Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Br J Haematol ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385580

RESUMEN

T/myeloid mixed phenotype acute leukaemia (MPAL) is a rare aggressive acute leukaemia with poorly understood pathogenesis. Herein, we report two cases of T/myeloid MPAL harbouring BCL11B-associated structural variants that activate TLX3 (TLX3::BCL11B-TLX3-activation) by genome sequencing and transcriptomic analyses. Both patients were young males with extramedullary involvement. Cooperative gene alterations characteristic of T/myeloid MPAL and T-lymphoblastic leukaemia (T-ALL) were detected. Both patients achieved initial remission following lineage-matched ALL-based therapy with one patient requiring a lineage-switched myeloid-based therapy. Our study is the first to demonstrate the clinicopathological and genomic features of TLX3::BCL11B-TLX3-activated T/myeloid MPAL and provide insights into leukaemogenesis.

2.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214913

RESUMEN

Cancer cells reprogram their metabolism to support cell growth and proliferation in harsh environments. While many studies have documented the importance of mitochondrial oxidative phosphorylation (OXPHOS) in tumor growth, some cancer cells experience conditions of reduced OXPHOS in vivo and induce alternative metabolic pathways to compensate. To assess how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts and plasma from patients with inborn errors of mitochondrial metabolism, and in cancer cells subjected to inhibition of the electron transport chain (ETC). All these analyses revealed extensive perturbations in purine-related metabolites; in non-small cell lung cancer (NSCLC) cells, ETC blockade led to purine metabolite accumulation arising from a reduced cytosolic NAD + /NADH ratio (NADH reductive stress). Stable isotope tracing demonstrated that ETC deficiency suppressed de novo purine nucleotide synthesis while enhancing purine salvage. Analysis of NSCLC patients infused with [U- 13 C]glucose revealed that tumors with markers of low oxidative mitochondrial metabolism exhibited high expression of the purine salvage enzyme HPRT1 and abundant levels of the HPRT1 product inosine monophosphate (IMP). ETC blockade also induced production of ribose-5' phosphate (R5P) by the pentose phosphate pathway (PPP) and import of purine nucleobases. Blocking either HPRT1 or nucleoside transporters sensitized cancer cells to ETC inhibition, and overexpressing nucleoside transporters was sufficient to drive growth of NSCLC xenografts. Collectively, this study mechanistically delineates how cells compensate for suppressed purine metabolism in response to ETC blockade, and uncovers a new metabolic vulnerability in tumors experiencing NADH excess.

3.
Sci Adv ; 9(13): eadg1123, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37000871

RESUMEN

Biomolecular condensates participate in the regulation of gene transcription, yet the relationship between nuclear condensation and transcriptional activation remains elusive. Here, we devised a biotinylated CRISPR-dCas9-based optogenetic method, light-activated macromolecular phase separation (LAMPS), to enable inducible formation, affinity purification, and multiomic dissection of nuclear condensates at the targeted genomic loci. LAMPS-induced condensation at enhancers and promoters activates endogenous gene transcription by chromatin reconfiguration, causing increased chromatin accessibility and de novo formation of long-range chromosomal loops. Proteomic profiling of light-induced condensates by dCas9-mediated affinity purification uncovers multivalent interaction-dependent remodeling of macromolecular composition, resulting in the selective enrichment of transcriptional coactivators and chromatin structure proteins. Our findings support a model whereby the formation of nuclear condensates at native genomic loci reconfigures chromatin architecture and multiprotein assemblies to modulate gene transcription. Hence, LAMPS facilitates mechanistic interrogation of the relationship between nuclear condensation, genome structure, and gene transcription in living cells.


