Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biomed Imaging ; 2(5): 331-344, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38817319

RESUMEN

The introduction of super-resolution microscopy (SRM) has significantly advanced our understanding of cellular and molecular dynamics, offering a detailed view previously beyond our reach. Implementing SRM in biophysical research, however, presents numerous challenges. This review addresses the crucial aspects of utilizing SRM effectively, from selecting appropriate fluorophores and preparing samples to analyzing complex data sets. We explore recent technological advancements and methodological improvements that enhance the capabilities of SRM. Emphasizing the integration of SRM with other analytical methods, we aim to overcome inherent limitations and expand the scope of biological insights achievable. By providing a comprehensive guide for choosing the most suitable SRM methods based on specific research objectives, we aim to empower researchers to explore complex biological processes with enhanced precision and clarity, thereby advancing the frontiers of biophysical research.

2.
Anal Biochem ; 689: 115495, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431142

RESUMEN

RNA modification, N4-acetylcytidine (ac4C), is enzymatically catalyzed by N-acetyltransferase 10 (NAT10) and plays an essential role across tRNA, rRNA, and mRNA. It influences various cellular functions, including mRNA stability and rRNA biosynthesis. Wet-lab detection of ac4C modification sites is highly resource-intensive and costly. Therefore, various machine learning and deep learning techniques have been employed for computational detection of ac4C modification sites. The known ac4C modification sites are limited for training an accurate and stable prediction model. This study introduces GANSamples-ac4C, a novel framework that synergizes transfer learning and generative adversarial network (GAN) to generate synthetic RNA sequences to train a better ac4C modification site prediction model. Comparative analysis reveals that GANSamples-ac4C outperforms existing state-of-the-art methods in identifying ac4C sites. Moreover, our result underscores the potential of synthetic data in mitigating the issue of data scarcity for biological sequence prediction tasks. Another major advantage of GANSamples-ac4C is its interpretable decision logic. Multi-faceted interpretability analyses detect key regions in the ac4C sequences influencing the discriminating decision between positive and negative samples, a pronounced enrichment of G in this region, and ac4C-associated motifs. These findings may offer novel insights for ac4C research. The GANSamples-ac4C framework and its source code are publicly accessible at http://www.healthinformaticslab.org/supp/.


Asunto(s)
Citidina/análogos & derivados , Aprendizaje Automático , ARN , Estabilidad del ARN
3.
Langmuir ; 40(10): 5479-5487, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38421608

RESUMEN

The fluorescent probe method has attracted significant research attention due to its high sensitivity and reproducibility in detecting bovine serum albumin (BSA). In this study, we constructed a fluorescent probe for BSA detection by assembling an amphiphilic organic fluorescent molecule, termed 2-(2'-hydroxyphenyl) benzothiazole (HBT-11), with BSA. In an aqueous solution, HBT-11 exhibited a weak fluorescence emission at 501 nm. However, the addition of BSA substantially enhanced the fluorescence emission at 501 nm, indicating that the assembly was driven by electrostatic interactions between HBT-11 and BSA. HBT-11, serving as a fluorescent probe for BSA detection, demonstrated a limit of detection (LOD) as low as 3.92 nmol L-1, excellent photostability, high selectivity, and robust anti-interference capability. Notably, we successfully applied HBT-11 for detecting BSA in fetal bovine serum and selectively imaging BSA in HeLa cells.


Asunto(s)
Colorantes Fluorescentes , Albúmina Sérica Bovina , Humanos , Colorantes Fluorescentes/toxicidad , Células HeLa , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia/métodos
4.
J Cell Physiol ; 239(4): e31191, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219044

RESUMEN

Transplantation of brown adipose tissue (BAT) is a promising approach for treating obesity and metabolic disorders. However, obtaining sufficient amounts of functional BAT or brown adipocytes for transplantation remains a major challenge. In this study, we developed a hydrogel that combining adipose acellular matrix (AAM) and GelMA and HAMA that can be adjusted for stiffness by modulating the duration of light-crosslinking. We used human white adipose tissue-derived microvascular fragments to create beige adipose organoids (BAO) that were encapsulated in either a soft or stiff AAM hydrogel. We found that BAOs cultivated in AAM hydrogels with high stiffness demonstrated increased metabolic activity and upregulation of thermogenesis-related genes. When transplanted into obese and type 2 diabetes mice, the HFD + BAO group showed sustained improvements in metabolic rate, resulting in significant weight loss and decreased blood glucose levels. Furthermore, the mice showed a marked reduction in nonalcoholic liver steatosis, indicating improved liver function. In contrast, transplantation of 2D-cultured beige adipocytes failed to produce these beneficial effects. Our findings demonstrate the feasibility of fabricating beige adipose organoids in vitro and administering them by injection, which may represent a promising therapeutic approach for obesity and diabetes.


Asunto(s)
Tejido Adiposo Pardo , Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Organoides , Animales , Humanos , Ratones , Tejido Adiposo Pardo/trasplante , Tejido Adiposo Blanco/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/cirugía , Dieta Alta en Grasa/efectos adversos , Hidrogeles/farmacología , Obesidad/metabolismo , Termogénesis , Ratones Desnudos , Masculino , Organoides/trasplante
5.
Obes Rev ; 25(3): e13677, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38114233

RESUMEN

The induction of thermogenesis in brown adipose tissue is emerging as an attractive therapy for obesity and metabolic syndrome. However, the long-term efficacy and safety of clinical pharmaceutical agents have yet to be fully characterized. The transplantation of brown adipose tissue represents an alternative approach that might have a therapeutic effect by inducing a long-term increase in energy expenditure. However, limited tissue resources hinder the development of transplantation. Stem cell-based therapy and brown adipose tissue engineering, in addition to transplantation, represent alternative approaches that might resolve this problem. In this article, we discuss recent advances in understanding the mechanisms and applications of brown adipose tissue transplantation in the treatment of obesity and related metabolic disorders. Specifically, the induction of brown adipocytes and the fabrication of engineered brown adipose tissue as novel transplantation resources have long-term effects on ameliorating metabolic defects in rodent models. Additionally, we explore future prospects regarding the development of three-dimensional engineered brown adipose tissue and the associated challenges.


Asunto(s)
Tejido Adiposo Pardo , Enfermedades Metabólicas , Humanos , Tejido Adiposo Pardo/metabolismo , Obesidad/cirugía , Obesidad/tratamiento farmacológico , Adipocitos Marrones/metabolismo , Enfermedades Metabólicas/metabolismo , Termogénesis , Metabolismo Energético
6.
Sci Rep ; 13(1): 21616, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062061

RESUMEN

Particulate matter (PM) toxicity has mostly been investigated through in vitro exposure or tracheal infusion in animal models. However, given the complexity of ambient conditions, most animal studies do not mimic real-life PM exposure. In this work, we established a novel integrated exposure model to study the dynamic inflammatory response and defense strategies in ambient PM-exposed mice. Three groups of male C57BL/6 mice were kept in three chambers with pre-exposure to filtered air (FA), unfiltered air (UFA), or the air with a low PM concentration (PM2.5 ≤ 75 µg/m3) (LPM), respectively, for 37 days. Then all three groups of mice were exposed to haze challenge for 3 days, followed by exposure in filtered air for 7 days to allow recovery. Our results suggest that following a haze challenge, the defense strategies of mice of filtered air (FA) and low PM (LPM) groups comprised a form of "counterattack", whereas the response of the unfiltered air (UFA) group could be viewed as a "silence". While the latter strategy protected the lung tissues of mice from acute inflammatory damage, it also foreshadowed the development of chronic inflammatory diseases. These findings contribute to explaining previously documented PM-associated pathogenic mechanisms.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Masculino , Ratones , Animales , Material Particulado/toxicidad , Ratones Endogámicos C57BL , Pulmón/patología , Modelos Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis
7.
Chemosphere ; 342: 140153, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37714468

RESUMEN

Modeling-based prediction methods enable rapid, reagent-free air pollution detection based on inexpensive multi-source data than traditional chemical reaction-based detection methods in order to quickly understand the air pollution situation. In this study, a convolutional neural network (CNN) and long and short-term memory (LSTM) neural networks are integrated to create a CNN-LSTM time series prediction model to predict the concentration of PM2.5 and its chemical components (i.e., heavy metals, carbon component, and water-soluble ions) using meteorological data and air pollutants (PM2.5, SO2, NO2, CO, and O3). In the integrated CNN-LSTM model, the CNN uses convolutional and pooling layers to extract features from the data, whereas the powerful nonlinear mapping and learning capabilities of LSTM enable the time series prediction of air pollution. The experimental results showed that the CNN-LSTM exhibited good generalization ability in the prediction of As, Cd, Cr, Cu, Ni, and Zn, with a mean R2 above 0.9. Mean R2 predicted for PM2.5, Pb, Ti, EC, OC, SO42-, and NO3- ranged from 0.85 to 0.9. Shapley value showed that PM2.5, NO2, SO2, and CO had a greater influence on the predicted heavy metal results of the model. Regarding water-soluble ions, the predicted results were dominantly influenced by PM2.5, CO, and humidity. The prediction of the carbon fraction was affected mainly by the PM2.5 concentration. Additionally, several input variables for various components were eliminated without affecting the prediction accuracy of the model, with R2 between 0.70 and 0.84, thereby maximizing modeling efficiency and lowering operational costs. The fully trained model prediction results showed that most predicted components of PM2.5 were lower during January to March 2020 than those in 2018 and 2019. This study provides insight into improving the accuracy of modeling-based detection methods and promotes the development of integrated air pollution monitoring toward a more sustainable direction.

8.
FASEB J ; 37(8): e23076, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37432650

RESUMEN

Localized scleroderma is a complex autoimmune disease characterized by dermal fibrosis and loss of cutaneous fat. While cytotherapy offers a promising treatment option, stem cell transplantation results in low survival rates and fails in target cell differentiation. In this study, we aimed to prefabricate syngeneic adipose organoids (ad-organoids) using microvascular fragments (MVFs) via three-dimensional (3D) culturing and transplant them beneath the fibrotic skin to restore subcutaneous fat and reverse the pathological manifestation of localized scleroderma. We employed 3D culturing of syngeneic MVFs with stepwise angiogenic and adipogenic induction to produce ad-organoids and evaluated their microstructure and paracrine function in vitro. C57/BL6 mice with induced skin scleroderma were treated with adipose-derived stem cells (ASCs), adipocytes, ad-organoids, and Matrigel, and the therapeutic effect was assessed histologically. Our results showed that ad-organoids derived from MVF contained mature adipocytes and a well-established vessel network, secreted multiple adipokines, promoted adipogenic differentiation of ASCs, and suppressed proliferation and migration of scleroderma fibroblasts. Subcutaneous transplantation of ad-organoids reconstructed the subcutaneous fat layer and stimulated dermal adipocyte regeneration in bleomycin-induced scleroderma skin. It reduced collagen deposition and dermal thickness, attenuating dermal fibrosis. Moreover, ad-organoids suppressed macrophage infiltration and promoted angiogenesis in the skin lesion. In conclusion, 3D culturing of MVFs with stepwise angiogenic and adipogenic induction is an effective strategy for the fabrication of ad-organoids, and the transplantation of prefabricated ad-organoids can improve skin sclerosis by restoring cutaneous fat and attenuating skin fibrosis. These findings offer a promising therapeutic approach for the treatment of localized scleroderma.


Asunto(s)
Adipogénesis , Esclerodermia Localizada , Animales , Ratones , Adiposidad , Obesidad , Grasa Subcutánea
9.
Front Pharmacol ; 14: 1164818, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441532

RESUMEN

Objective: The aim of this study was to evaluate the efficacy and safety of the Chinese herbal formula San-Huang Gu-Ben Zhi-Ke (SHGBZK) as a treatment for patients with stable chronic obstructive pulmonary disease (COPD) diagnosed with lung-spleen Qi deficiency. Method: A randomized, double-blind, placebo-controlled trial was designed. 98 adults aged between 40 and 80 years with stable COPD diagnosed with lung-spleen Qi deficiency were included. All participants received basic treatment for COPD. Patients in the experimental group took SHGBZK, while the control group took placebo. The primary outcome was the frequency of acute exacerbation. The secondary outcomes were lung function, symptom score, exercise capacity and quality of life. Results: Of 98 patients who underwent randomization, 50 patients in the SHGBZK group and 48 in the placebo group were included in the full analysis set. After 24-week therapy and 28-week follow-up, patients in treatment group had significant improvements in symptom, exercise capacity and quality of life. After Subgroup analysis, the frequency of acute exacerbation in patients with a COPD Assessment Test (CAT) score of at least 10 or a modified Medical Research Council (mMRC) score of at least 2 was significantly lower in the SHGBZK group than in the placebo group. Lung function in patients with frequent exacerbation was significantly higher in the SHGBZK group than in the placebo group. The incidence of adverse events was generally similar in the two groups. Conclusion: SHGBZK had beneficial effects on symptom, exercise capacity and quality of life in stable COPD patients. SHGBZK also had the potential to reduce the frequency of exacerbation and improve lung function in specific groups of COPD patients. Clinical Trial Registration: https://www.chictr.org.cn/showproj.html?proj=26933, identifier ChiCTR1800016349.

10.
Adv Biol (Weinh) ; 7(10): e2200320, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36988414

RESUMEN

Aging is associated with loss of skeletal muscle regeneration. Differentially regulated vascular endothelial growth factor (VEGF)A with aging may partially underlies this loss of regenerative capacity. To assess the role of VEGFA in muscle regeneration, young (12-14 weeks old) and old C57BL/6 mice (24,25 months old) are subjected to cryoinjury in the tibialis anterior (TA) muscle to induce muscle regeneration. The average cross-sectional area (CSA) of regenerating myofibers is 33% smaller in old as compared to young (p < 0.01) mice, which correlates with a two-fold loss of muscle VEGFA protein levels (p = 0.02). The capillary density in the TA is similar between the two groups. Young VEGFlo mice, with a 50% decrease in systemic VEGFA activity, exhibit a two-fold reduction in the average regenerating fiber CSA following cryoinjury (p < 0.01) in comparison to littermate controls. ML228, a hypoxia signaling activator known to increase VEGFA levels, augments muscle VEGFA levels and increases average CSA of regenerating fibers in both old mice (25% increase, p < 0.01) and VEGFlo (20% increase, p < 0.01) mice, but not in young or littermate controls. These results suggest that VEGFA may be a therapeutic target in age-related muscle loss.


Asunto(s)
Músculo Esquelético , Factor A de Crecimiento Endotelial Vascular , Animales , Ratones , Envejecimiento/fisiología , Ratones Endogámicos C57BL , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Regeneración/fisiología , Factor A de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular
11.
Proc Natl Acad Sci U S A ; 120(10): e2216722120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848556

RESUMEN

Recent studies have uncovered the therapeutic potential of elesclomol (ES), a copper-ionophore, for copper deficiency disorders. However, we currently do not understand the mechanism by which copper brought into cells as ES-Cu(II) is released and delivered to cuproenzymes present in different subcellular compartments. Here, we have utilized a combination of genetic, biochemical, and cell-biological approaches to demonstrate that intracellular release of copper from ES occurs inside and outside of mitochondria. The mitochondrial matrix reductase, FDX1, catalyzes the reduction of ES-Cu(II) to Cu(I), releasing it into mitochondria where it is bioavailable for the metalation of mitochondrial cuproenzyme- cytochrome c oxidase. Consistently, ES fails to rescue cytochrome c oxidase abundance and activity in copper-deficient cells lacking FDX1. In the absence of FDX1, the ES-dependent increase in cellular copper is attenuated but not abolished. Thus, ES-mediated copper delivery to nonmitochondrial cuproproteins continues even in the absence of FDX1, suggesting alternate mechanism(s) of copper release. Importantly, we demonstrate that this mechanism of copper transport by ES is distinct from other clinically used copper-transporting drugs. Our study uncovers a unique mode of intracellular copper delivery by ES and may further aid in repurposing this anticancer drug for copper deficiency disorders.


Asunto(s)
Cobre , Complejo IV de Transporte de Electrones , Hidrazinas , Ionóforos , Ferredoxinas/metabolismo
12.
Metallomics ; 14(11)2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36367501

RESUMEN

Excess intracellular Cu perturbs cellular redox balance and thus causes diseases. However, the relationship between cellular redox status and Cu homeostasis and how such an interplay is coordinated within cellular compartments has not yet been well established. Using combined approaches of organelle-specific redox sensor Grx1-roGFP2 and non-targeted proteomics, we investigate the real-time Cu-dependent antioxidant defenses of mitochondria and cytosol in live HEK293 cells. The Cu-dependent real-time imaging experiments show that CuCl2 treatment results in increased oxidative stress in both cytosol and mitochondria. In contrast, subsequent excess Cu removal by bathocuproine sulfonate, a Cu chelating reagent, lowers oxidative stress in mitochondria but causes even higher oxidative stress in the cytosol. The proteomic data reveal that several mitochondrial proteins, but not cytosolic ones, undergo significant abundance change under Cu treatments. The proteomic analysis also shows that proteins with significant changes are related to mitochondrial oxidative phosphorylation and glutathione synthesis. The differences in redox behaviors and protein profiles in different cellular compartments reveal distinct mitochondrial and cytosolic response mechanisms upon Cu-induced oxidative stress. These findings provide insights into how redox and Cu homeostasis interplay by modulating specific protein expressions at the subcellular levels, shedding light on understanding the effects of Cu-induced redox misregulation on the diseases.


Asunto(s)
Antioxidantes , Proteómica , Humanos , Antioxidantes/farmacología , Células HEK293 , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/farmacología , Oxidación-Reducción , Mitocondrias/metabolismo , Estrés Oxidativo , Glutatión/metabolismo
13.
ACS Appl Mater Interfaces ; 14(46): 52140-52148, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36374998

RESUMEN

We report on the fabrication, characterization, and microthermometry application of high-quality, nanometric thin films, with thicknesses in the range 20-200 nm, of the molecular spin-crossover complex [Fe(HB(1,2,3-triazol-1-yl)3)2]. The films were obtained by vacuum thermal evaporation and characterized by X-ray diffraction, UV spectrophotometry, and atomic force microscopy. The as-deposited films are dense and crystalline with a preferred [011] orientation of the monoclinic crystal lattice normal to the substrate surface. The films exhibit a gradual spin conversion centered at ca. 374 K spanning the 273-473 K temperature range, irrespective of their thickness. When deposited on a microelectronic device, these films can be used to enhance the UV-light thermoreflectance coefficient of reflective surfaces by more than an order of magnitude, allowing for high-sensitivity thermoreflectance thermal imaging.

14.
Bioact Mater ; 8: 296-308, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34541402

RESUMEN

Acute and chronic wounds affect millions of people around the world, imposing a growing financial burden on patients and hospitals. Despite the application of current wound management strategies, the physiological healing process is disrupted in many cases, resulting in impaired wound healing. Therefore, more efficient and easy-to-use treatment modalities are needed. In this study, we demonstrate the benefit of in vivo printed, growth factor-eluting adhesive scaffolds for the treatment of full-thickness wounds in a porcine model. A custom-made handheld printer is implemented to finely print gelatin-methacryloyl (GelMA) hydrogel containing vascular endothelial growth factor (VEGF) into the wounds. In vitro and in vivo results show that the in situ GelMA crosslinking induces a strong scaffold adhesion and enables printing on curved surfaces of wet tissues, without the need for any sutures. The scaffold is further shown to offer a sustained release of VEGF, enhancing the migration of endothelial cells in vitro. Histological analyses demonstrate that the administration of the VEGF-eluting GelMA scaffolds that remain adherent to the wound bed significantly improves the quality of healing in porcine wounds. The introduced in vivo printing strategy for wound healing applications is translational and convenient to use in any place, such as an operating room, and does not require expensive bioprinters or imaging modalities.

15.
Front Cell Dev Biol ; 9: 723057, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616732

RESUMEN

Background: Autologous fat grafting has been a widely used technique; however, the role of adipose-derived stem cells (ASCs), extracellular matrix (ECM), and microenvironment in fat regeneration are not fully understood. Methods: Lipoaspirates were obtained and processed by inter-syringe shifting to remove adipocytes, yielding an adipocyte-free fat (Aff). Aff was then exposed to lethal dose of radiation to obtain decellularized fat (Df). To further remove microenvironment, Df was rinsed with phosphate-buffered saline (PBS) yielding rinsed decellularized fat (Rdf). Green fluorescent protein (GFP) lentivirus (LV-GFP)-transfected ASCs were added to Df to generate cell-recombinant decellularized fat (Crdf). Grafts were transplanted subcutaneously into nude mice and harvested over 3 months. Results: Removal of adipocytes (Aff) didn't compromise the retention of fat grafts, while additional removal of stromal vascular fraction (SVF) cells (Df) and microenvironment (Rdf) resulted in poor retention by day 90 (Aff, 82 ± 7.1% vs. Df, 28 ± 6.3%; p < 0.05; vs. Rdf, 5 ± 1.2%; p < 0.05). Addition of ASCs to Df (Crdf) partially restored its regenerative potential. Aff and Crdf exhibited rapid angiogenesis and M2-polarized macrophages infiltration, in contrast to impaired angiogenesis and M1-polarized inflammatory pattern in Df. GFP + ASCs participated in angiogenesis and displayed a phenotype of endothelial cells in Crdf. Conclusion: Adipose ECM and microenvironment have the capacity to stimulate early adipogenesis while ECM alone cannot induce adipogenesis in vivo. By directly differentiating into endothelial cells and regulating macrophage polarization, ASCs coordinate early adipogenesis with angiogenesis and tissue remodeling, leading to better long-term retention and greater tissue integrity.

16.
Genomics ; 113(5): 2965-2976, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34214629

RESUMEN

Exercise is believed to be beneficial for skeletal muscle functions across all ages. Regimented exercise is often prescribed as an effective treatment/prophylaxis for age-related loss of muscle mass and function, known as sarcopenia, and plays an important role in the maintenance of mobility and functional independence in the elderly. However, response to exercise declines with aging, resulting in limited gain of muscle strength and endurance. These changes likely reflect age-dependent alterations in transcriptional response underlying the muscular adaptation to exercise. The exact changes in gene expression accompanying exercise, however, are largely unknown, and elucidating them is of a great clinical interest for understanding and optimizing the exercise-based therapies for sarcopenia. In order to characterize the exercise-induced transcriptomic changes in aged muscle, a paired-end RNA sequencing was performed on rRNA-depleted total RNA extracted from the gastrocnemius muscles of 24 months-old mice after 8 weeks of regimented exercise (exercise group) or no formal exercise program (sedentary group). Differential gene expression analysis of aged skeletal muscle revealed upregulations in the group of genes involved in neurotransmission and neuroexcitation, as well as equally notable absence of anabolic gene upregulations in the exercise group. In particular, genes encoding the transporters and receptor components of glutaminergic transmission were significantly upregulated in exercised muscles, as exemplified by Gria 1, Gria 2 and Grin2c encoding glutamate receptor 1, 2 and 2C respectively, Grin1 and Grin2b encoding N-methyl-d-aspartate receptors (NMDARs), Nptx1 responsible for glutaminergic receptor clustering, and Slc1a2 and Slc17a7 regulating synaptic uptake of glutamate. These changes were accompanied by an increase in the post-synaptic density of NMDARs and acetylcholine receptors (AChRs), as well as their innervation at neuromuscular junctions (NMJs). These results suggest that neural responses predominate the adaptive response of aged skeletal muscle to exercise, and indicate a possibility that glutaminergic transmission at NMJs may be present and responsible for synaptic protection and neural remodeling accompanying the exercise-induced functional enhancement in aged skeletal muscle. In addition, the absence of upregulations in the anabolic pathways highlights them as the area of potential pharmacological targeting for optimizing exercise-led sarcopenia therapy.


Asunto(s)
Músculo Esquelético , Sarcopenia , Envejecimiento/genética , Animales , Expresión Génica , Ratones , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Sarcopenia/genética , Sarcopenia/patología
17.
Adv Healthc Mater ; 10(8): e2001800, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33586339

RESUMEN

A major impediment preventing normal wound healing is insufficient vascularization, which causes hypoxia, poor metabolic support, and dysregulated physiological responses to injury. To combat this, the delivery of angiogenic factors, such as vascular endothelial growth factor (VEGF), has been shown to provide modest improvement in wound healing. Here, the importance of specialty delivery systems is explored in controlling wound bed drug distribution and consequently improving healing rate and quality. Two intradermal drug delivery systems, miniaturized needle arrays (MNAs) and liquid jet injectors (LJIs), are evaluated to compare effective VEGF delivery into the wound bed. The administered drug's penetration depth and distribution in tissue are significantly different between the two technologies. These systems' capability for efficient drug delivery is first confirmed in vitro and then assessed in vivo. While topical administration of VEGF shows limited effectiveness, intradermal delivery of VEGF in a diabetic murine model accelerates wound healing. To evaluate the translational feasibility of the strategy, the benefits of VEGF delivery using MNAs are assessed in a porcine model. The results demonstrate enhanced angiogenesis, reduced wound contraction, and increased regeneration. These findings show the importance of both therapeutics and delivery strategy in wound healing.


Asunto(s)
Preparaciones Farmacéuticas , Factor A de Crecimiento Endotelial Vascular , Inductores de la Angiogénesis , Animales , Ratones , Neovascularización Fisiológica , Porcinos , Factores de Crecimiento Endotelial Vascular , Cicatrización de Heridas
18.
FASEB J ; 34(12): 16086-16104, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33064329

RESUMEN

The ability of skeletal muscle to regenerate declines significantly with aging. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT), a critical component of the hypoxia signaling pathway, was less abundant in skeletal muscle of old (23-25 months old) mice. This loss of ARNT was associated with decreased levels of Notch1 intracellular domain (N1ICD) and impaired regenerative response to injury in comparison to young (2-3 months old) mice. Knockdown of ARNT in a primary muscle cell line impaired differentiation in vitro. Skeletal muscle-specific ARNT deletion in young mice resulted in decreased levels of whole muscle N1ICD and limited muscle regeneration. Administration of a systemic hypoxia pathway activator (ML228), which simulates the actions of ARNT, rescued skeletal muscle regeneration in both old and ARNT-deleted mice. These results suggest that the loss of ARNT in skeletal muscle is partially responsible for diminished myogenic potential in aging and activation of hypoxia signaling holds promise for rescuing regenerative activity in old muscle.


Asunto(s)
Envejecimiento/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Músculo Esquelético/metabolismo , Regeneración/fisiología , Animales , Diferenciación Celular/fisiología , Línea Celular , Hipoxia/metabolismo , Hipoxia/patología , Ratones , Ratones Endogámicos C57BL , Desarrollo de Músculos/fisiología , Transducción de Señal/fisiología
19.
Angew Chem Int Ed Engl ; 59(49): 22034-22038, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32896078

RESUMEN

Systematic design and self-assembly of metal-organic polyhedra with predictable configurations has been a long-standing challenge in crystal engineering. Herein a concave polyoxovanadate cluster, [V6 O6 (OCH3 )9 (SO4 )4 ]5- , which can be generated in situ under specific reaction conditions, is reported. Based on this cluster, a potential trivalent molecular building block, [V6 O6 (OCH3 )9 (SO4 )(CO2 )3 ]2- , can be obtained by the bridging-ligand-substitution strategy and it possesses appropriate angle information for the design of molecular cubes. Utilizing the face-directed assembly of the trivalent molecular building block and a diverse set of tetratopic carboxylate linkers, a series of metal-organic cubes (VMOC-1-VMOC-5) with the same topology but different functionalities and dimensions were designed and constructed. An inclusion study using VMOC-3 shows that they are potential molecular receptors for selective capture of size-matching polycyclic aromatic hydrocarbon guest molecules.

20.
Anal Chem ; 92(17): 11582-11589, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786469

RESUMEN

The ability to extract kinetic interaction parameters from single-molecule fluorescence resonance energy transfer trajectories without the need for solving complex single-molecule differential equations has the potential to address some of the critical biophysical questions. Here, we provide a noise-free single-molecule interaction simulation (SMIS) tool to give the expected dwell-time distributions and relative populations of each FRET level based on the assigned kinetic model and to dissect kinetic interaction parameters from single-molecule FRET trajectories. The method provides the expected dwell-time distributions, average transition rates, and relative populations of each FRET level based on the assigned kinetic model. By comparing with ground truth data and experimental data, we demonstrated that SMIS is useful to quantify the interaction kinetic rate constants without using the traditional single-molecule analytical solution approach.


Asunto(s)
Imagen Individual de Molécula/métodos , Disección , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Químicos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...