Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Plant Physiol Biochem ; 214: 108872, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38964087

RESUMEN

Bletilla striata, valued for its medicinal and ornamental properties, remains largely unexplored in terms of how light intensity affects its physiology, biochemistry, and polysaccharide formation. In this 5-month study, B. striata plants were exposed to three different light intensities: low light (LL) (5-20 µmol m-2·s-1), middle light (ML) (200 µmol m-2·s-1), and high light (HL) (400 µmol m-2·s-1). The comprehensive assessment included growth, photosynthetic apparatus, chlorophyll fluorescence electron transport, and analysis of differential metabolites based on the transcriptome and metabolome data. The results indicated that ML resulted in the highest plant height and total polysaccharide content, enhanced photosynthetic apparatus performance and light energy utilization, and stimulated carbon metabolism and carbohydrate accumulation. HL reduced Chl content and photosynthetic apparatus functionality, disrupted OEC activity and electron transfer, stimulated carbon metabolism and starch and glucose accumulation, and hindered energy metabolism related to carbohydrate degradation and oxidation. In contrast, LL facilitated leaf growth and increased chlorophyll content but decreased plant height and total polysaccharide content, compromised the photosynthetic apparatus, hampered light energy utilization, stimulated energy metabolism related to carbohydrate degradation and oxidation, and inhibited carbon metabolism and carbohydrate synthesis. Numerous genes in carbon metabolism were strongly related to polysaccharide metabolites. The katE and cysK genes in carbon metabolism were strongly related not only to polysaccharide metabolites, but also to genes involved in polysaccharide biosynthesis. Our results highlight that light intensity plays a crucial role in affecting polysaccharide biosynthesis in B. striata, with carbon metabolism acting as a mediator under suitable light intensity conditions.

2.
Anticancer Drugs ; 35(7): 644-652, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950136

RESUMEN

Cervical cancer is one of the most common malignant tumors in women, and more than one-third of the patients have already developed to a locally advanced stage at initial diagnosis. After standard concurrent chemoradiotherapy, recurrence still occurs in 29-38% of patients with locally advanced cervical cancer (LACC), and the 5-year survival rate of patients with recurrence is only 3.8-13.0%, resulting in a poor prognosis and limited therapeutic choices. Currently, the recommended first-line systemic treatment for recurrent metastatic cervical cancer involves cisplatin or carboplatin in combination with paclitaxel-based chemotherapy, supplemented with the antivascular agent bevacizumab and the immune checkpoint inhibitor pembrolizumab. The use of these drugs, however, is limited due to side effects such as myelosuppression, gastrointestinal perforation, and bleeding, so new treatment modalities need to be explored. Anti-EGFR (epithelial growth factor receptor, anti-surface growth factor receptor antibody) targeted drugs have been demonstrated to have a significant radiosensitizing effect on synchronous chemoradiotherapy in LACC and are now considered to have potential for the treatment of recurrent cervical cancer. We represented a LACC patient who relapsed 6 months after concurrent chemoradiotherapy. The patient received six cycles of nimotuzumab combined with camrelizumab, and the efficacy was evaluated to be partial remission after two or four cycles of treatment, with progression-free survival up to 9 months, without significant side effects. Until March 2024, the patient was still undergoing treatment. Promising efficacy and tolerable side effects of nimotuzumab in combination with camrelizumab were observed in this case.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Recurrencia Local de Neoplasia , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/terapia , Neoplasias del Cuello Uterino/patología , Femenino , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioradioterapia/métodos , Inmunoterapia/métodos , Antineoplásicos Inmunológicos/uso terapéutico , Antineoplásicos Inmunológicos/administración & dosificación
3.
Plants (Basel) ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38999580

RESUMEN

Soil acidification is a significant form of agricultural soil degradation, which is accelerated by irrational fertilizer application. Sweetpotato and wheat rotation has emerged as an important rotation system and an effective strategy to optimize nutrient cycling and enhance soil fertility in hilly areas, which is also a good option to improve soil acidification and raise soil quality. Studying the effects of different fertilization regimes on soil acidification provides crucial data for managing it effectively. An eight-year field experiment explored seven fertilizer treatments: without fertilization (CK), phosphorus (P) and potassium (K) fertilization (PK), nitrogen (N) and K fertilization (NK), NP fertilization (NP), NP with K chloride fertilization (NPK1), NP with K sulfate fertilization (NPK2), and NPK combined with organic fertilization (NPKM). This study focused on the soil acidity, buffering capacity, and related indicators. After eight years of continuous fertilization in the sweetpotato-wheat rotation, all the treatments accelerated the soil acidification. Notably, N fertilization reduced the soil pH by 1.30-1.84, whereas N-deficient soil showed minimal change. Organic fertilizer addition resulted in the slowest pH reduction among the N treatments. Both N-deficient (PK) and organic fertilizer addition (NPKM) significantly increased the soil cation exchange capacity (CEC) by 8.83% and 6.55%, respectively, compared to CK. Similar trends were observed for the soil-buffering capacity (pHBC). NPK2 increased the soil K+ content more effectively than NPK1. NPKM reduced the sodium and magnesium content compared to CK, with the highest magnesium content among the treatments at 1.60 cmol·kg-1. Regression tree analysis identified the N input and soil magnesium and calcium content as the primary factors influencing the pHBC changes. Structural equation modeling showed that the soil pH is mainly influenced by the soil ammonium N content and pHBC, with coefficients of -0.28 and 0.29, respectively. Changes in the soil pH in the sweetpotato-wheat rotation were primarily associated with the pHBC and N input, where the CEC content emerged as the main factor, modulated by magnesium and calcium. Long-term organic fertilization enhances the soil pHBC and CEC, slowing the magnesium reduction and mitigating soil acidification in agricultural settings.

4.
ACS Omega ; 9(24): 25610-25624, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38911759

RESUMEN

The massive burning of fossil fuels has been important for economic and social development, but the increase in the CO2 concentration has seriously affected environmental sustainability. In industrial and agricultural production, light olefins are one of the most important feedstocks. Therefore, the preparation of light olefins by CO2 hydrogenation has been intensively studied, especially for the development of efficient catalysts and for the application in industrial production. Fe-based catalysts are widely used in Fischer-Tropsch synthesis due to their high stability and activity, and they also exhibit excellent catalytic CO2 hydrogenation to light olefins. This paper systematically summarizes and analyzes the reaction mechanism of Fe-based catalysts, alkali and transition metal modifications, interactions between active sites and carriers, the synthesis process, and the effect of the byproduct H2O on catalyst performance. Meanwhile, the challenges to the development of CO2 hydrogenation for light olefin synthesis are presented, and future development opportunities are envisioned.

5.
Nat Commun ; 15(1): 4124, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750026

RESUMEN

Basal progenitor cells are crucial for maintaining foregut (the esophagus and forestomach) homeostasis. When their function is dysregulated, it can promote inflammation and tumorigenesis. However, the mechanisms underlying these processes remain largely unclear. Here, we employ genetic mouse models to reveal that Jag1/2 regulate esophageal homeostasis and foregut tumorigenesis by modulating the function of basal progenitor cells. Deletion of Jag1/2 in mice disrupts esophageal and forestomach epithelial homeostasis. Mechanistically, Jag1/2 deficiency impairs activation of Notch signaling, leading to reduced squamous epithelial differentiation and expansion of basal progenitor cells. Moreover, Jag1/2 deficiency exacerbates the deoxycholic acid (DCA)-induced squamous epithelial injury and accelerates the initiation of squamous cell carcinoma (SCC) in the forestomach. Importantly, expression levels of JAG1/2 are lower in the early stages of human esophageal squamous cell carcinoma (ESCC) carcinogenesis. Collectively, our study demonstrates that Jag1/2 are important for maintaining esophageal and forestomach homeostasis and the onset of foregut SCC.


Asunto(s)
Carcinogénesis , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Esófago , Homeostasis , Proteína Jagged-1 , Proteína Jagged-2 , Células Madre , Animales , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Esófago/patología , Esófago/metabolismo , Células Madre/metabolismo , Ratones , Proteína Jagged-2/metabolismo , Proteína Jagged-2/genética , Humanos , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Ratones Noqueados , Transducción de Señal , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Diferenciación Celular , Masculino , Femenino
6.
BMC Cancer ; 24(1): 589, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745137

RESUMEN

BACKGROUND: Evaluate the efficacy and safety of different chemotherapy regimens concurrent with radiotherapy in treating locally advanced cervical cancer (LACC). METHODS: Retrospective data was collected from LACC patients who were treated at our institution. These patients were categorized into three groups: the single-agent cisplatin (DDP) chemoradiotherapy group, the paclitaxel plus cisplatin (TP) chemoradiotherapy group, and the nanoparticle albumin-bound (nab-) paclitaxel combined with cisplatin (nPP) chemoradiotherapy group. The primary endpoints were overall survival (OS) and progression-free survival (PFS) and the secondary endpoints were objective response rate (ORR) and incidence of adverse events (AEs). RESULTS: A total of 124 patients were enrolled (32 in the DDP group, 41 in the TP group, and 51 in the nPP group). There were differences in OS (P = 0.041, HR 0.527, 95% CI 0.314-0.884) and PFS (P = 0.003, HR 0.517, 95% CI 0.343-0.779) between the three groups. Notably, the 2-year OS rate was significantly higher in the nPP group compared to the DDP group (92.2% vs. 85.4%, P = 0.012). The 2-year PFS rates showed a marked increase in the TP group (78.0% vs. 59.4%, P = 0.048) and the nPP group (88.2% vs. 59.4%, P = 0.001) relative to the DPP group, with multiple comparisons indicating that the 2-year PFS rate was significantly superior in the nPP group versus the DDP group (88.2% vs. 59.4%, P = 0.001). Moreover, the ORR was also significantly higher in the nPP group than in the DDP group (P = 0.013); and no statistically significant differences were found in the incidence of AEs among the groups (P > 0.05). CONCLUSIONS: In LACC treatment, the two cisplatin-based doublet chemotherapy regimens are associated with better outcomes, with the nab-paclitaxel plus cisplatin regimen showing better efficacy than the paclitaxel plus cisplatin regimen. Furthermore, the AEs associated with these regimens were deemed tolerable. These findings could provide a reference for the clinical treatment of LACC. However, further prospective studies are needed to verify it.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Quimioradioterapia , Cisplatino , Paclitaxel , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/terapia , Neoplasias del Cuello Uterino/radioterapia , Neoplasias del Cuello Uterino/mortalidad , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Femenino , Persona de Mediana Edad , Quimioradioterapia/métodos , Quimioradioterapia/efectos adversos , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Paclitaxel/efectos adversos , Estudios Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Cisplatino/uso terapéutico , Cisplatino/administración & dosificación , Cisplatino/efectos adversos , Adulto , Anciano , Resultado del Tratamiento , Supervivencia sin Progresión
7.
Plants (Basel) ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611502

RESUMEN

In recent years, overuse of chemical fertilization has led to soil acidification and decreased rice yield productivity in southern China. Biochar and manure co-application remediation may have positive effects on rice yield and improve acid paddy soil fertility. This study was conducted to understand the effects of co-application of wood biochar and pig manure on rice yield and acid paddy soil quality (0-40 cm soil layers) in a 5-year field experiment. The experiment consisted of six treatments: no biochar and no fertilizer (CK); biochar only (BC); mineral fertilizer (N); mineral fertilizer combined with biochar (N + BC); manure (25% manure N replacing fertilizer N) combined with mineral fertilizer (MN); and manure combined with mineral fertilizer and biochar (MN + BC). Total nitrogen application for each treatment was the same at 270 kg nitrogen ha-1y-1, and 30 t ha-1 biochar was added to the soil only in the first year. After five years, compared with N treatments, N + BC, MN, and MN + BC treatments increased the rice yield rate to 2.8%, 4.3%, and 6.3%, respectively, by improving soil organic matter, total nitrogen, and available phosphate under a 0-40 cm soil layer. MN + BC had the strongest resistance to soil acidification among all the treatments. The interaction between fertilizers and biochar application was significant (p < 0.05) in rice yield, soil electrical conductivity (10-20 cm), and soil available phosphate (20-40 cm). Principal component analysis indicated that the effect of manure on soil property was stronger than that of biochar in the 0-40 cm soil layer. The overall rice yield and soil fertility decreased in the order of biochar + mineral fertilizer + manure > mineral fertilizer + manure > biochar + mineral fertilizer > mineral fertilizer > biochar > control. These results suggest that biochar and manure co-application is a long-term viable strategy for improving acid soil productivity due to its improvements in soil pH, organic carbon, nutrient retention, and availability.

8.
Int J Biol Macromol ; 267(Pt 2): 131634, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636747

RESUMEN

Oxidative damage is an important cause of aging. The antioxidant and anti-aging activities of Longan polysaccharides, especially purified Longan polysaccharides, have not been thoroughly investigated. Therefore, this study aimed to investigate the antioxidant and anti-aging activities and mechanisms of crude polysaccharides and purified polysaccharides from Longan. A purified acidic Longan polysaccharide LP-A was separated from Longan crude polysaccharide LP. Subsequently, its structural characterization, anti-aging activity and mechanism were studied. The results showed that LP-A was an acidic heteropolysaccharide with an average molecular weight (Mw) of 4.606 × 104 Da which was composed of nine monosaccharides. The scavenging rate of ABTS free radical in vitro reached 99 %. In the nematode life experiment, 0.3 mg/mL LP group and LP-A group could prolong the average lifespan of nematodes by 9.31 % and 25.80 %, respectively. Under oxidative stress stimulation, LP-A group could prolong the survival time of nematodes by 69.57 %. In terms of mechanism, Longan polysaccharide can regulate insulin / insulin-like growth factor (IIS) signaling pathway, increase the activity of antioxidant enzymes, reduce lipid peroxidation, enhance the body's resistance to stress damage, and effectively prolong the lifespan of nematodes. In conclusion, LP-A has better anti-aging activity than crude polysaccharide LP, which has great potential for developing as an anti-aging drug.


Asunto(s)
Envejecimiento , Antioxidantes , Caenorhabditis elegans , Estrés Oxidativo , Polisacáridos , Animales , Caenorhabditis elegans/efectos de los fármacos , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/química , Envejecimiento/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Peso Molecular , Monosacáridos/análisis , Longevidad/efectos de los fármacos
9.
BMC Plant Biol ; 24(1): 299, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38632552

RESUMEN

BACKGROUND: Several plants are facing drought stress due to climate change in recent years. In this study, we aimed to explore the effect of varying watering frequency on the growth and photosynthetic characteristics of Hosta 'Guacamole'. Moreover, we investigated the effect of high-nitrogen and -potassium fertilizers on alleviating the impacts of drought stress on the morphology, photosynthetic characteristics, chlorophyll fluorescence, fast chlorophyll a fluorescence transient, JIP-test parameters, and enzymatic and non-enzymatic scavenging system for reactive oxygen species (ROS) in this species. RESULTS: Leaf senescence, decreased chlorophyll contents, limited leaf area, and reduced photosynthetic characteristics and oxygen-evolving complex (OEC) activity were observed in Hosta 'Guacamole' under drought stress. However, high-nitrogen fertilizer (30-10-10) could efficiently alleviate and prevent the adverse effects of drought stress. High-nitrogen fertilizer significantly increased chlorophyll contents, which was higher by 106% than drought stress. Additionally, high-nitrogen fertilizer significantly improved net photosynthetic rate and water use efficiency, which were higher by 467% and 2900% than those under drought stress. It attributes that high-nitrogen fertilizer could reduce transpiration rate of leaf cells and stomatal opening size in drought stress. On the other hand, high-nitrogen fertilizer enhanced actual photochemical efficiency of PS II and photochemical quenching coefficient, and actual photochemical efficiency of PS II significantly higher by 177% than that under drought stress. Furthermore, high-nitrogen fertilizer significantly activated OEC and ascorbate peroxidase activities, and enhanced the performance of photosystem II and photosynthetic capacity compared with high-potassium fertilizers (15-10-30). CONCLUSIONS: High-nitrogen fertilizer (30-10-10) could efficiently alleviate the adverse effects of drought stress in Hosta 'Guacamole' via enhancing OEC activity and photosynthetic performance and stimulating enzymatic ROS scavenging system.


Asunto(s)
Fertilizantes , Hosta , Nitrógeno/farmacología , Clorofila A , Sequías , Especies Reactivas de Oxígeno , Fotosíntesis , Clorofila , Complejo de Proteína del Fotosistema II , Potasio , Hojas de la Planta
10.
Sci Total Environ ; 923: 171419, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442752

RESUMEN

The incorporation of straw with decomposing inoculants into soils has been widely recommended to sustain agricultural productivity. However, comprehensive analyses assessing the effects of straw combined with decomposing inoculants on greenhouse gas (GHG) emissions, net primary production (NPP), the net ecosystem carbon budget (NECB), and the carbon footprint (CF) in farmland ecosystems are scant. Here, we carried out a 2-year field study in a wheat cropping system with six treatments: rice straw (S), a straw-decomposing Bacillus subtilis inoculant (K), a straw-decomposing Aspergillus oryzae inoculant (Q), a combination of straw and Bacillus subtilis inoculant (SK), a combination of straw and Aspergillus oryzae inoculant (SQ), and a control with no rice straw or decomposing inoculant (Control). We found that all the treatments resulted in a positive NECB ranging between 838 and 5065 kg C ha-1. Relative to the Control, the S treatment increased CO2 emissions by 16%, while considerably enhancing the NECB by 349%. This difference might be attributed to the straw C input and an increase in plant productivity (NPP, 30%). More importantly, in comparison to that in S, the NECB in SK and SQ significantly increased by 27-35% due to the positive response of NPP to the decomposing inoculants. Although the combination of straw and decomposing inoculants yielded a 3% increase in indirect GHG emissions, it also exhibited the lowest CF (0.18 kg CO2-eq kg-1 of grain). This result was attributed to the synergistic effects of straw and decomposing inoculants, which reduced direct N2O emissions and increased wheat productivity. Overall, the findings of the present study suggested that the combined amendment of straw and decomposing inoculants is an environmentally sustainable management practice in wheat cropping systems that can generate win-win scenarios through improvements in soil C stock, crop productivity, and GHG mitigation.


Asunto(s)
Carbono , Gases de Efecto Invernadero , Huella de Carbono , Ecosistema , Triticum , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Agricultura/métodos , Suelo , China
11.
Sci Total Environ ; 926: 171993, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38547967

RESUMEN

Calcium nitrate addition is economically viable and highly efficient for the in-situ treatment of contaminated sediment and enhancement of surface water quality, particularly in rural areas. However, conventional nitrate addition technologies have disadvantages such as excessive nitrate release, sharp ammonium increase, and weakened sulfide oxidation efficiency owing to rapid nitrate injection into the sediment. To resolve these defects, we propose a piped-slow-release (PSR) calcium nitrate dosing method and investigate its treatment efficiency and underlying mechanisms. The results illustrated that PSR dosing had a longer half-life (t1/2 = 5.08 days) and a lower maximum apparent nitrate escape rate of 1.28 % than conventional nitrate injection and other dosing methods. In addition, the PSR managed the inorganic nitrogen release into the overlying water, and after the treatment, the nitrate, ammonium, and nitrite concentrations of 0 mg/L, 8.60 mg/L, and 0 mg/L on day 28 were close to those of the control group (0 mg/L, 8.76 mg/L, and 0 mg/L, respectively). Moreover, the PSR method maintained a moderate nitrate concentration of approximately 3000 mg/L in sediment interstitial water by its controlled-release design, thus greatly enhancing the sulfide oxidation efficiency by relieving the inhibitory effects of high nitrate concentrations, with 83.0 % sulfide being eradicated within 5 days. Sulfide-ferrous nitrate reduction (denitrification and dissimilatory nitrate reduction to ammonium) genera (e.g., Sulfurimonas, Thiobacillus, and Thioalkalispira) were successively enhanced and dominated the microbial community, and the related functional genes displayed high relative abundances. These results imply that the PSR dosing method for calcium nitrate, characterized by flexible operation, high efficiency, low cost, and controllable processes, is appropriate for remediating black-odorous sediment in rural areas.


Asunto(s)
Compuestos de Amonio , Compuestos de Calcio , Nitratos , Odorantes , Sulfuros , Nitrógeno , Oxidación-Reducción , Desnitrificación
12.
Proc Natl Acad Sci U S A ; 121(10): e2320559121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408237

RESUMEN

Basal progenitor cells serve as a stem cell pool to maintain the homeostasis of the epithelium of the foregut, including the esophagus and the forestomach. Aberrant genetic regulation in these cells can lead to carcinogenesis, such as squamous cell carcinoma (SCC). However, the underlying molecular mechanisms regulating the function of basal progenitor cells remain largely unknown. Here, we use mouse models to reveal that Hippo signaling is required for maintaining the homeostasis of the foregut epithelium and cooperates with p53 to repress the initiation of foregut SCC. Deletion of Mst1/2 in mice leads to epithelial overgrowth in both the esophagus and forestomach. Further molecular studies find that Mst1/2-deficiency promotes epithelial growth by enhancing basal cell proliferation in a Yes-associated protein (Yap)-dependent manner. Moreover, Mst1/2 deficiency accelerates the onset of foregut SCC in a carcinogen-induced foregut SCC mouse model, depending on Yap. Significantly, a combined deletion of Mst1/2 and p53 in basal progenitor cells sufficiently drives the initiation of foregut SCC. Therefore, our studies shed light on the collaborative role of Hippo signaling and p53 in maintaining squamous epithelial homeostasis while suppressing malignant transformation of basal stem cells within the foregut.


Asunto(s)
Carcinoma de Células Escamosas , Transducción de Señal , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Homeostasis , Transducción de Señal/genética , Células Madre/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Señalizadoras YAP
13.
Stem Cell Res Ther ; 15(1): 41, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355568

RESUMEN

BACKGROUND: Corneal alkali burns can lead to ulceration, perforation, and even corneal blindness due to epithelial defects and extensive cell necrosis, resulting in poor healing outcomes. Previous studies have found that chitosan-based in situ hydrogel loaded with limbal epithelium stem cells (LESCs) has a certain reparative effect on corneal alkali burns. However, the inconsistent pore sizes of the carriers and low cell loading rates have resulted in suboptimal repair outcomes. In this study, 4D bioprinting technology was used to prepare a chitosan-based thermosensitive gel carrier (4D-CTH) with uniform pore size and adjustable shape to improve the transfer capacity of LESCs. METHODS: Prepare solutions of chitosan acetate, carboxymethyl chitosan, and ß-glycerophosphate sodium at specific concentrations, and mix them in certain proportions to create a pore-size uniform scaffold using 4D bioprinting technology. Extract and culture rat LESCs (rLESCs) in vitro, perform immunofluorescence experiments to observe the positivity rate of deltaNp63 cells for cell identification. Conduct a series of experiments to validate the cell compatibility of 4D-CTH, including CCK-8 assay to assess cell toxicity, scratch assay to evaluate the effect of 4D-CTH on rLESCs migration, and Calcein-AM/PI cell staining experiment to examine the impact of 4D-CTH on rLESCs proliferation and morphology. Establish a severe alkali burn model in rat corneas, transplant rLESCs onto the injured cornea using 4D-CTH, periodically observe corneal opacity and neovascularization using a slit lamp, and evaluate epithelial healing by fluorescein sodium staining. Assess the therapeutic effect 4D-CTH-loaded rLESCs on corneal alkali burn through histological evaluation of corneal tissue paraffin sections stained with hematoxylin and eosin, as well as immunofluorescence staining of frozen sections. RESULTS: Using the 4D-CTH, rLESCs were transferred to the alkali burn wounds of rats. Compared with the traditional treatment group (chitosan in situ hydrogel encapsulating rLESCs), the 4D-CTH-rLESC group had significantly higher repair efficiency of corneal injury, such as lower corneal opacity score (1.2 ± 0.4472 vs 0.4 ± 0.5477, p < 0.05) and neovascularization score (5.5 ± 1.118 vs 2.6 ± 0.9618, p < 0.01), and significantly higher corneal epithelial wound healing rate (72.09 ± 3.568% vs 86.60 ± 5.004%, p < 0.01). CONCLUSION: In summary, the corneas of the 4D-CTH-rLESC treatment group were similar to the normal corneas and had a complete corneal structure. These findings suggested that LESCs encapsulated by 4D-CTH significantly accelerated corneal wound healing after alkali burn and can be considered as a rapid and effective method for treating epithelial defects.


Asunto(s)
Quemaduras Químicas , Quitosano , Lesiones de la Cornea , Opacidad de la Córnea , Ratas , Animales , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/patología , Quitosano/química , Álcalis/farmacología , Álcalis/uso terapéutico , Cicatrización de Heridas , Córnea , Lesiones de la Cornea/terapia , Opacidad de la Córnea/patología , Células Madre/patología , Hidrogeles/farmacología
14.
Nat Cell Biol ; 26(1): 124-137, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168770

RESUMEN

The gut microbiota play a pivotal role in human health. Emerging evidence indicates that gut microbes participate in the progression of tumorigenesis through the generation of carcinogenic metabolites. However, the underlying molecular mechanism is largely unknown. In the present study we show that a tryptophan metabolite derived from Peptostreptococcus anaerobius, trans-3-indoleacrylic acid (IDA), facilitates colorectal carcinogenesis. Mechanistically, IDA acts as an endogenous ligand of an aryl hydrocarbon receptor (AHR) to transcriptionally upregulate the expression of ALDH1A3 (aldehyde dehydrogenase 1 family member A3), which utilizes retinal as a substrate to generate NADH, essential for ferroptosis-suppressor protein 1(FSP1)-mediated synthesis of reduced coenzyme Q10. Loss of AHR or ALDH1A3 largely abrogates IDA-promoted tumour development both in vitro and in vivo. It is interesting that P. anaerobius is significantly enriched in patients with colorectal cancer (CRC). IDA treatment or implantation of P. anaerobius promotes CRC progression in both xenograft model and ApcMin/+ mice. Together, our findings demonstrate that targeting the IDA-AHR-ALDH1A3 axis should be promising for ferroptosis-related CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Ferroptosis/genética , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología
15.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961271

RESUMEN

Human pluripotent stem cell-derived tissue engineering offers great promise in designer cell-based personalized therapeutics. To harness such potential, a broader approach requires a deeper understanding of tissue-level interactions. We previously developed a manufacturing system for the ectoderm-derived skin epithelium for cell replacement therapy. However, it remains challenging to manufacture the endoderm-derived esophageal epithelium, despite both possessing similar stratified structure. Here we employ single cell and spatial technologies to generate a spatiotemporal multi-omics cell atlas for human esophageal development. We illuminate the cellular diversity, dynamics and signal communications for the developing esophageal epithelium and stroma. Using the machine-learning based Manatee, we prioritize the combinations of candidate human developmental signals for in vitro derivation of esophageal basal cells. Functional validation of the Manatee predictions leads to a clinically-compatible system for manufacturing human esophageal mucosa. Our approach creates a versatile platform to accelerate human tissue manufacturing for future cell replacement therapies to treat human genetic defects and wounds.

16.
Front Pharmacol ; 14: 1252567, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795022

RESUMEN

Malignant melanoma (MM) is the most common and deadliest type of skin cancer and is associated with high mortality rates across all races and ethnicities. Although present treatment options combined with surgery provide short-term clinical benefit in patients and early diagnosis of non-metastatic MM significantly increases the probability of survival, no efficacious treatments are available for MM. The etiology and pathogenesis of MM are complex. Acquired drug resistance is associated with a pool prognosis in patients with advanced-stage MM. Thus, these patients require new therapeutic strategies to improve their treatment response and prognosis. Multiple studies have revealed that ferroptosis, a non-apoptotic form of regulated cell death (RCD) characterized by iron dependant lipid peroxidation, can prevent the development of MM. Recent studies have indicated that targeting ferroptosis is a promising treatment strategy for MM. This review article summarizes the core mechanisms underlying the development of ferroptosis in MM cells and its potential role as a therapeutic target in MM. We emphasize the emerging types of small molecules inducing ferroptosis pathways by boosting the antitumor activity of BRAFi and immunotherapy and uncover their beneficial effects to treat MM. We also summarize the application of nanosensitizer-mediated unique dynamic therapeutic strategies and ferroptosis-based nanodrug targeting strategies as therapeutic options for MM. This review suggests that pharmacological induction of ferroptosis may be a potential therapeutic target for MM.

17.
bioRxiv ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37745439

RESUMEN

While cell fate determination and maintenance are important in establishing and preserving tissue identity and function during development, aberrant cell fate transition leads to cancer cell heterogeneity and resistance to treatment. Here, we report an unexpected role for the transcription factor p63 (Trp63/TP63) in the fate choice of squamous versus neuroendocrine lineage in esophageal development and malignancy. Deletion of p63 results in extensive neuroendocrine differentiation in the developing mouse esophagus and esophageal progenitors derived from human embryonic stem cells. In human esophageal neuroendocrine carcinoma (eNEC) cells, p63 is transcriptionally silenced by EZH2-mediated H3K27 trimethylation (H3K27me3). Upregulation of the major p63 isoform ΔNp63α, through either ectopic expression or EZH2 inhibition, promotes squamous transdifferentiation of eNEC cells. Together these findings uncover p63 as a rheostat in coordinating the transition between squamous and neuroendocrine cell fates during esophageal development and tumor progression.

18.
Microb Ecol ; 86(4): 2716-2732, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37528183

RESUMEN

The pqqC and phoD genes encode pyrroloquinoline quinone synthase and alkaline phosphomonoesterase (ALP), respectively. These genes play a crucial role in regulating the solubilization of inorganic phosphorus (Pi) and the mineralization of organic phosphorus (Po), making them valuable markers for P-mobilizing bacterial. However, there is limited understanding of how the interplay between soil P-mobilizing bacterial communities and abiotic factors influences P transformation and availability in the context of long-term fertilization scenarios. We used real-time polymerase chain reaction and high-throughput sequencing to explore the characteristics of soil P-mobilizing bacterial communities and their relationships with key physicochemical properties and P fractions under long-term fertilization scenarios. In a 38-year fertilization experiment, six fertilization treatments were selected. These treatments were sorted into three groups: the non-P-amended group, including no fertilization and mineral NK fertilizer; the sole mineral-P-amended group, including mineral NP and NPK fertilizer; and the organically amended group, including sole organic fertilizer and organic fertilizer plus mineral NPK fertilizer. The organically amended group significantly increased soil labile P (Ca2-P and enzyme-P) and Olsen-P content and proportion but decreased non-labile P (Ca10-P) proportion compared with the sole mineral-P-amended group, indicating enhanced P availability in the soil. Meanwhile, the organically amended group significantly increased soil ALP activity and pqqC and phoD gene abundances, indicating that organic fertilization promotes the activity and abundance of microorganisms involved in P mobilization processes. Interestingly, the organically amended group dramatically reshaped the community structure of P-mobilizing bacteria and increased the relative abundance of Acidiphilium, Panacagrimonas, Hansschlegelia, and Beijerinckia. These changes had a greater positive impact on ALP activity, labile P, and Olsen-P content compared to the abundance of P-mobilizing genes alone, indicating their importance in driving P mobilization processes. Structural equation modeling indicated that soil organic carbon and Po modulated the relationship between P-mobilizing bacterial communities and labile P and Olsen-P, highlighting the influence of SOC and Po on the functioning of P-mobilizing bacteria and their impact on P availability. Overall, our study demonstrates that organic fertilization has the potential to reshape the structure of P-mobilizing bacterial communities, leading to increased P mobilization and availability in the soil. These findings contribute to our understanding of the mechanisms underlying P cycling in agricultural systems and provide valuable insights for enhancing microbial P mobilization through organic fertilization.


Asunto(s)
Fósforo , Suelo , Suelo/química , Fósforo/metabolismo , Fertilizantes/análisis , Carbono , Bacterias/genética , Bacterias/metabolismo , Microbiología del Suelo , Minerales , Fertilización
19.
Cardiology ; 148(6): 517-527, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37544294

RESUMEN

INTRODUCTION: Sympathetic nervous system disorder promotes atrial fibrillation (AF), and neuropeptide Y (NPY) is an important neurotransmitter. This study aimed to explore the predictive value of plasma NPY in patients with AF. METHODS: Five hundred seventy-six patients were divided into AF (including paroxysmal and long-standing persistent AF; 360) and sinus rhythm (SR) groups (216). NPY level was detected using enzyme-linked immunosorbent assay, and NPY mRNA expression level was detected using quantitative polymerase chain reaction. Logistic regression was used to analyse the risk factors for AF; the correlations between blood NPY level and age, body mass index (BMI), left ventricular ejection fraction, left atrial diameter (LAD), and European Heart rate Association (EHRA) score in patients with AF were determined. The receiver operating characteristic (ROC) curve was utilised to predict AF. RESULTS: Plasma NPY levels were found to be higher in patients with AF than in patients with SR and in patients with long-standing persistent AF than in patients with paroxysmal AF; blood NPY mRNA levels were higher in the paroxysmal and long-standing persistent AF groups compared to the SR group (p < 0.05). Increased age {odds ratio (OR) = 1.201 (95% confidence interval [CI]: 1.01, 1.427)} and high NPY [OR = 1.239 (95% CI: 1.022, 1.501)] were factors found to affect AF detrimentally. NPY was associated with BMI (r = 0.5856, p < 0.05), LAD (r = 0.4023, p < 0.05), and EHRA score (r = 0.898, p < 0.05). The ROC curve for the predictive value of plasma NPY levels for AF showed an area under the curve (AUC) value of 0.919 (p < 0.05), while that for long-standing persistent AF showed an AUC of 0.784 (p < 0.05). CONCLUSION: Circulating NPY may be a promising molecular biomarker of AF.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Humanos , Neuropéptido Y , Volumen Sistólico , Función Ventricular Izquierda , Biomarcadores , ARN Mensajero
20.
Sci Total Environ ; 900: 165916, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37524185

RESUMEN

The alkaline phosphomonoesterase (ALP)-harboring community (phoD-harboring community) plays a crucial role in the conversion of organic phosphorus (P) into available P (AP). However, the response mechanisms of phoD-harboring communities to fertilization strategies, crop types, and their interactions within the wheat-sweetpotato rotation are poorly understood. A nine-year field experiment of different fertilization strategies was established under the wheat-sweetpotato rotation. After harvesting the crop, we collected soil samples without fertilization (CK), inorganic NK fertilization (NK), inorganic NPK fertilization (NPK), and a combined application of inorganic NPK and organic fertilizer (NPKM). We employed high-throughput sequencing and enzymology techniques to analyze the composition and functional activity of phoD-harboring bacterial communities as well as their correlation with soil physicochemical properties. The results showed that long-term nitrogen (N) fertilization, especially inorganic N, significantly reduced soil pH and ALP activity while increasing AP compared with CK. The AP content in sweetpotato season was significantly higher than that in wheat season. Inorganic N fertilization dramatically reshaped the communities of phoD-harboring bacteria and decreased diversity. The phoD-harboring bacterial communities in sweetpotato season were significantly different from those in wheat season. The N fertilization significantly reduced the relative abundance of Acuticoccus, Methylibium, Rhizobacter, and Roseivivax, which was positively correlated with ALP activity. These groups in sweetpotato season decreased significantly compared with wheat season. A structural equation model indicates that pH and AP play a significant role in regulating the phoD-harboring bacteria communities, ALP activity, and their interactions. We demonstrate that fertilization strategies and crop types have a substantial impact on the phoD-harboring bacteria communities and functions, which are closely linked to soil pH and AP levels. Our study highlights the detrimental effects of soil acidification resulting from inorganic N fertilization on P-cycling bacterial communities and functions. However, the combination of inorganic and organic fertilizer can mitigate these adverse effects.


Asunto(s)
Ipomoea batatas , Suelo , Suelo/química , Triticum , Nitrógeno/análisis , Fertilizantes/análisis , Bacterias , Fertilización , Microbiología del Suelo , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...