Asunto(s)
Cromatina , Proteómica , Cromatina/genética , Núcleo Celular/genética , Factores de Transcripción/genética , Genoma
4.
Blood ; 142(4): 336-351, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-36947815

RESUMEN

Structural variants (SVs) involving enhancer hijacking can rewire chromatin topologies to cause oncogene activation in human cancers, including hematologic malignancies; however, because of the lack of tools to assess their effects on gene regulation and chromatin organization, the molecular determinants for the functional output of enhancer hijacking remain poorly understood. Here, we developed a multimodal approach to integrate genome sequencing, chromosome conformation, chromatin state, and transcriptomic alteration for quantitative analysis of transcriptional effects and structural reorganization imposed by SVs in leukemic genomes. We identified known and new pathogenic SVs, including recurrent t(5;14) translocations that cause the hijacking of BCL11B enhancers for the allele-specific activation of TLX3 in a subtype of pediatric leukemia. Epigenetic perturbation of SV-hijacked BCL11B enhancers impairs TLX3 transcription, which are required for the growth of t(5;14) leukemia cells. By CRISPR engineering of patient-derived t(5;14) in isogenic leukemia cells, we uncovered a new mechanism whereby the transcriptional output of SV-induced BCL11B enhancer hijacking is dependent on the loss of DNA hypermethylation at the TLX3 promoter. Our results highlight the importance of the cooperation between genetic alteration and permissive chromatin as a critical determinant of SV-mediated oncogene activation, with implications for understanding aberrant gene transcription after epigenetic therapies in patients with leukemia. Hence, leveraging the interdependency of genetic alteration on chromatin variation may provide new opportunities to reprogram gene regulation as targeted interventions in human disease.


Asunto(s)
Cromatina , Leucemia , Humanos , Niño , Cromatina/genética , Elementos de Facilitación Genéticos , Cromosomas/metabolismo , Factores de Transcripción/genética , Leucemia/genética , Proteínas Supresoras de Tumor/genética , Proteínas Represoras/genética
5.
Cancer Discov ; 13(1): 170-193, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36222845

RESUMEN

Mutations in IDH genes occur frequently in acute myeloid leukemia (AML) and other human cancers to generate the oncometabolite R-2HG. Allosteric inhibition of mutant IDH suppresses R-2HG production in a subset of patients with AML; however, acquired resistance emerges as a new challenge, and the underlying mechanisms remain incompletely understood. Here we establish isogenic leukemia cells containing common IDH oncogenic mutations by CRISPR base editing. By mutational scanning of IDH single amino acid variants in base-edited cells, we describe a repertoire of IDH second-site mutations responsible for therapy resistance through disabling uncompetitive enzyme inhibition. Recurrent mutations at NADPH binding sites within IDH heterodimers act in cis or trans to prevent the formation of stable enzyme-inhibitor complexes, restore R-2HG production in the presence of inhibitors, and drive therapy resistance in IDH-mutant AML cells and patients. We therefore uncover a new class of pathogenic mutations and mechanisms for acquired resistance to targeted cancer therapies. SIGNIFICANCE: Comprehensive scanning of IDH single amino acid variants in base-edited leukemia cells uncovers recurrent mutations conferring resistance to IDH inhibition through disabling NADPH-dependent uncompetitive inhibition. Together with targeted sequencing, structural, and functional studies, we identify a new class of pathogenic mutations and mechanisms for acquired resistance to IDH-targeting cancer therapies. This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , NADP , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Aminoácidos/genética , Isocitrato Deshidrogenasa
6.
Nat Metab ; 4(12): 1775-1791, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36443523

RESUMEN

The branched-chain aminotransferase isozymes BCAT1 and BCAT2, segregated into distinct subcellular compartments and tissues, initiate the catabolism of branched-chain amino acids (BCAAs). However, whether and how BCAT isozymes cooperate with downstream enzymes to control BCAA homeostasis in an intact organism remains largely unknown. Here, we analyse system-wide metabolomic changes in BCAT1- and BCAT2-deficient mouse models. Loss of BCAT2 but not BCAT1 leads to accumulation of BCAAs and branched-chain α-keto acids (BCKAs), causing morbidity and mortality that can be ameliorated by dietary BCAA restriction. Through proximity labelling, isotope tracing and enzymatic assays, we provide evidence for the formation of a mitochondrial BCAA metabolon involving BCAT2 and branched-chain α-keto acid dehydrogenase. Disabling the metabolon contributes to BCAT2 deficiency-induced phenotypes, which can be reversed by BCAT1-mediated BCKA reamination. These findings establish a role for metabolon formation in BCAA metabolism in vivo and suggest a new strategy to modulate this pathway in diseases involving dysfunctional BCAA metabolism.


Asunto(s)
Aminoácidos de Cadena Ramificada , Isoenzimas , Ratones , Animales , Isoenzimas/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Oxidación-Reducción , Fenotipo , Transaminasas/metabolismo , Homeostasis
7.
Blood ; 140(22): 2371-2384, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36054916

RESUMEN

We found that in regenerative erythropoiesis, the erythroid progenitor landscape is reshaped, and a previously undescribed progenitor population with colony-forming unit-erythroid (CFU-E) activity (stress CFU-E [sCFU-E]) is expanded markedly to restore the erythron. sCFU-E cells are targets of erythropoietin (Epo), and sCFU-E expansion requires signaling from the Epo receptor (EpoR) cytoplasmic tyrosines. Molecularly, Epo promotes sCFU-E expansion via JAK2- and STAT5-dependent expression of IRS2, thus engaging the progrowth signaling from the IGF1 receptor (IGF1R). Inhibition of IGF1R and IRS2 signaling impairs sCFU-E cell growth, whereas exogenous IRS2 expression rescues cell growth in sCFU-E expressing truncated EpoR-lacking cytoplasmic tyrosines. This sCFU-E pathway is the major pathway involved in erythrocytosis driven by the oncogenic JAK2 mutant JAK2(V617F) in myeloproliferative neoplasm. Inability to expand sCFU-E cells by truncated EpoR protects against JAK2(V617F)-driven erythrocytosis. In samples from patients with myeloproliferative neoplasm, the number of sCFU-E-like cells increases, and inhibition of IGR1R and IRS2 signaling blocks Epo-hypersensitive erythroid cell colony formation. In summary, we identified a new stress-specific erythroid progenitor cell population that links regenerative erythropoiesis to pathogenic erythrocytosis.


Asunto(s)
Eritropoyetina , Trastornos Mieloproliferativos , Neoplasias , Policitemia , Humanos , Eritropoyesis/fisiología , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Policitemia/metabolismo , Eritropoyetina/metabolismo , Trastornos Mieloproliferativos/metabolismo , Células Precursoras Eritroides/metabolismo , Neoplasias/metabolismo , Receptor IGF Tipo 1/metabolismo
8.
Nat Commun ; 12(1): 6323, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732703

RESUMEN

Cancers develop from the accumulation of somatic mutations, yet it remains unclear how oncogenic lesions cooperate to drive cancer progression. Using a mouse model harboring NRasG12D and EZH2 mutations that recapitulates leukemic progression, we employ single-cell transcriptomic profiling to map cellular composition and gene expression alterations in healthy or diseased bone marrows during leukemogenesis. At cellular level, NRasG12D induces myeloid lineage-biased differentiation and EZH2-deficiency impairs myeloid cell maturation, whereas they cooperate to promote myeloid neoplasms with dysregulated transcriptional programs. At gene level, NRasG12D and EZH2-deficiency independently and synergistically deregulate gene expression. We integrate results from histopathology, leukemia repopulation, and leukemia-initiating cell assays to validate transcriptome-based cellular profiles. We use this resource to relate developmental hierarchies to leukemia phenotypes, evaluate oncogenic cooperation at single-cell and single-gene levels, and identify GEM as a regulator of leukemia-initiating cells. Our studies establish an integrative approach to deconvolute cancer evolution at single-cell resolution in vivo.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/metabolismo , Leucemia/genética , Leucemia/metabolismo , Análisis de la Célula Individual , Animales , Apoptosis , Ciclo Celular , Proteína Potenciadora del Homólogo Zeste 2/deficiencia , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigenómica , GTP Fosfohidrolasas , Regulación Neoplásica de la Expresión Génica , Heterogeneidad Genética , Humanos , Leucemia Mieloide Aguda , Proteínas de la Membrana , Ratones Noqueados , Mutación , Células Mieloides , Oncogenes , Fenotipo , Transcriptoma
9.
Nat Commun ; 12(1): 4991, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404810

RESUMEN

Key mechanisms of fetal hemoglobin (HbF) regulation and switching have been elucidated through studies of human genetic variation, including mutations in the HBG1/2 promoters, deletions in the ß-globin locus, and variation impacting BCL11A. While this has led to substantial insights, there has not been a unified understanding of how these distinct genetically-nominated elements, as well as other key transcription factors such as ZBTB7A, collectively interact to regulate HbF. A key limitation has been the inability to model specific genetic changes in primary isogenic human hematopoietic cells to uncover how each of these act individually and in aggregate. Here, we describe a single-cell genome editing functional assay that enables specific mutations to be recapitulated individually and in combination, providing insights into how multiple mutation-harboring functional elements collectively contribute to HbF expression. In conjunction with quantitative modeling and chromatin capture analyses, we illustrate how these genetic findings enable a comprehensive understanding of how distinct regulatory mechanisms can synergistically modulate HbF expression.


Asunto(s)
Edición Génica , Hemoglobinas/genética , Hemoglobinas/metabolismo , Sistemas CRISPR-Cas , Cromatina , Cromosomas , Proteínas de Unión al ADN/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Expresión Génica , Globinas , Humanos , Mutación , Proteínas Represoras , Factores de Transcripción/metabolismo , Globinas beta/genética
10.
Nat Genet ; 53(5): 672-682, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33833453

RESUMEN

Transposable elements or transposons are major players in genetic variability and genome evolution. Aberrant activation of long interspersed element-1 (LINE-1 or L1) retrotransposons is common in human cancers, yet their tumor-type-specific functions are poorly characterized. We identified MPHOSPH8/MPP8, a component of the human silencing hub (HUSH) complex, as an acute myeloid leukemia (AML)-selective dependency by epigenetic regulator-focused CRISPR screening. Although MPP8 is dispensable for steady-state hematopoiesis, MPP8 loss inhibits AML development by reactivating L1s to induce the DNA damage response and cell cycle exit. Activation of endogenous or ectopic L1s mimics the phenotype of MPP8 loss, whereas blocking retrotransposition abrogates MPP8-deficiency-induced phenotypes. Expression of AML oncogenic mutations promotes L1 suppression, and enhanced L1 silencing is associated with poor prognosis in human AML. Hence, while retrotransposons are commonly recognized for their cancer-promoting functions, we describe a tumor-suppressive role for L1 retrotransposons in myeloid leukemia.


Asunto(s)
Silenciador del Gen , Leucemia Mieloide/genética , Elementos de Nucleótido Esparcido Largo/genética , Animales , Sistemas CRISPR-Cas/genética , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Genoma Humano , Inestabilidad Genómica , Hematopoyesis/genética , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/genética
11.
Cell Rep ; 32(9): 108087, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877669

RESUMEN

The heart manifests hypertrophic growth in response to high blood pressure, which may decompensate and progress to heart failure under persistent stress. Metabolic remodeling is an early event in this process. However, its role remains to be fully characterized. Here, we show that lactate dehydrogenase A (LDHA), a critical glycolytic enzyme, is elevated in the heart in response to hemodynamic stress. Cardiomyocyte-restricted deletion of LDHA leads to defective cardiac hypertrophic growth and heart failure by pressure overload. Silencing of LDHA in cultured cardiomyocytes suppresses cell growth from pro-hypertrophic stimulation in vitro, while overexpression of LDHA is sufficient to drive cardiomyocyte growth. Furthermore, we find that lactate is capable of rescuing the growth defect from LDHA knockdown. Mechanistically, lactate stabilizes NDRG3 (N-myc downregulated gene family 3) and stimulates ERK (extracellular signal-regulated kinase). Our results together suggest that the LDHA/NDRG3 axis may play a critical role in adaptive cardiomyocyte growth in response to hemodynamic stress.


Asunto(s)
Cardiomegalia/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Lactato Deshidrogenasa 5/metabolismo , Células Cultivadas , Hemodinámica , Humanos , Transducción de Señal
12.
Cell Rep ; 31(13): 107832, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32610133

RESUMEN

Protein ensembles control genome function by establishing, maintaining, and deconstructing cell-type-specific chromosomal landscapes. A plethora of small molecules orchestrate cellular functions and therefore may link physiological processes with genome biology. The metabolic enzyme and hemoglobin cofactor heme induces proteolysis of a transcriptional repressor, Bach1, and regulates gene expression post-transcriptionally. However, whether heme controls genome function broadly or through prescriptive actions is unclear. Using assay for transposase-accessible chromatin sequencing (ATAC-seq), we establish a heme-dependent chromatin atlas in wild-type and mutant erythroblasts lacking enhancers that confer normal heme synthesis. Amalgamating chromatin landscapes and transcriptomes in cells with sub-physiological heme and post-heme rescue reveals parallel Bach1-dependent and Bach1-independent mechanisms that target heme-sensing chromosomal hotspots. The hotspots harbor a DNA motif demarcating heme-regulated chromatin and genes encoding proteins not known to be heme regulated, including metabolic enzymes. The heme-omics analysis establishes how an essential biochemical cofactor controls genome function and cellular physiology.


Asunto(s)
Regulación de la Expresión Génica , Genoma , Hemo/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diferenciación Celular/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Células Eritroides/citología , Células Eritroides/metabolismo , Factor de Transcripción GATA1/metabolismo , Redes Reguladoras de Genes , Humanos , Masculino , Ratones , Modelos Biológicos , Motivos de Nucleótidos/genética
13.
Genome Biol ; 21(1): 59, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32138752

RESUMEN

The spatiotemporal control of 3D genome is fundamental for gene regulation, yet it remains challenging to profile high-resolution chromatin structure at cis-regulatory elements (CREs). Using C-terminally biotinylated dCas9, endogenous biotin ligases, and pooled sgRNAs, we describe the dCas9-based CAPTURE method for multiplexed analysis of locus-specific chromatin interactions. The redesigned system allows for quantitative analysis of the spatial configuration of a few to hundreds of enhancers or promoters in a single experiment, enabling comparisons across CREs within and between gene clusters. Multiplexed analyses of the spatiotemporal configuration of erythroid super-enhancers and promoter-centric interactions reveal organizational principles of genome structure and function.


Asunto(s)
Proteína 9 Asociada a CRISPR , Cromatina/química , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Biotinilación , Diferenciación Celular/genética , Células Eritroides , Sitios Genéticos , Región de Control de Posición , Globinas beta/genética
14.
Cancer Discov ; 10(5): 724-745, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32188707

RESUMEN

Mutations in protein-coding genes are well established as the basis for human cancer, yet how alterations within noncoding genome, a substantial fraction of which contain cis-regulatory elements (CRE), contribute to cancer pathophysiology remains elusive. Here, we developed an integrative approach to systematically identify and characterize noncoding regulatory variants with functional consequences in human hematopoietic malignancies. Combining targeted resequencing of hematopoietic lineage-associated CREs and mutation discovery, we uncovered 1,836 recurrently mutated CREs containing leukemia-associated noncoding variants. By enhanced CRISPR/dCas9-based CRE perturbation screening and functional analyses, we identified 218 variant-associated oncogenic or tumor-suppressive CREs in human leukemia. Noncoding variants at KRAS and PER2 enhancers reside in proximity to nuclear receptor (NR) binding regions and modulate transcriptional activities in response to NR signaling in leukemia cells. NR binding sites frequently colocalize with noncoding variants across cancer types. Hence, recurrent noncoding variants connect enhancer dysregulation with nuclear receptor signaling in hematopoietic malignancies. SIGNIFICANCE: We describe an integrative approach to identify noncoding variants in human leukemia, and reveal cohorts of variant-associated oncogenic and tumor-suppressive cis-regulatory elements including KRAS and PER2 enhancers. Our findings support a model in which noncoding regulatory variants connect enhancer dysregulation with nuclear receptor signaling to modulate gene programs in hematopoietic malignancies.See related commentary by van Galen, p. 646.This article is highlighted in the In This Issue feature, p. 627.


Asunto(s)
Neoplasias Hematológicas/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Humanos
15.
Nat Commun ; 11(1): 485, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980609

RESUMEN

Tissue-specific gene expression requires coordinated control of gene-proximal and -distal cis-regulatory elements (CREs), yet functional analysis of gene-distal CREs such as enhancers remains challenging. Here we describe CRISPR/dCas9-based enhancer-targeting epigenetic editing systems, enCRISPRa and enCRISPRi, for efficient analysis of enhancer function in situ and in vivo. Using dual effectors capable of re-writing enhancer-associated chromatin modifications, we show that enCRISPRa and enCRISPRi modulate gene transcription by remodeling local epigenetic landscapes at sgRNA-targeted enhancers and associated genes. Comparing with existing methods, the improved systems display more robust perturbations of enhancer activity and gene transcription with minimal off-targets. Allele-specific targeting of enCRISPRa to oncogenic TAL1 super-enhancer modulates TAL1 expression and cancer progression in xenotransplants. Single or multi-loci perturbations of lineage-specific enhancers using an enCRISPRi knock-in mouse establish in vivo evidence for lineage-restricted essentiality of developmental enhancers during hematopoiesis. Hence, enhancer-targeting CRISPR epigenetic editing provides opportunities for interrogating enhancer function in native biological contexts.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Elementos de Facilitación Genéticos , Epigénesis Genética , Edición Génica/métodos , Animales , Sistemas CRISPR-Cas , Línea Celular , Femenino , Células HEK293 , Hematopoyesis/genética , Humanos , Células Jurkat , Células K562 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Neoplasias/genética , ARN Guía de Kinetoplastida/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/genética
16.
Cell Discov ; 5: 40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636953

RESUMEN

Isotope-labeling-based mass spectrometry (MS) is widely used in quantitative proteomic studies. With this technique, the relative abundance of thousands of proteins can be efficiently profiled in parallel, greatly facilitating the detection of proteins differentially expressed across samples. However, this task remains computationally challenging. Here we present a new approach, termed Model-based Analysis of Proteomic data (MAP), for this task. Unlike many existing methods, MAP does not require technical replicates to model technical and systematic errors, and instead utilizes a novel step-by-step regression analysis to directly assess the significance of observed protein abundance changes. We applied MAP to compare the proteomic profiles of undifferentiated and differentiated mouse embryonic stem cells (mESCs), and found it has superior performance compared with existing tools in detecting proteins differentially expressed during mESC differentiation. A web-based application of MAP is provided for online data processing at http://bioinfo.sibs.ac.cn/shaolab/MAP.

17.
Cancer Discov ; 9(9): 1228-1247, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31189531

RESUMEN

Epigenetic gene regulation and metabolism are highly intertwined, yet little is known about whether altered epigenetics influence cellular metabolism during cancer progression. Here, we show that EZH2 and NRASG12D mutations cooperatively induce progression of myeloproliferative neoplasms to highly penetrant, transplantable, and lethal myeloid leukemias in mice. EZH1, an EZH2 homolog, is indispensable for EZH2-deficient leukemia-initiating cells and constitutes an epigenetic vulnerability. BCAT1, which catalyzes the reversible transamination of branched-chain amino acids (BCAA), is repressed by EZH2 in normal hematopoiesis and aberrantly activated in EZH2-deficient myeloid neoplasms in mice and humans. BCAT1 reactivation cooperates with NRASG12D to sustain intracellular BCAA pools, resulting in enhanced mTOR signaling in EZH2-deficient leukemia cells. Genetic and pharmacologic inhibition of BCAT1 selectively impairs EZH2-deficient leukemia-initiating cells and constitutes a metabolic vulnerability. Hence, epigenetic alterations rewire intracellular metabolism during leukemic transformation, causing epigenetic and metabolic vulnerabilities in cancer-initiating cells. SIGNIFICANCE: EZH2 inactivation and oncogenic NRAS cooperate to induce leukemic transformation of myeloproliferative neoplasms by activating BCAT1 to enhance BCAA metabolism and mTOR signaling. We uncover a mechanism by which epigenetic alterations rewire metabolism during cancer progression, causing epigenetic and metabolic liabilities in cancer-initiating cells that may be exploited as potential therapeutics.See related commentary by Li and Melnick, p. 1158.This article is highlighted in the In This Issue feature, p. 1143.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , GTP Fosfohidrolasas/genética , Leucemia/patología , Proteínas de la Membrana/genética , Trastornos Mieloproliferativos/genética , Transaminasas/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Leucemia/genética , Leucemia/metabolismo , Ratones , Mutación , Trastornos Mieloproliferativos/complicaciones , Trastornos Mieloproliferativos/metabolismo , Trasplante de Neoplasias , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
18.
EBioMedicine ; 39: 145-158, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30528456

RESUMEN

BACKGROUND: Chromosomal translocation-induced expression of the chromatin modifying oncofusion protein MLL-AF9 promotes acute myelocytic leukemia (AML). Whereas WNT/ß-catenin signaling has previously been shown to support MLL-AF9-driven leukemogenesis, the mechanism underlying this relationship remains unclear. METHODS: We used two novel small molecules targeting WNT signaling as well as a genetically modified mouse model that allow targeted deletion of the WNT protein chaperone Wntless (WLS) to evaluate the role of WNT signaling in AML progression. ATAC-seq and transcriptome profiling were deployed to understand the cellular consequences of disrupting a WNT signaling in leukemic initiating cells (LICs). FINDINGS: We identified Six1 to be a WNT-controlled target gene in MLL-AF9-transformed leukemic initiating cells (LICs). MLL-AF9 alters the accessibility of Six1 DNA to the transcriptional effector TCF7L2, a transducer of WNT/ß-catenin gene expression changes. Disruption of WNT/SIX1 signaling using inhibitors of the Wnt signaling delays the development of AML. INTERPRETATION: By rendering TCF/LEF-binding elements controlling Six1 accessible to TCF7L2, MLL-AF9 promotes WNT/ß-catenin-dependent growth of LICs. Small molecules disrupting WNT/ß-catenin signaling block Six1 expression thereby disrupting leukemia driven by MLL fusion proteins.


Asunto(s)
Proteínas de Homeodominio/genética , Leucemia Mieloide Aguda/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Animales , Células HEK293 , Células HL-60 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Trasplante de Neoplasias , Células Madre Neoplásicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Células THP-1 , Proteína 2 Similar al Factor de Transcripción 7/metabolismo
19.
Dev Cell ; 46(5): 581-594.e4, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30122630

RESUMEN

By functioning as an enzyme cofactor, hemoglobin component, and gene regulator, heme is vital for life. One mode of heme-regulated transcription involves amplifying the activity of GATA-1, a key determinant of erythrocyte differentiation. To discover biological consequences of the metal cofactor-transcription factor mechanism, we merged GATA-1/heme-regulated sectors of the proteome and transcriptome. This multi-omic analysis revealed a GATA-1/heme circuit involving hemoglobin subunits, ubiquitination components, and proteins not implicated in erythrocyte biology, including the zinc exporter Slc30a1. Though GATA-1 induced expression of Slc30a1 and the zinc importer Slc39a8, Slc39a8 dominantly increased intracellular zinc, which conferred erythroblast survival. Subsequently, a zinc transporter switch, involving decreased importer and sustained exporter expression, reduced intracellular zinc during terminal differentiation. Downregulating Slc30a1 increased intracellular zinc and, strikingly, accelerated differentiation. This analysis established a conserved paradigm in which a GATA-1/heme circuit controls trace metal transport machinery and trace metal levels as a mechanism governing cellular differentiation.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular/efectos de los fármacos , Eritroblastos/citología , Factor de Transcripción GATA1/metabolismo , Hemo/metabolismo , Zinc/farmacología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Eritroblastos/efectos de los fármacos , Eritroblastos/metabolismo , Eritropoyesis/efectos de los fármacos , Femenino , Factor de Transcripción GATA1/genética , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteoma , Transcriptoma
20.
Curr Protoc Mol Biol ; 123(1): e64, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29927077

RESUMEN

Cis-regulatory elements (CREs) play a pivotal role in spatiotemporal control of tissue-specific gene expression, yet the molecular composition of the vast majority of CREs in native chromatin remains unknown. In this article, we describe the clustered regularly interspaced short palindromic repeats (CRISPR) affinity purification in situ of regulatory elements (CAPTURE) approach to simultaneously identify locus-specific chromatin-regulating protein complexes and long-range DNA interactions. Using an in vivo biotinylated nuclease-deficient Cas9 (dCas9) protein and programmable single guide RNAs (sgRNAs), this approach allows for high-resolution and locus-specific isolation of protein complexes and long-range chromatin looping associated with single copy CREs in mammalian cells. Unbiased analysis of the compositional structure of developmentally regulated or disease-associated CREs identifies new features of transcriptional regulation. Hence, CAPTURE provides a versatile platform to study genomic locus-regulating chromatin composition in a mammalian genome. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Proteína 9 Asociada a CRISPR/química , Cromatina/química , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genómica/métodos , Línea Celular , Humanos , Elementos Reguladores de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA