Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(12): e23033, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076100

RESUMEN

Cold adapted live attenuated influenza vaccines can effectively prevent human disease and death caused by influenza virus. Since chicken embryos are used as the culture substrate for the large-scale production of influenza vaccines, cold adapted live attenuated influenza vaccines may be contaminated by exogenous avian viruses. Rapid and sensitive methods such as TaqMan-based quantitative PCR are needed for the detection of exogenous avian viruses during cold adapted live attenuated influenza vaccines production. In this study, a TaqMan-based quantitative PCR method was established for the detection of three common exogenous avian viruses, including fowl adenovirus type I, type Ⅲ and avian leukosis virus. Avian virus-encoding plasmids purified in high-performance liquid chromatography were essential for sensitivity analysis. The sensitivity reached 1 copy per reaction for each of the avian virus plasmids. Standard curves showed a strong linear relationship. The TaqMan-based quantitative PCR method had high specificity and no cross-reactivity with other irrelevant viruses. Furthermore, the established TaqMan-based quantitative PCR can effectively detect 0.1 TCID50 of each avian virus without or with interference from the influenza virus nucleic acid. Ultimately, this method was used to test three master seed lots of monovalent cold adapted live attenuated influenza vaccine, and the results showed that no fowl adenovirus type I, type Ⅲ or avian leukosis virus contamination, which were consistent with serological methods. The TaqMan-based quantitative PCR method for the determination of extraneous avian viruses in cold adapted live attenuated influenza vaccines met the requirement for both conventional and emergency inspection on cold adapted live attenuated influenza vaccines.

2.
bioRxiv ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37546818

RESUMEN

Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism's responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal's natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, mice avoid the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of the animal. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory-consummatory transitions and open new options for studying behavior-mediated temperature homeostasis.

3.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298531

RESUMEN

The intestine is critically crucial for nutrient absorption and host defense against exogenous stimuli. Inflammation-related intestinal diseases, including enteritis, inflammatory bowel disease (IBD), and colorectal cancer (CRC), are heavy burdens for human beings due to their high incidence and devastating clinical symptoms. Current studies have confirmed that inflammatory responses, along with oxidative stress and dysbiosis as critical pathogenesis, are involved in most intestinal diseases. Polyphenols are secondary metabolites derived from plants, which possess convincible anti-oxidative and anti-inflammatory properties, as well as regulation of intestinal microbiome, indicating the potential applications in enterocolitis and CRC. Actually, accumulating studies based on the biological functions of polyphenols have been performed to investigate the functional roles and underlying mechanisms over the last few decades. Based on the mounting evidence of literature, the objective of this review is to outline the current research progress regarding the category, biological functions, and metabolism of polyphenols within the intestine, as well as applications for the prevention and treatment of intestinal diseases, which might provide ever-expanding new insights for the utilization of natural polyphenols.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Polifenoles/farmacología , Polifenoles/uso terapéutico , Enfermedades Inflamatorias del Intestino/metabolismo , Intestinos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Microbioma Gastrointestinal/fisiología
4.
Nat Neurosci ; 25(9): 1201-1212, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995878

RESUMEN

The incorporation of new information into the hippocampal network is likely to be constrained by its innate architecture and internally generated activity patterns. However, the origin, organization and consequences of such patterns remain poorly understood. In the present study we show that hippocampal network dynamics are affected by sequential neurogenesis. We birthdated CA1 pyramidal neurons with in utero electroporation over 4 embryonic days, encompassing the peak of hippocampal neurogenesis, and compared their functional features in freely moving adult mice. Neurons of the same birthdate displayed distinct connectivity, coactivity across brain states and assembly dynamics. Same-birthdate neurons exhibited overlapping spatial representations, which were maintained across different environments. Overall, the wiring and functional features of CA1 pyramidal neurons reflected a combination of birthdate and the rate of neurogenesis. These observations demonstrate that sequential neurogenesis during embryonic development shapes the preconfigured forms of adult network dynamics.


Asunto(s)
Hipocampo , Neurogénesis , Animales , Hipocampo/fisiología , Ratones , Neurogénesis/fisiología , Neuronas/fisiología , Células Piramidales/fisiología
5.
Animal Model Exp Med ; 5(4): 311-322, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35808814

RESUMEN

Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), has emerged as a global disease with high incidence, long duration, devastating clinical symptoms, and low curability (relapsing immune response and barrier function defects). Mounting studies have been performed to investigate its pathogenesis to provide an ever-expanding arsenal of therapeutic options, while the precise etiology of IBD is not completely understood yet. Recent advances in high-throughput sequencing methods and animal models have provided new insights into the association between intestinal microbiota and IBD. In general, dysbiosis characterized by an imbalanced microbiota has been widely recognized as a pathology of IBD. However, intestinal microbiota alterations represent the cause or result of IBD process remains unclear. Therefore, more evidences are needed to identify the precise role of intestinal microbiota in the pathogenesis of IBD. Herein, this review aims to outline the current knowledge of commonly used, chemically induced, and infectious mouse models, gut microbiota alteration and how it contributes to IBD, and dysregulated metabolite production links to IBD pathogenesis.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Colitis Ulcerosa/complicaciones , Enfermedad de Crohn/complicaciones , Disbiosis/complicaciones , Enfermedades Inflamatorias del Intestino/etiología , Ratones
6.
Eur J Pharm Biopharm ; 177: 68-80, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716853

RESUMEN

Novel Coronavirus is affecting human's life globally and vaccines are one of the most effective ways to combat the epidemic. Transcutaneous immunization based on microneedle (MN) has attracted much attention because of its painlessness, rapidity, high efficiency and good compliance. In this study, CD11c monoclonal antibody-immunoliposomes (OVA@CD11c-ILP) actively targeting to Langerhans cells (LCs) were successfully prepared and were delivered by the microchannels of skin produced by MN to induce an immune response in vivo. OVA@CD11c-ILP could be targeted to LCs by conjugating CD11c monoclonal antibody to the surface of the ILP. OVA@CD11c-ILP promoted the maturation of dendritic cells (DCs) and the uptake and endocytosis of antigen by LCs. Moreover, OVA@CD11c-ILP immunization can significantly inhibit tumor growth and prolong overall survival. Furthermore, a higher antibody's titer ratio of IgG1/IgG2a indicated that the immune response stimulated by this immunization method was Th1-biased and the liposomes showed Th1-type adjuvant effect. In conclusion, the combination delivery system of immunoliposomes and microneedle can significantly improve the efficiency of antigen presentation and effectively activate cellular immune responses in the body, which is expected to be a promising transdermal immune strategy.


Asunto(s)
COVID-19 , Células de Langerhans , Anticuerpos Monoclonales , Presentación de Antígeno , Antígenos , Células Dendríticas , Humanos , Liposomas , Ovalbúmina
7.
Mol Pharm ; 19(8): 2807-2817, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35758904

RESUMEN

Photodynamic therapy combined with chemotherapy is a promising strategy to improve the antitumor efficacy. On the basis of coupling the chlorin-based photosensitizer pyropheophorbide a (Pyro) and histone deacetylase inhibitors (HDACis) to fabricate dual-mode antitumor molecules, a series of dual-mode antitumor prodrug molecules were synthesized and assessed for antitumor activity in vitro and in vivo. The data demonstrated that compound 4, with the most favorable phototoxicity and dark toxicity, could significantly inhibit the cell migration and upregulate the expression of acetyl-H3 protein, functioning as a photosensitizer and HDACi, respectively. Furthermore, compared with talaporfin, Pyro, and SAHA, compound 4 demonstrated the best inhibitory effect on tumor growth and metastasis in tumor-bearing mice; therefore, represented by compound 4, this pharmacophore coupling strategy is much more promising and effective than the pharmacophore fusion strategy for fabricating photodynamic and chemotherapeutical dual-mode molecules.


Asunto(s)
Antineoplásicos , Fotoquimioterapia , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Ratones , Fármacos Fotosensibilizantes/farmacología , Porfirinas
8.
Biomaterials ; 284: 121467, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35338941

RESUMEN

Despite that photodynamic therapy (PDT) has been applied for the treatment of cancer and skin diseases for more than two decades, all clinically used photodynamic agents (PDAs) suffer the drawback of skin phototoxicity of PDAs, which requires patients to avoid exposure to natural light for weeks after treatment, but has so far lacked effective suppression methods. Here, we report that three-dimensional diamondoid supramolecular organic frameworks (SOFs), that possess well-defined 2.1-nm porosity, can be used to suppress the skin phototoxicity of Photofrin, HiPorfin and Talaporfin, three porphyrin-based PDAs which clinically receive the most wide applications by injecting SOF after PDT, via an adsorption and retention mechanism. Fluorescence and dynamic light scattering experiments confirm that the SOFs have strong interaction with PDAs, and can adsorb PDAs at a micromolar concentration, whereas dialysis experiments support that the adsorption leads to an important retention effect. In vitro and in vivo experiments reveal that SOFs have high biocompatibility. Studies with healthy and tumor-bearing mouse models demonstrate that, when the PDAs are administrated at a dose comparable with the clinical one, SOF can remarkably suppress sunlight-induced skin phototoxicity, whereas the PDT efficacy of mice treated with SOF post-PDT is maintained. This work provides an efficient strategy for the improvement of the safety of clinically used PDAs.


Asunto(s)
Neoplasias , Fotoquimioterapia , Porfirinas , Animales , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/uso terapéutico , Diálisis Renal
9.
Int J Pharm ; 617: 121580, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202725

RESUMEN

Photothermal therapy (PTT) is becoming increasing prevalent in clinic for eradicating the primary tumor and improving cancer patients' compliance. However, photothermal resistance and distal metastasis still haunt the tumor treatment with PTT. Herein, on the basis that histone deacetylase acetylase inhibitor (HDACis) could activate the expression of anti-tumor gene and accelerate the differentiation and apoptosis of tumor cells, we propose that HDACis supplementing PTT could overcome those obstacles with appropriate drug-controlled release strategy. Thus, we fabricated a nano-complex of lysosomal activable vorinostat (SAHA) carrier-prodrug encapsulating black phosphorus quantum dots (BPQDs@PPS) to counter those challenges in PTT. With spherical morphology and favorable bio-safety, BPQDs@PPS could release BPQDs and Vorinostat spontaneously in lysosome, not only effectively inhibiting tumor growth, but also reversing tumor thermotolerance and metastasis within a PTT procedure. Especially, both western blot and immunofluorescence analysis validate that Vorinostat enables PTT to reverse tumor thermotolerance and distal metastasis by down-regulation of HSP70 and up-regulation of H3. Therefore, this research not only reveals the mechanism how HDACis supplement PTT in reversing tumor thermotolerance and metastasis, but also provides a promising prospect to upgrade clinical photothermal therapy.


Asunto(s)
Neoplasias , Profármacos , Termotolerancia , Línea Celular Tumoral , Humanos , Lisosomas/metabolismo , Neoplasias/metabolismo , Vorinostat/farmacología
10.
Amino Acids ; 54(3): 353-364, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34085156

RESUMEN

Intestinal dysfunction is commonly observed in humans and animals. Glycine (Gly) is a functional amino acid with anti-inflammatory and anti-apoptotic properties. The objective of this study was to test the protective effects of Gly against lipopolysaccharide (LPS)-induced intestinal injury. 28 C57BL/6 mice with a body weight (BW) of 18 ± 2 g were randomly assigned into four groups: CON (control), GLY (orally administered Gly, 5 g/kg BW/day for 6 days), LPS (5 mg/kg BW on day 7, i. p.), and GLY + LPS (Gly pretreatment and LPS administration). Histological alterations, inflammatory responses, epithelial cell apoptosis, and changes of the intestinal microbiota were analyzed. Results showed that, compared with the CON group, mice in the LPS treatment group showed decreased villus height, increased crypt depth, and decreased ratio of villus height to crypt depth, which were significantly attenuated by Gly. Neither LPS nor Gly treatment altered morphology of the distal colon tissues. LPS increased the apoptosis of jejunum and colon epithelial cells and protein abundance of cleaved caspase3 in the jejunum, which were markedly abrogated by Gly. LPS also elevated the mRNA levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MYD88), pro-inflammatory cytokines, and chemokines in the jejunum and colon. These alterations were significantly suppressed by Gly. In addition, Gly supplementation attenuated infiltration of CD4+, CD8+ T-lymphocytes, CD11b+ and F4/80+ macrophages in the colon. Furthermore, Gly increased the relative abundance of Mucispirillum, Lachnospiraceae-NK4A136-group, Anaerotruncus, Faecalibaculum, Ruminococcaceae-UCG-014, and decreased the abundance of Bacteroides at genus level. Supplementation with Gly might be a nutritional strategy to ameliorate LPS-induced intestinal injury in mice.


Asunto(s)
Glicina , Lipopolisacáridos , Animales , Ratones , Apoptosis , Glicina/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL
11.
Amino Acids ; 54(3): 385-398, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33839961

RESUMEN

Glycine is an amino acid with a diverse array of health benefits regarding metabolism, immunity, and development. The aim of this study was to test the hypothesis that glycine supplementation alters the intestinal microbial composition and improves the intestinal mucosal immunity of weaned piglets. One hundred and twenty-eight weaned piglets divided into 4 groups were fed with a corn- and soybean meal-based diet supplemented with 0 (control), 0.5, 1, or 2% glycine for 7 days. The intestinal microbiota and tissue samples from the control and the 2% glycine-supplemented piglets were collected for determination of the composition of microbial community and the intestinal mucosal barrier function. Piglets fed with diet containing 2% glycine, instead of 0.5% or 1% glycine, presented elevated average daily gain and feed conversion ratio, as compared with the control. 2% glycine enhanced the abundance of mucins in the jejunum and ileum and mRNA level of porcine ß-defensin (pBD) 2 and pBD-3, as well as the protein level of secretory immunoglobulin A (sIgA) in the jejunum. The mRNA expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6, and the protein level of phosphorylated p38 mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), nuclear factor (NF)-κB p65, and claudin-2 in the jejunum were lower in the 2% glycine group than that in the control. In addition, an elevated ratio of CD4+/CD8+ T lymphocytes was observed in the jejunum of piglets receiving diet supplemented with 2% glycine. The colon content of piglets fed with 2% glycine exhibited a reduction in abundance of pathogenic bacteria (Escherichia-Shigella, Clostridium, and Burkholderiales) and an increase in short-chain fatty acid-producing bacteria (Blautia, Lachnospiraceae, Anaerostipes, and Prevotella) in comparison with the control. We conclude that dietary supplementation with 2% glycine improves the intestinal immunological barrier function and the microbial composition, therefore, contributing to the growth performance of weaned piglets.


Asunto(s)
Glicina , Inmunidad Mucosa , Animales , Suplementos Dietéticos , Glicina/metabolismo , Glicina/farmacología , Mucosa Intestinal/metabolismo , Intestinos , Porcinos , Destete
12.
Drug Deliv ; 29(1): 1-9, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34949133

RESUMEN

Chemotherapy is one of the main ways to treat breast cancer clinically. However, the multidrug resistance to anti-tumor drugs limits their clinical use. To overcome these drawbacks, the development of drug delivery systems (DDSs) has attracted more and more attention in cancer therapy. At present, the preparation and purification process are complicated for many reported DDSs, while the clinic calls for new DDSs that are more convenient for preparation. Here a new pH-responsive supramolecular organic framework drug delivery complex loading doxorubicin (DOX) is fabricated. Anti-tumor activity of the system in vitro was investigated by cell cytotoxicity, uptake assay, and cell apoptosis analysis. The anti-tumor activity in vivo was investigated by inspecting nude mice body weight, tumor volume and weight, also a preliminary mechanism probe was conducted by HE and TUNEL staining. The DOX@SOF displayed high stability, good biocompatibility and pH-regulated drug release. At acid condition, the hydrazone bonds would be broken, which result in the dissociation of SOF, and then the drugs would be released from the system. Furthermore, DOX@SOF enhanced cellular internalization. Both in vitro and in vivo experiments reflected that DOX@SOF could enhance the anti-tumor activity of DOX. for the MCF-7/ADR tumor cells and tumors. This study provides a highly efficient strategy to prepare a stimulus-responsive supramolecular drug delivery complex for the treatment of drug-resistant cancer, the results presented inspiring scientific interests in exploring new drug delivery strategies and reversing multi-drug resistance for clinical chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Doxorrubicina/farmacología , Portadores de Fármacos/farmacología , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Liberación de Fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ratones Endogámicos BALB C , Ratones Desnudos , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Drug Deliv ; 29(1): 128-137, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34967270

RESUMEN

Chemotherapy is one of the main ways to treat breast cancer clinically. However, the multidrug resistance to anti-tumor drugs limits their clinical use. To overcome these drawbacks, development of drug delivery systems (DDSs) has attracted more and more attention in cancer therapy. At present, the preparation and purification process are complicated for many reported DDSs, while clinic calls for new DDSs that are more convenient for preparation. Here, a new pH-responsive supramolecular organic framework drug delivery complex loading doxorubicin (DOX) is fabricated. Anti-tumor activity of the system in vitro was investigated by cell cytotoxicity, uptake assay, and cell apoptosis analysis. The anti-tumor activity in vivo was investigated by inspecting nude mice body weight, tumor volume, and weight, also a preliminary mechanism probe was conducted by HE and TUNEL staining. The DOX@SOF displayed high stability, good biocompatibility, and pH regulated drug release. At acid condition, the hydrazone bonds would be broken, which result in the dissociation of SOF, and then the drugs would be released from the system. Furthermore, DOX@SOF enhanced cellular internalization. Both in vitro and in vivo experiments reflected that DOX@SOF could enhance the anti-tumor activity of DOX for the MCF-7/ADR tumor cells and tumors. This study provides a highly efficient strategy to prepare stimulus-responsive supramolecular drug delivery complex for treatment of drug-resistant cancer, the results presented inspiring scientific interests in exploring new drug delivery strategy and reversing multi-drug resistance for clinical chemotherapy.


Asunto(s)
Portadores de Fármacos/química , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Doxorrubicina/administración & dosificación , Liberación de Fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Distribución Aleatoria , Propiedades de Superficie , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Front Bioeng Biotechnol ; 9: 794769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926433

RESUMEN

As a severe clinical challenge, escharotomy and infection are always the core concerns of deep burn injuries. However, a usual dressing without multifunctionality leads to intractable treatment on deep burn wounds. Herein, we fabricated a sequential therapeutic hydrogel to solve this problem. Cross-linked by modified polyvinyl alcohol (PVA-SH/ε-PL) and benzaldehyde-terminated F127 triblock copolymers (PF127-CHO), the hydrogel demonstrated excellent mechanical properties, injectability, tissue adhesiveness, antibacterial activity, biocompatibility, and satisfactory wound cleaning through both in vitro and in vivo assays. Additionally, based on the conception of "sequential therapy," we proposed for the first time to load bromelain and EGF into the same hydrogel in stages for wound cleaning and healing. This work provides a strategy to fabricate a promising wound dressing for the treatment of deep burn wounds with injectability and improved patients' compliance as it simplified the process of treatment due to its "three in one" characteristic (antibacterial activity, wound cleaning, and healing effects); therefore, it has great potential in wound dressing development and clinical application.

15.
J Nutr ; 151(11): 3391-3399, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34383918

RESUMEN

BACKGROUND: Probiotics are beneficial in intestinal disorders. However, the benefits of Lactobacillus johnsonii in experimental colitis remain unknown. OBJECTIVES: This study aimed to investigate the benefits of L. johnsonii against Citrobacter rodentium-induced colitis. METHODS: Thirty-six 5-wk-old female C57BL/6J mice were randomly assigned to 3 groups (n = 12): control (Ctrl) group, Citrobacter rodentium treatment (CR) group (2 × 109 CFU C. rodentium), and Lactobacillus johnsonii and Citrobacter rodentium cotreatment (LJ + CR) group (109 CFU L. johnsonii with C. rodentium). Colon length, mucosal thickness, proinflammatory cytokine genes, and endoplasmic reticulum stress were tested. RESULTS: The CR group had greater spleen weight, mucosal thickness, and Ki67+ cells (0.4-4.7 times), and a 23.8% shorter colon length than the Ctrl group, which in the LJ + CR group were 22.4%-77.6% lower and 30% greater than in the CR group, respectively. Relative to the Ctrl group, serum proinflammatory cytokines and immune cell infiltration were greater by 0.3-1.6 times and 6.2-8.8 times in the CR group, respectively; relative to the CR group, these were 19.9%-61.9% and 69.5%-84.2% lower in the LJ + CR group, respectively. The mRNA levels of lysozyme (Lyz) and regenerating islet-derived protein III were 22.7%-36.5% lower and 1.5-2.7 times greater in the CR group than in the Ctrl group, respectively, whereas they were 22.2%-25.7% greater and 57.2%-76.9% lower in the LJ + CR group than in the CR group, respectively. Cell apoptosis was 11.9 times greater in the CR group than in the Ctrl group, and 87.4% lower in the LJ + CR group than in the CR group. Consistently, the protein abundances of C/EBP homologous protein (CHOP), cleaved caspase 1 and 3, activating transcription factor 6α (ATF6A), and phospho-inositol-requiring enzyme 1α (P-IRE1A) were 0.3-2.1 times greater in the CR group and 31.1%-60.4% lower in the LJ + CR group. All these indexes did not differ between the Ctrl and LJ + CR groups, except for CD8+ T lymphocytes and CD11b+ and F4/80+ macrophages (1-1.5 times greater in LJ + CR) and mRNA concentration of Lyz2 (20.1% lower in LJ + CR). CONCLUSIONS: L. johnsonii supplementation is a promising nutritional strategy for preventing C. rodentium-induced colitis in mice.


Asunto(s)
Colitis , Infecciones por Enterobacteriaceae , Lactobacillus johnsonii , Animales , Citrobacter rodentium , Colon , Estrés del Retículo Endoplásmico , Femenino , Ratones , Ratones Endogámicos C57BL
16.
Animals (Basel) ; 11(6)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207398

RESUMEN

Amino acids serve not only as building blocks for proteins, but also as substrates for the synthesis of low-molecular-weight substances involved in hepatic lipid metabolism. In the present study, eighteen weaned female piglets at 35 days of age were fed a corn- and soybean meal-based diet containing 20%, 17%, or 14% crude protein (CP), respectively. We found that 17% or 20% CP administration reduced the triglyceride and cholesterol concentrations, while enhanced high-density lipoprotein cholesterol (HDL-C) concentration in serum. Western blot analysis showed that piglets in the 20% CP group had higher protein abundance of hormone-sensitive triglyceride lipase (HSL) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), as compared with other groups. Moreover, the mRNA expression of sterol regulatory element binding transcription factor 1 (SREBPF1), fatty acid synthase (FASN), and stearoyl-CoA desaturase (SCD) were lower in the 17% or 20% CP group, compared with those of the piglets administered with 14% CP. Of note, the mRNA level of acetyl-CoA carboxylase alpha (ACACα) was lower in the 17% CP group, compared with other groups. Additionally, the mRNA level of lipoprotein lipase (LPL), peroxisome proliferator-activated receptor alpha α (PPARα), glucose-6-phosphatase catalytic subunit (G6PC), and phosphoenolpyruvate carboxykinase 1 (PKC1) in the liver of piglets in the 20% CP group were higher than those of the 14% CP group. Collectively, our results demonstrated that dietary CP could regulate hepatic lipid metabolism through altering hepatic lipid lipogenesis, lipolysis, oxidation, and gluconeogenesis.

17.
Biomolecules ; 11(5)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067570

RESUMEN

L-proline (proline) is a key regulator of embryogenesis, placental development, and fetal growth. However, the underlying mechanisms that support the beneficial effects of proline are largely unknown. This study used porcine trophectoderm cell line 2 (pTr2) to investigate the underlying mechanisms of proline in cell proliferation and redox homeostasis. Cells were cultured in the presence of 0, 0.25, 0.50, or 1.0 mmol/L proline for an indicated time. The results showed that 0.5 and 1.0 mmol/L proline enhanced cell viability. These effects of proline (0.5 mmol/L) were accompanied by the enhanced protein abundance of p-mTORC1, p-p70S6K, p-S6, and p-4E-BP1. Additionally, proline dose-dependently enhanced the mRNA expression of proline transporters [solute carrier family (SLC) 6A20, SLC36A1, SLC36A2, SLC38A1, and SLC38A2], elevated proline concentration, and protein abundance of proline dehydrogenase (PRODH). Furthermore, proline addition (0.25 or 0.5 mmol/L) resulted in lower abundance of p-AMPKα when compared with a control. Of note, proline resulted in lower reactive oxygen species (ROS) level, upregulated mRNA expression of the catalytic subunit of glutamate-cysteine ligase (GCLC) and glutathione synthetase (GSS), as well as enhanced total (T)-GSH and GSH concentration when compared with a control. These data indicated that proline activates themTORC1 signaling and modulates the intracellular redox environment via enhancing proline transport.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Placenta/metabolismo , Prolina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , Desarrollo Embrionario , Femenino , Oxidación-Reducción , Placenta/citología , Placenta/efectos de los fármacos , Embarazo , Transducción de Señal , Porcinos
18.
Accid Anal Prev ; 159: 106254, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34153642

RESUMEN

At "semi-controlled" crosswalks with yield signs and markings, negotiations as to the right-of-way occur frequently between pedestrians and motorists, to determine who should proceed first. This kind of "negotiation" often leads to traffic delay and potential conflicts. To minimize misunderstandings between pedestrian and motorist that can have serious safety consequences, it is essential that we understand the decision-making process as the "players" interact in real street-crossing situations. This paper employs a game-theoretic approach to investigate the joint behaviors of pedestrians and motorists from the perspective of safety. Assuming bounded rationality for each player, the quantal response equilibrium is a special kind of game with incomplete information. Explanatory variables such as conflicting risks and time savings can be incorporated into the payoff functions of the "players" via expected utility functions. Finally, model parameters can be estimated using an expectation maximization algorithm. The game-theoretic framework is applied to model pedestrian-motorist interactions at a semi-controlled crosswalk on a university campus. The estimation results indicate that the likelihood of pedestrian-vehicle conflict can be quantified. The results can lead to control measures that facilitate the negotiation between pedestrian and motorist and reduce the conflict risk at semi-controlled crosswalks.


Asunto(s)
Peatones , Accidentes de Tránsito/prevención & control , Humanos , Seguridad , Caminata
19.
Colloids Surf B Biointerfaces ; 205: 111903, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34144323

RESUMEN

A combination of photodynamic therapy (PDT) and histone deacetylase inhibitor (HDACis) could potentiate single-mode anti-tumor activity of HDACis or PDT to inhibit tumor relapse and metastasis. However, poor solubility and heterogeneity in cellular uptake and tissue distribution hamper the dual mode antitumor effect. For a controlled drug release of photosensitizers and HDACis in cytoplasm, photosensitizer pyropheophorbide-a (Pyro) encapsulated in polymer polyethylene glycol-b-poly (asparaginyl-vorinostat) (simplified as Pyro@FPPS) are fabricated to achieve their lysosomal spatiotemporal synchronized release. With HDACis modeling PDT in vitro and in vivo, it seems that polymerized Vorinostat encapsulated photosensitizers significantly inhibited the tumor proliferation and metastasis by spatiotemporal synchronized drugs release, and Pyro@FPPS reported here reveals a promising prospect to exert drugs' synergistic effect in a spatiotemporal synchronized manner and can be an effective strategy to inhibit tumor growth, recurrence and metastasis in clinic.


Asunto(s)
Antineoplásicos , Fotoquimioterapia , Antineoplásicos/farmacología , Línea Celular Tumoral , Liberación de Fármacos , Inhibidores de Histona Desacetilasas/farmacología , Lisosomas , Fármacos Fotosensibilizantes/farmacología , Vorinostat/farmacología
20.
Mol Nutr Food Res ; 65(15): e2001065, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34075695

RESUMEN

SCOPE: Inflammatory bowel disease (IBD) is an inflammatory gastrointestinal disorder in which endoplasmic reticulum (ER) stress and dysbiosis of the intestinal microbiota are implicated. Glycine supplementation is reported to reduce inflammatory responses in experimental colitis. However, the underlying mechanisms responsible for the beneficial effects remain unclear. METHODS AND RESULTS: Female C57BL/6 mice are orally administered with glycine (3.5 or 5.2 g kg-1 body weight) for 14 continuous days. On day 8 post-glycine supplementation, the mice are orally inoculated with 2 × 109 CFU Citrobacter rodentium (C. rodentium). The results show that glycine alleviates C. rodentium-induced body weight loss, increased disease activity index and spleen weight, colon length shortening, and colonic hyperplasia. Glycine suppresses the activation and infiltration of inflammatory cells, and secretion of pro-inflammatory cytokines in the colon tissues. The apoptosis of colon epithelial cells is also abrogated by glycine, which is associated with the inactivation of activating transcription factor 6α (ATF6α)-C/EBP homologous protein (CHOP) signaling. In addition, glycine administration increases α diversity, restores ß diversity, and abolishes the reduction in Lactobacillus, Bifidobacterium, Alistipes, Turicibacter, and Alloprevotella in the colon. CONCLUSIONS: Glycine supplementation is a nutritional strategy that may ameliorate C. rodentium-induced colitis by regulating ATF6α-CHOP-mediated ER stress and enhancing the abundance of Lactobacillus.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Colitis/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Glicina/farmacología , Animales , Péptidos Antimicrobianos/genética , Muerte Celular/efectos de los fármacos , Citrobacter rodentium/patogenicidad , Colitis/metabolismo , Colitis/microbiología , Colon/efectos de los fármacos , Colon/microbiología , Colon/patología , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/microbiología , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA