RESUMEN
Selecting appropriate global climate models (GCMs) is crucial for minimizing uncertainty in regional climate projections under future scenarios. Previous studies have predominantly assessed the modeling capability of GCMs for regional precipitation climatology and its long-term patterns based on annual and seasonal precipitation data. Building upon these, we primally evaluated the performance of five GCMs from phase 3b of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3b) in simulating precipitation concentration and its variations in the Southwest River Basin (SWRB) of China using the precipitation concentration index (PCI). The results indicate that: (1) The 5 GCMs generally capture the spatial distribution of annual average precipitation in the SWRB but significantly overestimate its magnitude, with a maximum regional average deviation of 207.80 mm. Furthermore, all models tend to overestimate the overall drying trend in the SWRB and show limited capability in simulating interdecadal variations of annual precipitation. (2) While the 5 GCMs reasonably simulate the spatial distribution of annual average PCI in the SWRB, they tend to overestimate its values, with a maximum regional average deviation of 1.54. Additionally, their simulation performance in capturing PCI trends and interdecadal variations is also limited. (3) The 5 GCMs tend to overestimate seasonal precipitation in the SWRB, with the best simulation performance for the distribution of autumn precipitation, followed by spring and summer, and the poorest for winter. Significant differences exist in the simulation performance of the models for seasonal precipitation proportions, which result in discrepancies in the models' representation of PCI. Moreover, the models' poor simulation performance of PCI trends is partly due to their inadequate modeling of trends in seasonal precipitation proportions. The findings will contribute to laying the foundation for meteorological hydrological research and water resource management in the SWRB.
RESUMEN
Spliceosome dysfunction and aberrant RNA splicing underline unresolved inflammation and immunopathogenesis. Here, we revealed the misregulation of mRNA splicing via the spliceosome in the pathogenesis of rheumatoid arthritis (RA). Among them, decreased expression of RNA binding motif protein 25 (RBM25) was identified as a major pathogenic factor in RA patients and experimental arthritis mice through increased proinflammatory mediator production and increased hyperinflammation in macrophages. Multiomics analyses of macrophages from RBM25-deficient mice revealed that the transcriptional enhancement of proinflammatory genes (including Il1b, Il6, and Cxcl10) was coupled with histone 3 lysine 9 acetylation (H3K9ac) and H3K27ac modifications as well as hypoxia inducible factor-1α (HIF-1α) activity. Furthermore, RBM25 directly bound to and mediated the 14th exon skipping of ATP citrate lyase (Acly) pre-mRNA, resulting in two distinct Acly isoforms, Acly Long (Acly L) and Acly Short (Acly S). In proinflammatory macrophages, Acly L was subjected to protein lactylation on lysine 918/995, whereas Acly S did not, which influenced its affinity for metabolic substrates and subsequent metabolic activity. RBM25 deficiency overwhelmingly increased the expression of the Acly S isoform, enhancing glycolysis and acetyl-CoA production for epigenetic remodeling, macrophage overactivation and tissue inflammatory injury. Finally, macrophage-specific deletion of RBM25 led to inflammaging, including spontaneous arthritis in various joints of mice and inflammation in multiple organs, which could be relieved by pharmacological inhibition of Acly. Overall, targeting the RBM25-Acly splicing axis represents a potential strategy for modulating macrophage responses in autoimmune arthritis and aging-associated inflammation.
Asunto(s)
Artritis Reumatoide , Inflamación , Macrófagos , Empalme del ARN , Proteínas de Unión al ARN , Animales , Inflamación/patología , Inflamación/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones , Empalme del ARN/genética , Artritis Reumatoide/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Humanos , ATP Citrato (pro-S)-Liasa/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Empalmosomas/metabolismo , Artritis Experimental/patología , Artritis Experimental/inmunología , Artritis Experimental/genética , Artritis Experimental/metabolismoRESUMEN
A series of MOF-derived ZrO2-supported Pd-Ni bimetallic catalysts (PdNi/UiO-67-CTAB(n)-A500) were prepared by co-impregnation and pyrolysis at 500 °C under air atmosphere using UiO-67-CTAB(n) (CTAB: cetyltrimethylammonium bromide; n: the concentration of CTAB; n = 0, 3, 8, 13, 18) as a sacrificial template. The catalytic activity of PdNi/UiO-66-CTAB(n)-A500 in 1,3-butadiene hydrogenation was found to be dependent on the crystal morphology of the UiO-67 template. The highest activity was observed over the PdNi/UiO-67-CTAB(3)-A500 catalyst which was synthesized using UiO-67-CTAB(3) with uniform octahedral morphology as the template for the 1,3-butadiene selective hydrogenation. The 1,3-butadiene conversion and total butene selectivity were 98.4% and 44.8% at 40 °C within 1 h for the PdNi/UiO-67-CTAB(3)-A500 catalyst, respectively. The catalyst of PdNi/UiO-67-CTAB(3)-A500 can be regenerated in flowing N2 at 200 °C. Carbon deposited on the surface of the catalyst was the main reason for its deactivation. This work is valuable for the high-efficiency bimetallic catalyst's development on the selective hydrogenation of 1,3-butadiene.
RESUMEN
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the unresolved synovial inflammation for tissues-destructive consequence, which remains one of significant causes of disability and labor loss, affecting about 0.2-1% global population. Although treatments with disease-modifying antirheumatic drugs (DMARDs) are effective to control inflammation and decrease bone destruction, the overall remission rates of RA still stay at a low level. Therefore, uncovering the pathogenesis of RA and expediting clinical transformation are imminently in need. Here, we summarize the immunological basis, inflammatory pathways, genetic and epigenetic alterations, and metabolic disorders in RA, with highlights on the abnormality of immune cells atlas, epigenetics, and immunometabolism. Besides an overview of first-line medications including conventional DMARDs, biologics, and small molecule agents, we discuss in depth promising targeted therapies under clinical or preclinical trials, especially epigenetic and metabolic regulators. Additionally, prospects on precision medicine based on synovial biopsy or RNA-sequencing and cell therapies of mesenchymal stem cells or chimeric antigen receptor T-cell are also looked forward. The advancements of pathogenesis and innovations of therapies in RA accelerates the progress of RA treatments.
RESUMEN
Immune checkpoint inhibitors (ICI) have transformed cancer treatment. However, only a minority of patients achieve a profound response. Many patients are innately resistant while others acquire resistance to ICIs. Furthermore, hepatotoxicity and suboptimal efficacy have hampered the clinical development of agonists of 4-1BB, a promising immune-stimulating target. To effectively target 4-1BB and treat diseases resistant to ICIs, we engineered ATG-101, a tetravalent "2+2â³ PD-L1×4-1BB bispecific antibody. ATG-101 bound PD-L1 and 4-1BB concurrently, with a greater affinity for PD-L1, and potently activated 4-1BB+ T cells when cross-linked with PD-L1-positive cells. ATG-101 activated exhausted T cells upon PD-L1 binding, indicating a possible role in reversing T-cell dysfunction. ATG-101 displayed potent antitumor activity in numerous in vivo tumor models, including those resistant or refractory to ICIs. ATG-101 greatly increased the proliferation of CD8+ T cells, the infiltration of effector memory T cells, and the ratio of CD8+ T/regulatory T cells in the tumor microenvironment (TME), rendering an immunologically "cold" tumor "hot." Comprehensive characterization of the TME after ATG-101 treatment using single-cell RNA sequencing further revealed an altered immune landscape that reflected increased antitumor immunity. ATG-101 was well tolerated and did not induce hepatotoxicity in non-human primates. According to computational semimechanistic pharmacology modeling, 4-1BB/ATG-101/PD-L1 trimer formation and PD-L1 receptor occupancy were both maximized at around 2 mg/kg of ATG-101, providing guidance regarding the optimal biological dose for clinical trials. In summary, by localizing to PD-L1-rich microenvironments and activating 4-1BB+ immune cells in a PD-L1 cross-linking-dependent manner, ATG-101 safely inhibits growth of ICI resistant and refractory tumors. SIGNIFICANCE: The tetravalent PD-L1×4-1BB bispecific antibody ATG-101 activates 4-1BB+ T cells in a PD-L1 cross-linking-dependent manner, minimizing the hepatotoxicity of existing 4-1BB agonists and suppressing growth of ICI-resistant tumors. See related commentary by Ha et al., p. 1546.
Asunto(s)
Anticuerpos Biespecíficos , Antígeno B7-H1 , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/inmunología , Humanos , Ratones , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacosRESUMEN
BACKGROUND: Reparative macrophages play a crucial role in limiting excessive fibrosis and promoting cardiac repair after myocardial infarction (MI), highlighting the significance of enhancing their reparative phenotype for wound healing. Metabolic adaptation orchestrates the phenotypic transition of macrophages; however, the precise mechanisms governing metabolic reprogramming of cardiac reparative macrophages remain poorly understood. In this study, we investigated the role of NPM1 (nucleophosmin 1) in the metabolic and phenotypic shift of cardiac macrophages in the context of MI and explored the therapeutic effect of targeting NPM1 for ischemic tissue repair. METHODS: Peripheral blood mononuclear cells were obtained from healthy individuals and patients with MI to explore NPM1 expression and its correlation with prognostic indicators. Through RNA sequencing, metabolite profiling, histology, and phenotype analyses, we investigated the role of NPM1 in postinfarct cardiac repair using macrophage-specific NPM1 knockout mice. Epigenetic experiments were conducted to study the mechanisms underlying metabolic reprogramming and phenotype transition of NPM1-deficient cardiac macrophages. The therapeutic efficacy of antisense oligonucleotide and inhibitor targeting NPM1 was then assessed in wild-type mice with MI. RESULTS: NPM1 expression was upregulated in the peripheral blood mononuclear cells from patients with MI that closely correlated with adverse prognostic indicators of MI. Macrophage-specific NPM1 deletion reduced infarct size, promoted angiogenesis, and suppressed tissue fibrosis, in turn improving cardiac function and protecting against adverse cardiac remodeling after MI. Furthermore, NPM1 deficiency boosted the reparative function of cardiac macrophages by shifting macrophage metabolism from the inflammatory glycolytic system to oxygen-driven mitochondrial energy production. The oligomeric NPM1 recruited histone demethylase KDM5b to the promoter of Tsc1 (TSC complex subunit 1), the mTOR (mechanistic target of rapamycin kinase) complex inhibitor, reduced histone H3K4me3 modification, and inhibited TSC1 expression, which then facilitated mTOR-related inflammatory glycolysis and antagonized the reparative function of cardiac macrophages. The in vivo administration of antisense oligonucleotide targeting NPM1 or oligomerization inhibitor NSC348884 substantially ameliorated tissue injury and enhanced cardiac recovery in mice after MI. CONCLUSIONS: Our findings uncover the key role of epigenetic factor NPM1 in impeding postinfarction cardiac repair by remodeling metabolism pattern and impairing the reparative function of cardiac macrophages. NPM1 may serve as a promising prognostic biomarker and a valuable therapeutic target for heart failure after MI.
Asunto(s)
Epigénesis Genética , Macrófagos , Infarto del Miocardio , Proteínas Nucleares , Nucleofosmina , Animales , Macrófagos/metabolismo , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Ratones , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ratones Noqueados , Masculino , Reprogramación Celular , Femenino , Glucólisis , Modelos Animales de Enfermedad , Ratones Endogámicos C57BLRESUMEN
Polycyclic aromatic hydrocarbons (PAHs) are stable carcinogens that are widely distributed in the environment and food, and humans are exposed to PAHs primarily through the respiratory tracts, dermal contact, and dietary intake. Meat products are an essential part of the human diet, and the formation of PAHs during meat processing is unavoidable. Therefore, a comprehensive understanding of PAHs in meat products can be a contribution to the minimization of human exposure dose. The aim of this review is to provide a comprehensive description of the toxicological analysis of PAHs intake and the various production pathways. The distribution of different PAHs in various meat products, including poultry and aquatic products, is analyzed. The discussion focuses on controlling PAHs through the use of endogenous marinades and antioxidants as well as reducing exogenous particulate matter-PAHs attachment. In addition, potential strategies for PAHs reduction and possible directions for future research are proposed.
Asunto(s)
Productos de la Carne , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminación de Alimentos/análisis , Dieta , Carne/análisisRESUMEN
In order to better utilize chitinolytic enzymes to produce high-value N-acetyl-D-glucosamine (GlcNAc) from chitinous waste, there is an urgent need to explore bi-functional chitinases with exceptional properties of temperature, pH and metal tolerance. In this study, we cloned and characterized a novel bi-functional cold-adaptive chitinase called CaChi18A from a newly isolated strain, Chitinilyticum aquatile CSC-1, in Bama longevity village of Guangxi Province, China. The activity of CaChi18A at 50 °C was 4.07 U/mg. However, it exhibited significant catalytic activity even at 5 °C. Its truncated variant CaChi18A_ΔChBDs, containing only catalytic domain, demonstrated significant activity levels, exceeding 40 %, over a temperature range of 5-60 °C and a pH range of 3 to 10. It was noteworthy that it displayed tolerance towards most metal ions at a final concentration of 0.1 mM, including Fe3+ and Cu2+ ions, retaining 122.52 ± 0.17 % and 116.42 ± 1.52 % activity, respectively. Additionally, it exhibited favorable tolerance towards organic solvents with the exception of formic acid. Interestedly, CaChi18A and CaChi18A_ΔChBDs had a low Km value towards colloidal chitin (CC), 0.94 mg mL-1 and 2.13 mg mL-1, respectively. Both enzymes exhibited chitobiosidase and N-acetyl-D-glucosaminidase activities, producing GlcNAc as the primary product when hydrolyzing CC. The high activities across a broader temperature and pH range, strong environmental adaptability, and hydrolytic properties of CaChi18A_ΔChBDs suggested that it could be a promising candidate for GlcNAc production.
Asunto(s)
Betaproteobacteria , Quitinasas , Quitinasas/química , China , Hexosaminidasas , Quitina/química , IonesRESUMEN
The luminescence characteristics of small molecule excited B40 have not been studied yet, and it may have a potential application value in quantum dot luminescence. Herein, the adsorption and fluorescence emission spectra of small molecules (pyridine, pyrazine and benzene) adsorbed on B40 are studied using first-principles. The results show that the absorption of pyridine and pyrazine on B40 can form stable chemisorption structures pyridine-B40 and pyrazine-B40, while benzene adsorption can form physisorption structure benzene-B40. Moreover, the adsorbed pyridine can enhance the intensity of emission spectra of B40. And the pyrazine adsorbed can obviously enhance the intensity of absorption and emission spectra of B40 and cause the spectra to redshift to the visible light range. And the adsorption of benzene has almost no enhancement effect on absorption and emission spectra of B40. In addition, the influence of different computational basis sets on spectra characteristics has also been discussed and the results show that the main peaks of absorption and emission spectra calculated by the diffuse function augmented basis sets are redshifted relatively. This finding provides a strategy for quantum dot luminescence and a theoretical reference for experimental research.
RESUMEN
To develop a high-efficient extraction method, we investigated the use of high-pressure homogenization (HPH) as a novel pretreatment technology for the extraction of sodium alginate (SA) from Laminaria japonica. After the single-factor experiment, the results demonstrated that under the conditions of 100 MPa HPH pressure, 4 cycles, pH 6.0, and 0.5% EDTA for 3.0 h, the optimized extraction yield of HPH reached 34%. To further clarify the effect on the structural properties of HPH-extracted SA, we conducted comprehensive analysis using SEM, FTIR, MRS, NMR, XRD, TGA, and a T-AOC assay. Our findings revealed that HPH pretreatment significantly disrupted the structure of L. japonica cells and reduced their crystallinity to 76.27%. Furthermore, the antioxidant activity of HPH-extracted SA reached 0.02942 mgVceqâmg-1. Therefore, the HPH pretreatment method is a potential strategy for the extraction of alginate.
RESUMEN
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/uso terapéutico , Metformina/farmacocinética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , EnvejecimientoRESUMEN
Based on the concentration data of seven heavy metal elements[As, Cd, Cu, Pb, Hg, Ni, and Cr(â ¥)] in the surface soil of a typical industrial park in northwest China, the characteristics of heavy metal pollution in the industrial park were analyzed, and the ecological risk and pollution were evaluated using the potential ecological risk index and the index of geo-accumulation. The positive matrix factorization (PMF) model and random forest (RF) model were used for quantitative source analysis, and the emission data of sampling enterprises and empirical data of the source emission component spectrum were combined to identify the characteristic elements and determine the emission source category. The results showed that the heavy metals at all sampling points in the park did not exceed the second-class screening value of construction land in the soil pollution risk control standard for construction land (GB 36600-2018). However, compared with the local soil background values, five elements, excluding As and Cr, were enriched in different degrees, presenting slight pollution and moderate ecological risk (RI=250.04). Cd and Hg were the main risk elements of the park. The results of source analysis showed that the five main sources of pollution were fossil fuel combustion and chemical production sources (33.73%, 9.71%, total source contribution rate of PMF and RF, respectively; the same below), natural sources and waste residue landfill (32.40%, 40.80%), traffic emissions (24.49%, 48.08%), coal burning and non-ferrous metal smelting (5.43%, 0.11%), and electroplating and ore smelting (3.95%, 1.30%). The simulation R2 of the total variable of the two models were above 0.96, indicating that the models could predict heavy metals well. However, considering the actual situation of the number of enterprises in the park and roading density, the main pollution sources of soil heavy metals in the park should be industrial sources, and the simulation results of the PMF model were closer to the actual situation in the park.
RESUMEN
Epigenetic regulation of inflammatory macrophages governs inflammation initiation and resolution in the pathogenesis of rheumatoid arthritis (RA). Nevertheless, the mechanisms underlying macrophage-mediated arthritis injuries remain largely obscure. Here, we found that increased expression of lysine acetyltransferase 2A (KAT2A) in synovial tissues was closely correlated with inflammatory joint immunopathology in both RA patients and experimental arthritis mice. Administration of MB-3, the KAT2A-specific chemical inhibitor, significantly ameliorated the synovitis and bone destruction in collagen-induced arthritis model. Both pharmacological inhibition and siRNA silencing of KAT2A, not only suppressed innate stimuli-triggered proinflammatory gene (such as Il1b and Nlrp3) transcription but also impaired NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in vivo and in vitro. Mechanistically, KAT2A facilitated macrophage glycolysis reprogramming through suppressing nuclear factor-erythroid 2-related factor 2 (NRF2) activity as well as downstream antioxidant molecules, which supported histone 3 lysine 9 acetylation (H3K9ac) and limited NRF2-mediated transcriptional repression of proinflammatory genes. Our study proves that acetyltransferase KAT2A licenses metabolic and epigenetic reprogramming for NLRP3 inflammasome activation in inflammatory macrophages, thereby targeting KAT2A represents a potential therapeutic approach for patients suffering from RA and relevant inflammatory diseases.
RESUMEN
Epithelial to mesenchymal transition (EMT) plays a crucial role in cancer metastasis, accompanied with vast epigenetic changes. AMP-activated protein kinase (AMPK), a cellular energy sensor, plays regulatory roles in multiple biological processes. Although a few studies have shed light on AMPK regulating cancer metastasis, the inside epigenetic mechanisms remain unknown. Herein we show that AMPK activation by metformin relieves the repressive H3K9me2-mediated silencing of epithelial genes (e.g., CDH1) during EMT processes and inhibits lung cancer metastasis. PHF2, a H3K9me2 demethylase, was identified to interact with AMPKα2. Genetic deletion of PHF2 aggravates lung cancer metastasis and abolishes the H3K9me2 downregulation and anti-metastasis effect of metformin. Mechanistically, AMPK phosphorylates PHF2 at S655 site, enhancing PHF2 demethylation activity and triggering the transcription of CDH1. Furthermore, the PHF2-S655E mutant that mimics AMPK-mediated phosphorylation status further reduces H3K9me2 and suppresses lung cancer metastasis, while PHF2-S655A mutant presents opposite phenotype and reverses the anti-metastasis effect of metformin. PHF2-S655 phosphorylation strikingly reduces in lung cancer patients and the higher phosphorylation level predicts better survival. Altogether, we reveal the mechanism of AMPK inhibiting lung cancer metastasis via PHF2 mediated H3K9me2 demethylation, thereby promoting the clinical application of metformin and highlighting PHF2 as the potential epigenetic target in cancer metastasis.
Asunto(s)
Neoplasias Pulmonares , Metformina , Humanos , Fosforilación , Proteínas Quinasas Activadas por AMP , Transición Epitelial-Mesenquimal , Proteínas de HomeodominioRESUMEN
Macrophages play a critical role in the immune homeostasis and host defense against invading pathogens. However, uncontrolled activation of inflammatory macrophages leads to tissue injury and even fuels autoimmunity. Hence the molecular mechanisms underlying macrophage activation need to be further elucidated. The effects of epigenetic modifications on the function of immune cells draw increasing attention. Here, we demonstrated that lysine-specific demethylase 5B (KDM5B), a classical transcriptional repressor in stem cell development and cancer, was required for the full activation of NF-κB signaling cascade and pro-inflammatory cytokine production in macrophages. KDM5B deficiency or inhibitor treatment protected mice from immunologic injury in both collagen-induced arthritis (CIA) model and endotoxin shock model. Genome-wide analysis of KDM5B-binding peaks identified that KDM5B was selectively recruited to the promoter of Nfkbia, the gene encoding IκBα, in activated macrophages. KDM5B mediated the H3K4me3 modification erasing and decreased chromatin accessibility of Nfkbia gene locus, coordinating the elaborate suppression of IκBα expression and the enhanced NF-κB-mediated macrophage activation. Our finding identifies the indispensable role of KDM5B in macrophage-mediated inflammatory responses and provides a candidate therapeutic target for autoimmune and inflammatory disorders.
Asunto(s)
Histona Demetilasas , FN-kappa B , Animales , Ratones , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Regulación de la Expresión Génica , Diferenciación Celular , Proteínas de Unión al ADN/metabolismoRESUMEN
Oncogenic mutations within the EGFR kinase domain are well-established driver mutations in non-small cell lung cancer (NSCLC). Small-molecule tyrosine kinase inhibitors (TKIs) specifically targeting these mutations have improved treatment outcomes for patients with this subtype of NSCLC. The selectivity of these targeted agents is based on the location of the mutations within the exons of the EGFR gene, and grouping mutations based on structural similarities has proved a useful tool for conceptualizing the heterogeneity of TKI response. Structure-based analysis of EGFR mutations has influenced TKI development, and improved structural understanding will inform continued therapeutic development and further improve patient outcomes. In this review, we summarize recent progress on targeted therapy strategies for patients with EGFR-mutant NSCLC based on structure and function analysis.
Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Receptores ErbB , Antineoplásicos/farmacología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Resistencia a AntineoplásicosRESUMEN
Peptidoglycan (PGN) recognition proteins (PGRPs) are important immune factors in innate immunity that function in recognising pathogens and activating the immune system. These ubiquitous proteins are conserved in invertebrates and vertebrates. In this study, a PGRP gene (MsPGRP) from largemouth bass (Micropterus salmoides) was identified and characterised, and its transcription distribution was explored. Recombinant protein (rMsPGRP) exhibited dose-dependent binding to PGN and glucan (GLU), but weak binding to lipopolysaccharide (LPS). MsPGRP exhibited agglutinating activity against several Gram-negative bacteria, Gram-positive bacteria and fungi, and it promoted phagocytosis activity of leukocytes against Micrococcus luteus and Aeromonas hydrophila. The protein also possessed amidase activity in the presence of Zn2+, degraded PGN, and disrupted the M. luteus cell wall. The results suggest that MsPGRP plays an important role in pathogen recognition, and acts as a opsonin during immune system responses and elimination of invading pathogens.
Asunto(s)
Lubina , Animales , Proteínas Portadoras/genética , Inmunidad Innata/genética , Proteínas Recombinantes , Peptidoglicano/metabolismoRESUMEN
Messenger RNA (mRNA) vaccines are promising alternatives to conventional vaccines in many aspects. We previously developed a lipopolyplex (LPP)-based mRNA vaccine (SW0123) that demonstrated robust immunogenicity and strong protective capacity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in mice and rhesus macaques. However, the immune profiles and mechanisms of pulmonary protection induced by SW0123 remain unclear. Through high-resolution single-cell analysis, we found that SW0123 vaccination effectively suppressed SARS-CoV-2-induced inflammatory responses by inhibiting the recruitment of proinflammatory macrophages and increasing the frequency of polymorphonuclear myeloid-derived suppressor cells. In addition, the apoptotic process in both lung epithelial and endothelial cells was significantly inhibited, which was proposed to be one major mechanism contributing to vaccine-induced lung protection. Cell-cell interaction in the lung compartment was also altered by vaccination. These data collectively unravel the mechanisms by which the SW0123 protects against lung damage caused by SARS-CoV-2 infection.
Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Animales , Ratones , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2/genética , ARN Mensajero/genética , Macaca mulatta/genética , Células Endoteliales , Transcriptoma , Vacunación , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética , Inmunogenicidad VacunalRESUMEN
Excessive cardiac fibrosis is central to adverse cardiac remodeling and dysfunction leading to heart failure in many cardiac diseases. Histone methylation plays a crucial role in various pathophysiological events. However, the role of histone methylation modification enzymes in pathological cardiac fibrosis needs to be fully elucidated. Here, we identified lysine demethylase 5B (KDM5B), a histone H3K4me2/me3 demethylase, as a key epigenetic mediator of pathological cardiac fibrosis. KDM5B expression was upregulated in cardiac fibroblasts and myocardial tissues in response to pathological stress. KDM5B deficiency markedly ameliorated cardiac fibrosis, improved cardiac function, and prevented adverse cardiac remodeling following myocardial infarction (MI) or pressure overload. KDM5B knockout or inhibitor treatment constrained the transition of cardiac fibroblasts to profibrogenic myofibroblasts and suppressed fibrotic responses. KDM5B deficiency also facilitated the transformation of cardiac fibroblasts to endothelial-like cells and promoted angiogenesis in response to myocardial injury. Mechanistically, KDM5B bound to the promoter of activating transcription factor 3 (Atf3), an antifibrotic regulator of cardiac fibrosis, and inhibited ATF3 expression by demethylating the activated H3K4me2/3 modification, leading to the enhanced activation of TGF-ß signaling and excessive expression of profibrotic genes. Our study indicates that KDM5B drives pathological cardiac fibrosis and represents a candidate target for intervention in cardiac dysfunction and heart failure.