxicidad , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Apoptosis , Hepatocitos/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA