Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 931: 172700, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657815

RESUMEN

Thermal stratification and mixing play important roles in the physicochemical composition of lakes and affect the geochemical cycle. However, the regulation of lake carbon exchange at the water-air interface by seasonal thermal structures remains unclear, especially for alpine saline lake on the Qinghai-Tibet Plateau (QTP). Based on continuous field sampling, carbon dioxide flux (FCO2) at the water-air interface in Qinghai Lake during the ice-free period was quantitatively analyzed by thin boundary layer model, as well as the driving factors of the change in FCO2 at the water-air interface. The findings revealed that the FCO2 was -22.16 ± 11.73 mmol m-2d-1 during the stratification period, and - 45.32 ± 29.67 mmol m-2d-1 during the mixing period. We found that thermal stratification limits the matter-energy exchange between the upper and bottom water columns, and carbonate precipitation results in a higher FCO2 than during mixing stage. However, the mixing process reduces the limiting effect of thermal stratification. During the carbonate process, water with higher salinity and pH at the bottom of the water column enters the upper part of the water column, reducing the partial pressure of carbon dioxide (pCO2) in the water column and causing the absorption of CO2 by the lake. Thermal stratification affects the vertical material-energy exchange and atmospheric CO2 uptake of lake. The present study further explains the possible underlying regulation of CO2 uptake in saline lake on the QTP involving the varied thermal structure.

2.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546295

RESUMEN

To enhance the stability of the water-cooled double-crystal monochromator used at the BL17B beamline of the Shanghai Synchrotron Radiation Facility (SSRF), a study was conducted to optimize its cooling system's flow-induced vibration. Through simulation and experimental verification, the researchers analyzed the vibration mechanism and implemented improvement measures. The results indicate that the elastic bellows greatly amplify flow-induced vibration, transmitting it to the first-crystal. By positioning the bellows closer to the crystal, the relative pitch angular vibration of the double-crystal was reduced by 17.5%, and the roll angular vibration decreased by 6.1%. Furthermore, changing the flow rate from 3 to 2.4 l/min further diminished the relative pitch angular vibration by 6.0% and the roll angular vibration by 7.9%. By effectively reducing flow-induced vibration in the water-cooled double-crystal monochromator, equipment stability is enhanced, and the relative angular vibration of the double-crystal has been reduced. This research provides a valuable method and approach for optimizing the stability of the monochromator and related equipment.

3.
Front Biosci (Landmark Ed) ; 28(9): 212, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37796690

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a highly lethal tumor type, but studies on the ESCC tumor microenvironment are limited. We found that cystatin SN (CST1) plays an important role in the ESCC tumor microenvironment. CST1 has been reported to act as an oncogene in multiple human cancers, but its clinical significance and underlying mechanism in ESCC remain elusive. METHODS: We performed ESCC gene expression profiling with data from RNA-sequencing and public databases and found CST1 upregulation in ESCC. Then, we assessed CST1 expression in ESCC by RT‒qPCR and Western blot analysis. In addition, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) were used to estimate the expression of CST1 in ESCC tissue and serum. Moreover, further functional experiments were conducted to verify that the gain and loss of CST1 in ESCC cell lines significantly influenced the proliferation and metastasis of ESCC. Mass spectrometry, coimmunoprecipitation, and gelatin zymography experiments were used to validate the interaction between CST1 and matrix metalloproteinase 2 (MMP2) and the mechanism of CST1 influence on metastasis in ESCC. RESULTS: Here, we found that CST1 expression was significantly elevated in ESCC tissues and serum. Moreover, compared with patients with low CST1 expression, patients with high CST1 expression had a worse prognosis. Overall survival (OS) and disease-free survival (DFS) were significantly unfavorable in the high CST1 expression subgroup. Likewise, the CST1 level was significantly increased in ESCC serum compared with healthy control serum, indicating that CST1 may be a potential serum biomarker for diagnosis, with an area under the curve (AUC) = 0.9702 and p < 0.0001 by receiver operating curve (ROC) analysis. Furthermore, upregulated CST1 can promote the motility and metastatic capacity of ESCC in vitro and in vivo by influencing epithelial mesenchymal transition (EMT) and interacting with MMP2 in the tumor microenvironment (TME). CONCLUSIONS: Collectively, the results of this study indicated that high CST1 expression mediated by SPI1 in ESCC may serve as a potentially prognostic and diagnostic predictor and as an oncogene to promote motility and metastatic capacity of ESCC by influencing EMT and interacting with MMP2 in the TME.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Regulación hacia Arriba , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Transición Epitelial-Mesenquimal , Microambiente Tumoral/genética
4.
Small ; 19(40): e2303213, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37269195

RESUMEN

Disordered crystallization and poor phase stability of mixed halide perovskite films are still the main factors that compromise the performance of inverted wide bandgap (WBG; 1.77 eV) perovskite solar cells (PSCs). Great difficulties are evidenced due to the very different crystallization rates between I- and Br-based perovskite components through DMSO-alone assisted anti-solvent process. Here, a zwitterionic additive strategy is reported for finely regulating the crystal growth of Cs0.2 FA0.8 Pb(I0.6 Br0.4 )3 , thereby obtaining high-performance PSCs. The aminoethanesulfonic acid (AESA) is introduced to form hydrogen bonds and strong PbO bonds with perovskite precursors, realizing the complete coordination with both the organic (FAI) and inorganic (CsI, PbI2 , PbBr2 ) components, balancing their complexation effects, and realizing AESA-guided fast nucleation and retarded crystallization processes. This treatment substantially promotes homogeneous crystal growth of I- and Br-based perovskite components. Besides, this uniformly distributed AESA passivates the defects and inhibits the photo-induced halide segregation effectively. This strategy generates a record efficiency of 19.66%, with a Voc of 1.25 V and FF of 83.7% for an MA-free WBG p-i-n device at 1.77 eV. The unencapsulated devices display impressive humidity stability at 30 ± 5% RH for 1000 h and much improved continuous operation stability at MPP for 300 h.

5.
Small ; 19(32): e2301091, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37069780

RESUMEN

Surface heterojunction has been regarded as an effective method to improve the device efficiency of perovskite solar cells. Nevertheless, the durability of different heterojunction under thermal stress is rarely investigated and compared. In this work, benzylammonium chloride and benzyltrimethylammonium chloride are utilized to construct 3D/2D and 3D/1D heterojunctions, respectively. A quaternized polystyrene is synthesized to construct a three-dimensional perovskite/amorphous ionic polymer (3D/AIP) heterojunction. Due to the migration and volatility of organic cations, severe interfacial diffusion is found among 3D/2D and 3D/1D heterojunctions, in which the quaternary ammonium cations in the 1D structure are less volatile and mobile than the primary ammonium cations in the 2D structure. 3D/AIP heterojunction remains intact under thermal stress due to the strong ionic bond anchoring at the interface and the ultra-high molecular weight of AIP. Furthermore, the dipole layer formed by AIP can further reduce the voltage loss caused by nonradiative recombination at the interface by 0.088 V. Therefore, the devices based on the 3D/AIP heterojunction achieve a champion power conversion efficiency of 24.27% and maintain 90% of its initial efficiency after either thermal aging for 400 h or wet aging for 3000 h, showing a great promise for polymer/perovskite heterojunction towards real applications.

6.
Med Sci Monit ; 29: e938512, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36852560

RESUMEN

BACKGROUND Exocyst complex component 3-like 1 (EXOC3L1) is ubiquitously present in multiple organs. However, its role in esophageal squamous cell carcinoma (ESCC) remains unknown. The aim of this study was to explore the relationship between EXOC3L1 and ESCC. MATERIAL AND METHODS A total of 652 normal samples and 82 ESCC samples obtained from the University of California Santa Cruz (UCSC) Xena were applied to detect the expression difference of EXOC3L1. GSE53625 with 179 paired samples and GSE161533 with 28 paired samples were used for validation. The correlation between clinicopathological features and EXOC3L1 expression was calculated. Kaplan-Meier method was employed to assess the prognostic value of EXOC3L1 in ESCC. Univariate and multivariate Cox regression analyses were carried out to screen the factors contributing to the prognosis of ESCC. In addition, functional enrichment analysis, protein-protein interaction (PPI) network analysis, and immune infiltration analysis were conducted to identify the significantly involved functions of EXOC3L1. RESULTS EXOC3L1 was significantly overexpressed in ESCC compared to normal samples. High expression of EXOC3L1 was associated with worse prognosis, and univariate and multivariate Cox regression analysis demonstrated that EXOC3L1 was an independent prognostic predictor of ESCC. Functional enrichment analysis and immune infiltration analysis disclosed that the expression of EXOC3L1 was correlated with the abundance of several types of immune cells. CONCLUSIONS EXOC3L1 plays a crucial role in the prognosis of ESCC, and it may serve as a reliable biomarker for predicting the survival and a potential therapeutic target for ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Pronóstico , Análisis Multivariante , Mapas de Interacción de Proteínas
7.
Mater Horiz ; 10(1): 122-135, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36317487

RESUMEN

Green-solvent-processed perovskite solar cells (PSCs) have reached an efficiency of 20%, showing great promise in safe industrial production. However, the nucleation process in green-solvent-based deposition is rarely optimized, resulting in randomized crystallization and much lowered reported efficiencies. Herein, a nanostructured tin oxide nanorods (SnO2-NRs) substrate is utilized to prepare a high-quality formamidinium (FA)-based perovskite film processed from a green solvent of triethyl phosphate (TEP) with a low toxic antisolvent of dibutyl ether (DEE). Compared with SnO2 nanoparticles, the oriented SnO2-NRs can accelerate the formation of heterogeneous nucleation sites and retard the crystal growth process of the perovskite film, resulting in a high-quality perovskite film with uniform grain growth. Furthermore, a chlorine-terminated bifunctional supramolecule (Cl-BSM) is introduced to passivate the increasing interfacial defects due to the vast contact area in SnO2-NRs. Correspondingly, the substrate design of SnO2-NRs with Cl-BSM increases the power conversion efficiency (PCE) of green-solvent-processed PSCs to 22.42% with an open-circuit voltage improvement from 1.02 to 1.12 V, which can be attributed to the uniform grain growth and reduced carrier recombination at the SnO2-NRs/perovskite interface. More importantly, the photo and humidity stabilities of the unencapsulated device for up to 500 and 1000 hours are also achieved with negligible interfacial delamination after aging. This work provides a new perspective on the future industrial scale production of PSCs using environment-friendly solvents with compatible substrate design.

8.
J Gastrointest Oncol ; 14(6): 2293-2308, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38196547

RESUMEN

Background: Lymph node metastasis is the main type of metastasis in esophageal squamous cell carcinoma (ESCC), especially when the primary tumor invasion depth reaches above the adventitia layer (T3 stage), the incidence of lymph node metastasis increases sharply. Abnormal expression of long non-coding RNAs (lncRNAs) has been confirmed in ESCC, but there are still many unknown connections between lncRNAs and lymph node metastasis. Methods: We used transcriptome sequencing (RNA-seq) to analyze 10 pairs of ESCC tissues with primary tumor stage T3 and their paired normal epithelium. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to further verify the sequencing results, and survival curve analysis, logistic regression analysis, and receiver operating characteristic (ROC) curve analysis were used to investigate its clinical application value. We investigated the growth and metastasis effects of lncRNA GAS6-AS1 on ESCC cell lines TE-1 and KYSE410 in vitro and in vivo. Other functional experiments included cell apoptosis and cell cycle experiments. Results: Based on our RNA-seq data, lncRNA GAS6-AS1 is highly expressed in ESCC tissues, especially in cancer tissues with lymph node metastasis. The qRT-PCR experiment analysis showed that high expression of GAS6-AS1 was related to poor tumor differentiation and tumor stage. Logistic regression analysis showed that it was an independent risk factor for lymph node metastasis, and ROC analysis validated that it could predict lymph node metastasis. Further survival analysis suggested that high expression of GAS6-AS1 was associated with patients' poor prognosis. In vitro experiments, knocking down GAS6-AS1 inhibited the growth and metastasis of ESCC cells and inhibited tumor growth in vivo. In addition, knocking down GAS6-AS1 can inhibit cell cycle and promote cell apoptosis. Conclusions: Our results revealed that lncRNA GAS6-AS1 obtained from RNA-seq can be used as an independent risk factor for ESCC lymph node metastasis and an effective biomarker to predict, and that it was related to the growth and metastasis of ESCC. It may represent a new biomarker to aid in the assessment of the lymph node metastasis of ESCC.

9.
Front Genet ; 13: 1044100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36479245

RESUMEN

Exocyst complex component 3 like 1 (EXOC3L1) is widely present in various human tissues, which mainly regulates insulin secretion. However, its roles in tumors remain unclear. In the present study, we aimed to investigate the roles of EXOC3L1 in pan-cancer, and the data was downloaded from of the University of California Santa Cruz (UCSC) Xena and the Cancer Genome Atlas (TCGA). The expression status of EXOC3L1 was studied in the TCGA_GTEx samples, TCGA samples and paired samples in TCGA, respectively. Subsequently, Kaplan-Meier analysis was applied to 33 kinds of tumors in TCGA, among the cancers that EXOC3L1 can affect prognosis, clinical correlation analysis and univariate Cox regression analysis were performed. Furthermore, representative cancers kidney renal clear cell carcinoma (KIRC) and lung squamous cell carcinoma (LUSC) with a sample size larger than 500 were selected to construct nomogram models to confirm the prognostic value of EXOC3L1 in cancers. Additionally, the associations of EXOC3L1 with immune cell infiltrations were performed as well. Mechanistically, functional enrichment analysis was performed to explore potential signaling pathways that EXOC3L1 may involve in. Our study found that EXOC3L1 was differentially expressed in a variety of tumors and was associated with the clinical outcomes and immune microenvironment of several tumors, it may affect the occurrence and development of tumors through NOTCH signaling pathway, PI3K-AKT signaling pathway and immune-related pathways. In conclusion, we propose that EXOC3L1 may serve as a potential prognostic biomarker and a promising target for cancer immunotherapy in a variety of cancers.

10.
Artículo en Inglés | MEDLINE | ID: mdl-36310522

RESUMEN

In the sequential deposition method of perovskite films, the crystallinity and microstructure of PbI2 are often sacrificed to solve the problem of an incomplete reaction between organic halide and lead halide. As a result, the crystal orientation of the perovskite film prepared by the sequential deposition method is generally worse than that of the perovskite film prepared by a one-step antisolvent method. Here, we preplaced formamidine formate (FAFa) on the buried interface to regulate the formation mechanism from PbI2 to perovskite. As shown by the XPS measurement of the perovskite buried interface, the HCOO- anion of FAFa first partially replaces I- to coordinate with Pb2+. With the subsequent annealing process, some HCOO- anions were released and migrated upward, which promoted the recrystallization of PbI2, obtaining a PbI2 film with enhanced crystallinity and orientation. Additionally, the lift-off process proves that the HCOO- anions suppress the anion vacancy defects enriched at the buried interface and promote charge transport because the HCOO- anions are small enough to adapt to the iodide vacancy. Grazing incidence wide-angle X-ray scattering and X-ray diffraction measurements show that the in situ conversion mechanism is responsible for the PbI2-to-perovskite process, resulting in the highly oriented perovskite film without increasing the residual PbI2 content in the perovskite film. As a result, our strategies enabled a champion power conversion efficiency of 23.48% with improved storage stability and photostability. This work provides a new strategy to improve the crystallinity of sequential deposition perovskites without destabilizing the device due to more PbI2 residues.

11.
Small Methods ; 6(11): e2200933, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36161787

RESUMEN

Transition of δ-phase formamidinium lead triiodide (δ-FAPbI3 ) to pure α-phase FAPbI3 (α-FAPbI3 ) typically requires high processing temperature (150 °C), which often results in unavoidable residual stress. Besides, using methylammonium chloride (MACl) as additive in fabrication will cause MA residue in the film, compromising the compositional purity. Here, a stress-released and compositional-pure α-FAPbI3 thin-film is fabricated using 3-chloropropylammonium chloride (Cl-PACl) by two-step annealing. The 2D template of n = 2 can preferentially form in perovskite with the introduction of Cl-PACl at a temperature as low as 80 °C. Such a 2D template can guide the free components to form ordered α-FAPbI3 and promote the transition of the formed δ-FAPbI3 to α-FAPbI3 by reducing the phase transition energy. As a result, the obtained perovskite films via low-temperature phase-transition have a high degree of crystal orientation and reduced residual stress. More importantly, most of the Cl-PACl is volatilized during the subsequent high-temperature annealing process accompanied by the disintegration of the 2D templates. The residual trace of Cl-PA+ is mainly concentrated at the grain boundary near the perovskite surface layer, stabilizing α-FAPbI3 and passivating defects. Perovskite solar cell based on pure α-FAPbI3 achieves a power conversion efficiency of 23.03% with excellent phase stability and photo-stability.

12.
Small ; 18(44): e2203886, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36148856

RESUMEN

Inverted-structure perovskite solar cells (PSCs) are known for their superior device stability. However, based on nickel-oxide (NiOx ) substrate, disordered crystallization and bottom interface instability of perovskite film are still the main factors that compromise the power conversion efficiency (PCE) of PSCs. Here, 2D perovskite of thiomorpholine 1,1-dioxide lead iodide (Td2 PbI4 ) is introduced as a template to prepare 3D perovskite thin film with high crystal orientation and large grain size via a bottom-up growth method. By adding TdCl to the precursor solution, pre-crystallized 2D Td2 PbI4 seeds can accumulate at the bottom interface, lowering the barrier of nucleation, and templating the growth of 3D perovskite films with improved (100) orientation and reduced defects during crystallization. In addition, 2D Td2 PbI4 at the bottom interface also hinders the interfacial redox reaction and reduces the hole extraction barrier on the buried interface. Based on this, the Td-0.5 PSC achieves a PCE of 22.09% and an open-circuit voltage of 1.16 V. Moreover, Td-0.5 PSCs show extremely high stability, which retains 84% of its initial PCE after 500 h of continuous illumination under maximum power point operating conditions in N2 atmosphere. This work paves the way for performance improvement of inverted PSCs on NiOx substrate.

13.
Nanomicro Lett ; 14(1): 165, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974239

RESUMEN

The complete elimination of methylammonium (MA) cations in Sn-Pb composites can extend their light and thermal stabilities. Unfortunately, MA-free Sn-Pb alloyed perovskite thin films suffer from wrinkled surfaces and poor crystallization, due to the coexistence of mixed intermediate phases. Here, we report an additive strategy for finely regulating the impurities in the intermediate phase of Cs0.25FA0.75Pb0.6Sn0.4I3 and, thereby, obtaining high-performance solar cells. We introduced d-homoserine lactone hydrochloride (D-HLH) to form hydrogen bonds and strong Pb-O/Sn-O bonds with perovskite precursors, thereby weakening the incomplete complexation effect between polar aprotic solvents (e.g., DMSO) and organic (FAI) or inorganic (CsI, PbI2, and SnI2) components, and balancing their nucleation processes. This treatment completely transformed mixed intermediate phases into pure preformed perovskite nuclei prior to thermal annealing. Besides, this D-HLH substantially inhibited the oxidation of Sn2+ species. This strategy generated a record efficiency of 21.61%, with a Voc of 0.88 V for an MA-free Sn-Pb device, and an efficiency of 23.82% for its tandem device. The unencapsulated devices displayed impressive thermal stability at 85 °C for 300 h and much improved continuous operation stability at MPP for 120 h.

14.
Chemosphere ; 307(Pt 3): 136016, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35970210

RESUMEN

Dongping Lake is the only natural lake in the lower Yellow River and an important hub of South-North Water Diversion Project, its water quality is of vital importance to the environmental protection and the security of water supply. To assess the heavy metal (HM) contamination in Dongping Lake, samples in water and surface sediment were taken from 59 sampling sites over the entire lake. The statistical characteristics, pollution conditions, and source identifications were analyzed using coupling methods of entropy water quality index (EWQI), modified pollution index (mCd), enrichment coefficient (EF), geo-accumulation index (Igeo), potential ecological risk index (PERI), and positive matrix factorization (PMF). In present study, the averaged concentrations of all studied HMs in water body of Dongping Lake were below the limit of drinking water quality standard recommended by WHO, and the EWQI and mCd of HM concentrations were identified to be in good and excellent conditions. The concentrations of almost all studied HMs in surface sediment of Dongping Lake exceeded the background values in the soil of Shandong Province, and Cd (cadmium) was the dominant pollutant. With EF > 2, Igeo > 1, and Er > 80, Cd in sediment was under moderate pollution. The outcomes of source analysis revealed that the HMs in surface sediment were mainly derived from the primary and secondary industries. Specifically, manufacturing industries contributed the most to the HM contaminations in sediment of Dongping Lake.


Asunto(s)
Agua Potable , Metales Pesados , Contaminantes Químicos del Agua , Cadmio/análisis , China , Agua Potable/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Lagos/análisis , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes Químicos del Agua/análisis , Calidad del Agua
15.
ChemSusChem ; 15(6): e202102474, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35023623

RESUMEN

In sequential-deposited polycrystalline perovskite solar cells, the unreacted lead iodide due to incomplete conversion of lead iodide to perovskite phase, can contribute to ionic defects, such as residual lead ions (Pb2+ ). At present, passivation of interfacial and grain boundary defects has become an effective strategy to suppress charge recombination. Here, we introduced potassium acetate (KAc) and potassium dichloroacetate (KAcCl2 ) as additives in the sequential deposition of polycrystalline perovskite thin films and found that acetate ions (Ac- ) can effectively reduce the residual lead iodide. Compared with acetate (Ac), dichloroacetate (AcCl2 ) can form Pb-Cl and Pb-O bonding as "dual anchoring" bonds with residual Pb2+ , resulting in strong binding force and effective passivation of residual Pb2+ defects. Furthermore, K+ can enlarge grain size and restrain ion migration at the grain boundaries. Consequently, perovskite solar cells with KAcCl2 additive show power conversion efficiencies (PCE) from 19.67 % to 22.12 %, with the open-circuit voltage increasing from 1.06 V to 1.14 V. The unencapsulated device can maintain 82 % of the initial PCE under a humidity of 30±5 % for 1200 h. This work provides a new approach for the regulation of ionic defects and grain boundaries at the same time to develop high-performance planar perovskite solar cells.

16.
Small ; 18(6): e2105184, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34851037

RESUMEN

Although incorporating multiple halogen (bromine) anions and alkali (rubidium) cations can improve the open-circuit voltage (Voc ) of perovskite solar cells (PSCs), severe voltage loss and poor stability have remained pivotal limitations to their further commercialization. In this study, acetylcholine (ACh+ ) is anchored to the surface of a quadruple-cation perovskite to provide additional electron states near the valence band maximum of the perovskite surface, thereby enhancing the band alignment and minimizing the Voc loss significantly. Moreover, the quaternary ammonium and carbonyl units of ACh+ passivate the antisite and vacancy defects of the organic/inorganic hybrid perovskite. Because of strong interactions between ACh+ and the perovskite, the formation of lead clusters and the migration of halogen anions in the perovskite film are suppressed. As a result, the device prepared with ACh+ post-treatment delivers a power conversion efficiency (PCE) (21.56%) and a value of Voc (1.21 V) that are much higher than those of the pristine device, along with a twofold decrease in the hysteresis index. After storage for 720 h in humid air, the device subjected to ACh+ treatment maintained 70% of its initial PCE. Thus, post-treatment with ACh+ appears to be a useful strategy for preparing efficient and stable PSCs.


Asunto(s)
Acetilcolina , Compuestos de Calcio , Cationes , Óxidos , Titanio
17.
Front Genet ; 13: 1034606, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685978

RESUMEN

The phenotype of pyroptosis has been extensively studied in a variety of tumors, but the relationship between pyroptosis and esophageal squamous cell carcinoma (ESCC) remains unclear. Here, 22 pyroptosis genes were downloaded from the website of Gene Set Enrichment Analysis (GSEA), 79 esophageal squamous cell carcinoma samples and GSE53625 containing 179 pairs of esophageal squamous cell carcinoma samples were collected from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), respectively. Then, pyroptosis subtypes of esophageal squamous cell carcinoma were obtained by cluster analysis according to the expression difference of pyroptosis genes, and a pyroptosis scoring model was constructed by the pyroptosis-related genes screened from different pyroptosis subtypes. Time-dependent receiver operator characteristic (timeROC) curves and the area under the curve (AUC) values were used to evaluate the prognostic predictive accuracy of the pyroptosis scoring model. Kaplan-Meier method with log-rank test were conducted to analyze the impact of the pyroptosis scoring model on overall survival (OS) of patients with esophageal squamous cell carcinoma. Nomogram models and calibration curves were used to further confirm the effect of the pyroptosis scoring model on prognosis. Meanwhile, CIBERSORTx and ESTIMATE algorithm were applied to calculate the influence of the pyroptosis scoring model on esophageal squamous cell carcinoma immune microenvironment. Our findings revealed that the pyroptosis scoring model established by the pyroptosis-related genes was associated with the prognosis and immune microenvironment of esophageal squamous cell carcinoma, which can be used as a biomarker to predict the prognosis and act as a potential target for the treatment of esophageal squamous cell carcinoma.

18.
Front Cell Dev Biol ; 9: 641270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33681225

RESUMEN

Important evidence indicates the microbiota plays a key role in esophageal squamous cell carcinoma (ESCC). The esophageal microbiota was prospectively investigated in 18 patients with ESCC and 11 patients with physiological normal (PN) esophagus by 16S rRNA gene profiling, using next-generation sequencing. The microbiota composition in tumor tissues of ESCC patients were significantly different from that of patients with PN tissues. The ESCC microbiota was characterized by reduced microbial diversity, by decreased abundance of Bacteroidetes, Fusobacteria, and Spirochaetes. Employing these taxa into a microbial dysbiosis index demonstrated that dysbiosis microbiota had good capacity to discriminate between ESCC and PN esophagus. Functional analysis characterized that ESCC microbiota had altered nitrate reductase and nitrite reductase functions compared with PN group. These results suggest that specific microbes and the microbiota may drive or mitigate ESCC carcinogenesis, and this study will facilitate assigning causal roles in ESCC development to certain microbes and microbiota.

19.
RSC Adv ; 11(4): 2437-2445, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35424175

RESUMEN

Cesium lead halide perovskite nanocrystals (NCs) have attracted extensive attention for photoelectric device application due to their excellent optoelectronic properties. However, the toxicity of lead has hindered their commercialization. Consequently, lead free cesium metal halide NCs have been developed, but these materials suffer from low photoluminescence quantum yield (PLQY) and poor stability. Here, a new class of lead-free non-perovskite blue-emitting cesium bromine (CsBr) and cesium iodine (CsI) halide NCs are realized by zinc doping. High PLQYs of 79.05% and 78.95% are achieved by CsBr:Zn and CsI:Zn NCs, respectively, attributed to the improved local structural order and reduced strain between the lattices of the NCs after storing under ambient conditions for 20 to 30 days. Moreover, zinc doped cesium halide NCs show excellent air stability for at least 50 days. Our results for zinc doped cesium halide NCs have shown a new avenue to fabricate lead-free halide NCs for blue lighting and display applications.

20.
J Med Internet Res ; 22(8): e18946, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32808933

RESUMEN

BACKGROUND: Patients with esophageal cancer often experience clinically relevant deterioration of quality of life (QOL) after esophagectomy owing to malnutrition, lack of physical exercise, and psychological symptoms. OBJECTIVE: This study aimed to evaluate the feasibility, safety, and efficacy of a comprehensive intervention model using a mobile health system (CIMmH) in patients with esophageal cancer after esophagectomy. METHODS: Twenty patients with esophageal cancer undergoing the modified McKeown surgical procedure were invited to join the CIMmH program with both online and offline components for 12 weeks. The participants were assessed before surgery and again at 1 and 3 months after esophagectomy. QOL, depressive symptoms, anxiety, stress, nutrition, and physical fitness were measured. RESULTS: Of the 20 patients, 16 (80%) completed the program. One month after esophagectomy, patients showed significant deterioration in overall QOL (P=.02), eating (P=.005), reflux (P=.04), and trouble with talking (P<.001). At the 3-month follow-up, except for pain (P=.02), difficulty with eating (P=.03), dry mouth (P=.04), and trouble with talking (P=.003), all other QOL dimensions returned to the preoperative level. There were significant reductions in weight (P<.001) and BMI (P=.02) throughout the study, and no significant changes were observed for physical fitness measured by change in the 6-minute walk distance between baseline and the 1-month follow-up (P=.22) or between baseline and the 3-month follow-up (P=.52). Depressive symptoms significantly increased 1 month after surgery (P<.001), while other psychological measures did not show relevant changes. Although there were declines in many measures 1 month after surgery, these were much improved at the 3-month follow-up, and the recovery was more profound and faster than with traditional rehabilitation programs. CONCLUSIONS: The CIMmH was feasible and safe and demonstrated encouraging efficacy testing with a control group for enhancing recovery after surgery among patients with esophageal cancer in China. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR-IPR-1800019900); http://www.chictr.org.cn/showprojen.aspx?proj=32811.


Asunto(s)
Neoplasias Esofágicas/terapia , Esofagectomía/métodos , Calidad de Vida/psicología , Neoplasias Esofágicas/psicología , Esofagectomía/psicología , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA