Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3008, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589420

RESUMEN

The construction of functional three-dimensional covalent organic frameworks (3D COFs) for gas separation, specifically for the efficient removal of ethane (C2H6) from ethylene (C2H4), is significant but challenging due to their similar physicochemical properties. In this study, we demonstrate fine-tuning the pore environment of ultramicroporous 3D COFs to achieve efficient one-step C2H4 purification. By choosing our previously reported 3D-TPB-COF-H as a reference material, we rationally design and synthesize an isostructural 3D COF (3D-TPP-COF) containing pyridine units. Impressively, compared with 3D-TPB-COF-H, 3D-TPP-COF exhibits both high C2H6 adsorption capacity (110.4 cm3 g-1 at 293 K and 1 bar) and good C2H6/C2H4 selectivity (1.8), due to the formation of additional C-H···N interactions between pyridine groups and C2H6. To our knowledge, this performance surpasses all other reported COFs and is even comparable to some benchmark porous materials. In addition, dynamic breakthrough experiments reveal that 3D-TPP-COF can be used as a robust absorbent to produce high-purity C2H4 directly from a C2H6/C2H4 mixture. This study provides important guidance for the rational design of 3D COFs for efficient gas separation.

2.
Acta Crystallogr A Found Adv ; 80(Pt 2): 151-160, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38329142

RESUMEN

Extended homometry is a phenomenon in which distinct structures have the same X-ray diffraction (XRD) intensities, which may lead to incorrect results of structural analysis based on XRD methods. It is proposed and proved herein that half of a crystallographic orbit has the same powder X-ray diffraction intensity as its complementary set; three more theorems are deduced. These results are conducive to understanding the formation of extended homometric structures. Also analyzed are some reported or potential homometric or weakly homometric structures in the Inorganic Crystal Structure Database to confirm the theorems. This work presents a quick approach to analyze and construct extended homometric structures based on crystallographic orbits.

3.
Adv Mater ; 36(19): e2312889, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38290005

RESUMEN

3D covalent organic frameworks (3D COFs) constitute a new type of crystalline materials that consist of a range of porous structures with numerous applications in the fields of adsorption, separation, and catalysis. However, because of the complexity of the three-periodic net structure, it is desirable to develop a thorough structural comprehension, along with a means to precisely determine the actual structure. Indeed, such advancements would considerably contribute to the rational design and application of 3D COFs. In this review, the reported topologies of 3D COFs are introduced and categorized according to the configurations of their building blocks, and a comprehensive overview of diffraction-based structural determination methods is provided. The current challenges and future prospects for these materials will also be discussed.

4.
J Agric Food Chem ; 71(41): 14951-14966, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37788400

RESUMEN

In this study, we investigated the effects of Lactobacillus johnsonii on the mouse colitis model. The results showed that the supernatant of the L. johnsonii culture alleviated colitis and remodeled gut microbiota, represented by an increased abundance of bacteria producing short-chain fatty acids, leading to an increased concentration of propionic acid in the intestine. Further studies revealed that propionic acid inhibited activation of the MAPK signaling pathway and polarization of M1 macrophages. Macrophage clearance assays confirmed that macrophages are indispensable for alleviating colitis through propionic acid. In vitro experiments showed that propionic acid directly inhibited the MAPK signaling pathway in macrophages and reduced M1 macrophage polarization, thereby inhibiting the secretion of pro-inflammatory cytokines. These findings improve our understanding of how L. johnsonii attenuates inflammatory bowel disease (IBD) and provide valuable insights for identifying molecular targets for IBD treatment in the future.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Lactobacillus johnsonii , Animales , Ratones , Propionatos/farmacología , Colitis/metabolismo , Macrófagos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Sulfato de Dextran/farmacología
5.
Mol Cancer ; 22(1): 157, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770864

RESUMEN

BACKGROUND: Although colonoscopy is the standard screening test for colorectal cancer (CRC), its use is limited by a poor compliance rate, the need for extensive bowel preparation, and the risk of complications. As an alternative, an FDA-approved stool-based DNA test, Cologuard, has demonstrated satisfactory detection performance for CRC, but its compliance rate remains suboptimal, primarily attributable to individuals' reluctance to provide stool samples. METHODS: We developed a noninvasive blood-based CRC test, ColonSecure, based on cell-free DNA containing cancer-specific CpG island methylation patterns. We initially screened publicly available datasets for differentially methylated CpG sites in CRC with prediction potential. Subsequently, we performed two sequential bisulfite-free methylation sequencing on blood samples obtained from CRC patients and non-cancer controls. Through rigorous evaluation of each marker and machine learning-assisted feature selection, we identified 149 hypermethylated markers from over 193,000 CpG sites. These markers were then utilized to construct the ColonSecure model, enabling accurate CRC detection. RESULTS: We validated the efficacy of our cell-free DNA methylation-based blood test for CRC screening with 3493 high-risk individuals identified from 114,136 urban residents. The ColonSecure test identified 89 out of 103 CRC patients diagnosed by the follow-up colonoscopy, outperforming CEA, CRP, and CA19-9 (with a sensitivity of 86.4% compared to 45.6%, 39.8%, and 25.2% for CEA, CRP, and CA19-9 respectively; an AUROC of 0.956 compared to an AUROC of < 0.77 for other methods). CONCLUSION: Our observations emphasize the potential of our multiple cfDNA methylation marker-based test for CRC screening in high-risk populations.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Colorrectales , Humanos , Metilación de ADN , Ácidos Nucleicos Libres de Células/genética , Estudios Prospectivos , Antígeno CA-19-9 , Detección Precoz del Cáncer , Islas de CpG , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Biomarcadores de Tumor/genética
6.
NPJ Biofilms Microbiomes ; 9(1): 33, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280255

RESUMEN

The diarrheal disease causes high mortality, especially in children and young animals. The gut microbiome is strongly associated with diarrheal disease, and some specific strains of bacteria have demonstrated antidiarrheal effects. However, the antidiarrheal mechanisms of probiotic strains have not been elucidated. Here, we used neonatal piglets as a translational model and found that gut microbiota dysbiosis observed in diarrheal piglets was mainly characterized by a deficiency of Lactobacillus, an abundance of Escherichia coli, and enriched lipopolysaccharide biosynthesis. Limosilactobacillus mucosae and Limosilactobacillus reuteri were a signature bacterium that differentiated healthy and diarrheal piglets. Germ-free (GF) mice transplanted with fecal microbiota from diarrheal piglets reproduced diarrheal disease symptoms. Administration of Limosilactobacillus mucosae but not Limosilactobacillus reuteri alleviated diarrheal disease symptoms induced by fecal microbiota of diarrheal piglets and by ETEC K88 challenge. Notably, Limosilactobacillus mucosae-derived extracellular vesicles alleviated diarrheal disease symptoms caused by ETEC K88 by regulating macrophage phenotypes. Macrophage elimination experiments demonstrated that the extracellular vesicles alleviated diarrheal disease symptoms in a macrophage-dependent manner. Our findings provide insights into the pathogenesis of diarrheal disease from the perspective of intestinal microbiota and the development of probiotic-based antidiarrheal therapeutic strategies.


Asunto(s)
Antidiarreicos , Microbiota , Animales , Porcinos , Ratones , Diarrea/veterinaria , Lactobacillus , Bacterias , Escherichia coli , Homeostasis
7.
Front Immunol ; 14: 1143526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234168

RESUMEN

Fecal microbiota transplantation (FMT) is an emerging and effective therapy for the treatment of inflammatory bowel disease (IBD). Previous studies have reported that compared with FMT, whole intestinal microbiota transplantation (WIMT) can more precisely replicate the community structure and reduce the inflammatory response of the host. However, it remains unclear whether WIMT is more effective in alleviating IBD. To examine the efficacy of WIMT and FMT in the intervention of IBD, GF (Germ-free) BALB/c mice were pre-colonized with whole intestinal microbiota or fecal microbiota before being treated with dextran sodium sulfate (DSS). As expected, the symptoms of colitis were alleviated by both WIMT and FMT, as demonstrated by the prevention of body weight loss and decreased the Disease activity index and histological scores in mice. However, WIMT's anti-inflammatory effect was superior to that of FMT. In addition, the inflammatory markers myeloperoxidase (MPO) and eosinophil peroxidase were dramatically downregulated by WIMT and FMT. Furthermore, the use of two different types of donors facilitated the regulation of cytokine homeostasis in colitis mice; the level of the pro-inflammatory cytokine IL-1ß in the WIMT group was significantly lower than that in the FMT group, while the level of the anti-inflammatory factor IL-10 was significantly higher than that in the FMT group. Both groups showed enhanced expression of occludin to protect the intestinal barrier in comparison with the DSS group, and the WIMT group demonstrated considerably increased levels of ZO-1. The sequencing results showed that the WIMT group was highly enriched in Bifidobacterium, whereas the FMT group was significantly enriched in Lactobacillus and Ochrobactrum. Correlation analysis revealed that Bifidobacterium was negatively correlated with TNF-α, whereas Ochrobactrum was positively correlated with MPO and negatively correlated with IL-10, which might be related to different efficacies. Functional prediction using PICRUSt2 revealed that the FMT group was considerably enriched in the L-arginine biosynthesis I and L-arginine biosynthesis IV pathway, whereas the WIMT group was enriched in the L-lysine fermentation to acetate and butanoate pathway. In conclusion, the symptoms of colitis were subsided to varying degrees by the two different types of donors, with the WIMT group being more effective than the FMT group. This study provides new information on clinical interventions for IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Trasplante de Microbiota Fecal/métodos , Interleucina-10 , Colitis/inducido químicamente , Colitis/terapia , Colitis/microbiología , Citocinas/metabolismo , Arginina
8.
Front Immunol ; 13: 836542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237276

RESUMEN

In clinical practice, fecal microbiota transplantation (FMT) has been used to treat inflammatory bowel disease (IBD), and has shown certain effects. However, the selection of FMT donors and the mechanism underlying the effect of FMT intervention in IBD require further exploration. In this study, dextran sodium sulfate (DSS)-induced colitis mice were used to determine the differences in the protection of colitis symptoms, inflammation, and intestinal barrier, by FMT from two donors. Intriguingly, pre-administration of healthy bacterial fluid significantly relieved the symptoms of colitis compared to the ulcerative colitis (UC) bacteria. In addition, healthy donor (HD) bacteria significantly reduced the levels of inflammatory markers Myeloperoxidase (MPO) and Eosinophil peroxidase (EPO), and various pro-inflammatory factors, in colitis mice, and increased the secretion of the anti-inflammatory factor IL-10. Metagenomic sequencing indicated higher species diversity and higher abundance of anti-inflammatory bacteria in the HD intervention group, including Alistipes putredinis, Akkermansia muciniphila, Bifidobacterium adolescentis, short-chain fatty acids (SCFAs)-producing bacterium Christensenella minuta, and secondary bile acids (SBAs)-producing bacterium Clostridium leptum. In the UC intervention group, the SCFA-producing bacterium Bacteroides stercoris, IBD-related bacterium Ruminococcus gnavus, Enterococcus faecalis, and the conditional pathogen Bacteroides caccae, were more abundant. Metabolomics analysis showed that the two types of FMT significantly modulated the metabolism of DSS-induced mice. Moreover, compared with the UC intervention group, indoleacetic acid and unsaturated fatty acids (DHA, DPA, and EPA) with anti-inflammatory effects were significantly enriched in the HD intervention group. In summary, these results indicate that FMT can alleviate the symptoms of colitis, and the effect of HD intervention is better than that of UC intervention. This study offers new insights into the mechanisms of FMT clinical intervention in IBD.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Animales , Antiinflamatorios/farmacología , Bacterias/metabolismo , Colitis/tratamiento farmacológico , Colitis/terapia , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/terapia , Sulfato de Dextran/toxicidad , Trasplante de Microbiota Fecal/métodos , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA