Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Sci Rep ; 14(1): 20382, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223186

RESUMEN

CT and MR tools are commonly used to diagnose lumbar fractures (LF). However, numerous limitations have been found in practice. The aims of this study were to innovate and develop a spinal disease-specific neural network and to evaluate whether synthetic MRI of the LF affected clinical diagnosis and treatment strategies. A total of 675 LF patients who met the inclusion and exclusion criteria were included in the study. For each participant, two mid-sagittal CT and T2-weighted MR images were selected; 1350 pairs of LF images were also included. A new Self-pix based on Pix2pix and Self-Attention was constructed. A total of 1350 pairs of CT and MR images, which were randomly divided into a training group (1147 pairs) and a test group (203 pairs), were fed into Pix2pix and Self-pix. The quantitative evaluation included PSNR and SSIM (PSNR1 and SSIM1: real MR images and Pix2pix-generated MR images; PSNR2 and SSIM2: real MR images and Self-pix-generated MR images). The qualitative evaluation, including accurate diagnosis of acute fractures and accurate selection of treatment strategies based on Self-pix-generated MRI, was performed by three spine surgeons. In the LF group, PSNR1 and PSNR2 were 10.884 and 11.021 (p < 0.001), and SSIM1 and SSIM2 were 0.766 and 0.771 (p < 0.001), respectively. In the ROI group, PSNR1 and PSNR2 were 12.350 and 12.670 (p = 0.004), and SSIM1 and SSIM2 were 0.816 and 0.832 (p = 0.005), respectively. According to the qualitative evaluation, Self-pix-generated MRI showed no significant difference from real MRI in identifying acute fractures (p = 0.689), with a good sensitivity of 84.36% and specificity of 96.65%. No difference in treatment strategy was found between the Self-pix-generated MRI group and the real MRI group (p = 0.135). In this study, a disease-specific GAN named Self-pix was developed, which demonstrated better image generation performance compared to traditional GAN. The spine surgeon could accurately diagnose LF and select treatment strategies based on Self-pix-generated T2 MR images.


Asunto(s)
Vértebras Lumbares , Imagen por Resonancia Magnética , Fracturas de la Columna Vertebral , Humanos , Imagen por Resonancia Magnética/métodos , Femenino , Vértebras Lumbares/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/terapia , Adulto , Anciano , Tomografía Computarizada por Rayos X/métodos , Redes Neurales de la Computación
2.
Int J Nanomedicine ; 19: 9727-9739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39315364

RESUMEN

Introduction: Photodynamic therapy (PDT) has attracted increasing attention in the clinical treatment of epidermal and luminal tumors. However, the PDT efficacy in practice is severely impeded by tumor hypoxia and the adverse factors associated with hydrophobic photosensitizers (PSs), including low delivery capacity, poor photoactivity and limited ROS diffusion. In this study, Pt nanozymes decorated two-dimensional (2D) porphyrin metal-organic framework (MOF) nanosheets (PMOF@HA) were fabricated and investigated to conquer the obstacles of PDT against hypoxic tumors. Materials and Methods: PMOF@HA was synthesized by the coordination of transition metal iron (Zr4+) and PS (TCPP), in situ generation of Pt nanozyme and surface modification with hyaluronic acid (HA). The abilities of hypoxic relief and ROS generation were evaluated by detecting the changes of O2 and 1O2 concentration. The cellular uptake was investigated using flow cytometry and confocal laser scanning microscopy. The SMMC-7721 cells and the subcutaneous tumor-bearing mice were used to demonstrate the PDT efficacy of PMOF@HA in vitro and in vivo, respectively. Results: Benefiting from the 2D structure and inherent properties of MOF materials, the prepared PMOF@HA could not only serve as nano-PS with high PS loading but also ensure the rational distance between PS molecules to avoid aggregation-induced quenching, enhance the photosensitive activity and promote the rapid diffusion of generated radical oxide species (ROS). Meanwhile, Pt nanozymes with catalase-like activity effectively catalyzed intratumoral overproduced H2O2 into O2 to alleviate tumor hypoxia. Additionally, PMOF@HA, with the help of externally coated HA, significantly improved the stability and increased the cell uptake by CD44 overexpressed tumor cells to strengthen O2 self-supply and PDT efficacy. Conclusion: This study provided a new strategy of integrating 2D porphyrin MOF nanosheets with nanozymes to conquer the obstacles of PDT against hypoxic tumors.


Asunto(s)
Ácido Hialurónico , Estructuras Metalorgánicas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Hipoxia Tumoral , Fotoquimioterapia/métodos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/administración & dosificación , Línea Celular Tumoral , Humanos , Hipoxia Tumoral/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Porfirinas/química , Porfirinas/farmacología , Porfirinas/farmacocinética , Porfirinas/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Platino (Metal)/química , Platino (Metal)/farmacología , Nanoestructuras/química , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos
3.
Mol Cell ; 84(17): 3354-3370.e7, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39151423

RESUMEN

The functional integrity of CD8+ T cells is closely linked to metabolic reprogramming; therefore, understanding the metabolic basis of CD8+ T cell activation and antitumor immunity could provide insights into tumor immunotherapy. Here, we report that ME2 is critical for mouse CD8+ T cell activation and immune response against malignancy. ME2 deficiency suppresses CD8+ T cell activation and anti-tumor immune response in vitro and in vivo. Mechanistically, ME2 depletion blocks the TCA cycle flux, leading to the accumulation of fumarate. Fumarate directly binds to DAPK1 and inhibits its activity by competing with ATP for binding. Notably, pharmacological inhibition of DAPK1 abolishes the anti-tumor function conferred by ME2 to CD8+ T cells. Collectively, these findings demonstrate a role for ME2 in the regulation of CD8+ T cell metabolism and effector functions as well as an unexpected function for fumarate as a metabolic signal in the inhibition of DAPK1.


Asunto(s)
Linfocitos T CD8-positivos , Proteínas Quinasas Asociadas a Muerte Celular , Fumaratos , Activación de Linfocitos , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Metabolismo Energético , Fumaratos/metabolismo , Fumaratos/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
4.
IEEE Trans Med Imaging ; PP2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941197

RESUMEN

The multi-source stationary CT, where both the detector and X-ray source are fixed, represents a novel imaging system with high temporal resolution that has garnered significant interest. Limited space within the system restricts the number of X-ray sources, leading to sparse-view CT imaging challenges. Recent diffusion models for reconstructing sparse-view CT have generally focused separately on sinogram or image domains. Sinogram-centric models effectively estimate missing projections but may introduce artifacts, lacking mechanisms to ensure image correctness. Conversely, image-domain models, while capturing detailed image features, often struggle with complex data distribution, leading to inaccuracies in projections. Addressing these issues, the Dual-domain Collaborative Diffusion Sampling (DCDS) model integrates sinogram and image domain diffusion processes for enhanced sparse-view reconstruction. This model combines the strengths of both domains in an optimized mathematical framework. A collaborative diffusion mechanism underpins this model, improving sinogram recovery and image generative capabilities. This mechanism facilitates feedback-driven image generation from the sinogram domain and uses image domain results to complete missing projections. Optimization of the DCDS model is further achieved through the alternative direction iteration method, focusing on data consistency updates. Extensive testing, including numerical simulations, real phantoms, and clinical cardiac datasets, demonstrates the DCDS model's effectiveness. It consistently outperforms various state-of-the-art benchmarks, delivering exceptional reconstruction quality and precise sinogram.

5.
Comput Biol Med ; 176: 108609, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772056

RESUMEN

Semi-supervised medical image segmentation presents a compelling approach to streamline large-scale image analysis, alleviating annotation burdens while maintaining comparable performance. Despite recent strides in cross-supervised training paradigms, challenges persist in addressing sub-network disagreement and training efficiency and reliability. In response, our paper introduces a novel cross-supervised learning framework, Quality-driven Deep Cross-supervised Learning Network (QDC-Net). QDC-Net incorporates both an evidential sub-network and an vanilla sub-network, leveraging their complementary strengths to effectively handle disagreement. To enable the reliability and efficiency of semi-supervised training, we introduce a real-time quality estimation of the model's segmentation performance and propose a directional cross-training approach through the design of directional weights. We further design a truncated form of sample-wise loss weighting to mitigate the impact of inaccurate predictions and collapsed samples in semi-supervised training. Extensive experiments on LA and Pancreas-CT datasets demonstrate that QDC-Net surpasses other state-of-the-art methods in semi-supervised medical image segmentation. Code release is available at https://github.com/Medsemiseg.


Asunto(s)
Aprendizaje Automático Supervisado , Humanos , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Páncreas/diagnóstico por imagen , Tomografía Computarizada por Rayos X
6.
Magn Reson Imaging ; 111: 246-255, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38663831

RESUMEN

Magnetic resonance imaging produces detailed anatomical and physiological images of the human body that can be used in the clinical diagnosis and treatment of diseases. However, MRI suffers its comparatively longer acquisition time than other imaging methods and is thus vulnerable to motion artifacts, which ultimately lead to likely failed or even wrong diagnosis. In order to perform faster reconstruction, deep learning-based methods along with traditional strategies such as parallel imaging and compressed sensing come into play in recent years in this field. Meanwhile, in order to better analyze the diseases, it is also often necessary to acquire images in the same region of interest under different modalities, which yield images with different contrast levels. However, most of these aforementioned methods tend to use single-modal images for reconstruction, neglecting the correlation and redundancy information embedded in MR images acquired with different modalities. While there are works on multi-modal reconstruction, the information is yet to be efficiently explored. In this paper, we propose an end-to-end neural network called MLMFNet, which helps the reconstruction of the target modality by using information from the auxiliary modality across feature channels and layers. Specifically, this is highlighted by three components: (I) An encoder based on UNet with a single-stream strategy that fuses auxiliary and target modalities; (II) a decoder that tends to multi-level features from all layers of the encoder, and (III) a channel attention module. Quantitative and qualitative analyses are performed on a public brain dataset and knee brain dataset, which show that the proposed method achieves satisfying results in MRI reconstruction within the multi-modal context, and also demonstrate its effectiveness and potential to be used in clinical practice.


Asunto(s)
Algoritmos , Encéfalo , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Redes Neurales de la Computación , Imagen Multimodal/métodos , Rodilla/diagnóstico por imagen
7.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557883

RESUMEN

Quantitative phase imaging (QPI) provides 3D structural and morphological information for label free living cells. Unfortunately, this quantitative phase information cannot meet doctors' diagnostic requirements of the clinical "gold standard," which displays stained cells' pathological states based on 2D color features. To make QPI results satisfy the clinical "gold standard," the virtual staining method by QPI for label free lymphocytes based on self-supervised iteration Cycle-Consistent Adversarial Networks (CycleGANs) is proposed herein. The 3D phase information of QPI is, therefore, trained and transferred to a kind of 2D "virtual staining" image that is well in agreement with "gold standard" results. To solve the problem that unstained QPI and stained "gold standard" results cannot be obtained for the same label free living cell, the self-supervised iteration for the CycleGAN deep learning algorithm is designed to obtain a trained stained result as the ground truth for error evaluation. The structural similarity index of our virtual staining experimental results for 8756 lymphocytes is 0.86. Lymphocytes' area errors after converting to 2D virtual stained results from 3D phase information are less than 3.59%. The mean error of the nuclear to cytoplasmic ratio is 2.69%, and the color deviation from the "gold standard" is less than 6.67%.


Asunto(s)
Algoritmos , Imágenes de Fase Cuantitativa , Coloración y Etiquetado
8.
Biomed Opt Express ; 15(4): 2451-2465, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633098

RESUMEN

Label-free detection of intracellular substances for living cancer cells remains a significant hurdle in cancer pathogenesis research. Although the sensitivity of light polarization to intracellular substances has been validated, current studies are predominantly focused on tissue lesions, thus label-free detection of substances within individual living cancer cells is still a challenge. The main difficulty is to find specific detection methods along with corresponding characteristic parameters. With refractive index as an endogenous marker of substances, this study proposes a detection method of intracellular refractive index distribution (IRID) for label-free living colon cancer (LoVo) cells. Utilizing the circular depolarization decay model (CDDM) to calculate the degree of circular polarization (DOCP) modulated by the cell allows for the derivation of the IRID on the focal plane. Experiments on LoVo cells demonstrated the refractive index of single cell can be accurately and precisely measured, with precision of 10-3 refractive index units (RIU). Additionally, chromatin content during the interphases (G1, S, G2) of cell cycle was recorded at 56.5%, 64.4%, and 71.5%, respectively. A significantly finer IRID can be obtained compared to the phase measurement method. This method is promising in providing a dynamic label-free intracellular substances detection method in cancer pathogenesis studies.

9.
Biomed Opt Express ; 15(4): 2524-2542, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633101

RESUMEN

Optical diffraction tomography (ODT) is a powerful label-free measurement tool that can quantitatively image the three-dimensional (3D) refractive index (RI) distribution of samples. However, the inherent "missing cone problem," limited illumination angles, and dependence on intensity-only measurements in a simplified imaging setup can all lead to insufficient information mapping in the Fourier domain, affecting 3D reconstruction results. In this paper, we propose the alternating projection combined with the fast gradient projection (FGP-AP) method to compensate for the above problem, which effectively reconstructs the 3D RI distribution of samples using intensity-only images captured from LED array microscopy. The FGP-AP method employs the alternating projection (AP) algorithm for gradient descent and the fast gradient projection (FGP) algorithm for regularization constraints. This approach is equivalent to incorporating prior knowledge of sample non-negativity and smoothness into the 3D reconstruction process. Simulations demonstrate that the FGP-AP method improves reconstruction quality compared to the original AP method, particularly in the presence of noise. Experimental results, obtained from mouse kidney cells and label-free blood cells, further affirm the superior 3D imaging efficacy of the FGP-AP method.

10.
Opt Express ; 32(6): 9747-9766, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571201

RESUMEN

We investigated secondary cavitation bubble dynamics during laser-induced bubble formation in a small container with a partially confined free surface and elastic thin walls. We employed high-speed photography to record the dynamics of sub-mm-sized laser-induced bubbles and small secondary bubble clouds. Simultaneous light scattering and acoustic measurements were used to detect the oscillation times of laser-induced bubbles. We observed that the appearance of secondary bubbles coincides with a prolonged collapse phase and with re-oscillations of the laser-induced bubble. We observed an asymmetric distribution of secondary bubbles with a preference for the upstream side of the focus, an absence of secondary bubbles in the immediate vicinity of the laser focus, and a migration of laser-induced bubble toward secondary bubbles at large pulse energies. We found that secondary bubbles are created through heating of impurities to form initial nanobubble nuclei, which are further expanded by rarefaction waves. The rarefaction waves originate from the vibration of the elastic thin walls, which are excited either directly by laser-induced bubble or by bubble-excited liquid-mass oscillations. The oscillation period of thin walls and liquid-mass were Twall = 116 µs and Tlm ≈ 160 µs, respectively. While the amplitude of the wall vibrations increases monotonically with the size of laser-induced bubbles, the amplitude of liquid-mass oscillation undulates with increasing bubble size. This can be attributed to a phase shift between the laser-induced bubble oscillation and the liquid-mass oscillator. Mutual interactions between the laser-induced bubble and secondary bubbles reveal a fast-changing pressure gradient in the liquid. Our study provides a better understanding of laser-induced bubble dynamics in a partially confined environment, which is of practical importance for microfluidics and intraluminal laser surgery.

11.
Small ; 20(33): e2400513, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38545999

RESUMEN

Hydrogenated diamond-like carbon (HDLC) is a promising solid lubricant for its superlubricity which can benefit various industrial applications. While HDLC exhibits notable friction reduction in macroscale tests in inert or reducing environmental conditions, ultralow friction is rarely observed at the nanoscale. This study investigates this rather peculiar dependence of HDLC superlubricity on the contact scale. To attain superlubricity, HDLC requires i) removal of ≈2 nm-thick air-oxidized surface layer and ii) shear-induced transformation of amorphous carbon to highly graphitic and hydrogenated structure. The nanoscale wear depth exceeds the typical thickness of the air-oxidized layer, ruling out the possibility of incomplete removal of the air-oxidized layer. Raman analysis of transfer films indicates that shear-induced graphitization readily occurs at shear stresses lower than or comparable to those in the nanoscale test. Thus, the same is expected to occur at the nanoscale test. However, the graphitic transfer films are not detected in ex-situ analyses after nanoscale friction tests, indicating that the graphitic transfer films are pushed out of the nanoscale contact area due to the instability of transfer films within a small contact area. Combining all these observations, this study concludes the retention of highly graphitic transfer films is crucial to achieving HDLC superlubricity.

12.
Circulation ; 149(17): 1354-1371, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38314588

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a progressive cardiopulmonary disease with a high mortality rate. Although growing evidence has revealed the importance of dysregulated energetic metabolism in the pathogenesis of PH, the underlying cellular and molecular mechanisms are not fully understood. In this study, we focused on ME1 (malic enzyme 1), a key enzyme linking glycolysis to the tricarboxylic acid cycle. We aimed to determine the role and mechanistic action of ME1 in PH. METHODS: Global and endothelial-specific ME1 knockout mice were used to investigate the role of ME1 in hypoxia- and SU5416/hypoxia (SuHx)-induced PH. Small hairpin RNA and ME1 enzymatic inhibitor (ME1*) were used to study the mechanism of ME1 in pulmonary artery endothelial cells. Downstream key metabolic pathways and mediators of ME1 were identified by metabolomics analysis in vivo and ME1-mediated energetic alterations were examined by Seahorse metabolic analysis in vitro. The pharmacological effect of ME1* on PH treatment was evaluated in PH animal models induced by SuHx. RESULTS: We found that ME1 protein level and enzymatic activity were highly elevated in lung tissues of patients and mice with PH, primarily in vascular endothelial cells. Global knockout of ME1 protected mice from developing hypoxia- or SuHx-induced PH. Endothelial-specific ME1 deletion similarly attenuated pulmonary vascular remodeling and PH development in mice, suggesting a critical role of endothelial ME1 in PH. Mechanistic studies revealed that ME1 inhibition promoted downstream adenosine production and activated A2AR-mediated adenosine signaling, which leads to an increase in nitric oxide generation and a decrease in proinflammatory molecule expression in endothelial cells. ME1 inhibition activated adenosine production in an ATP-dependent manner through regulating malate-aspartate NADH (nicotinamide adenine dinucleotide plus hydrogen) shuttle and thereby balancing oxidative phosphorylation and glycolysis. Pharmacological inactivation of ME1 attenuated the progression of PH in both preventive and therapeutic settings by promoting adenosine production in vivo. CONCLUSIONS: Our findings indicate that ME1 upregulation in endothelial cells plays a causative role in PH development by negatively regulating adenosine production and subsequently dysregulating endothelial functions. Our findings also suggest that ME1 may represent as a novel pharmacological target for upregulating protective adenosine signaling in PH therapy.

13.
IEEE J Biomed Health Inform ; 28(2): 929-940, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37930923

RESUMEN

Semi-supervised learning methods have been explored to mitigate the scarcity of pixel-level annotation in medical image segmentation tasks. Consistency learning, serving as a mainstream method in semi-supervised training, suffers from low efficiency and poor stability due to inaccurate supervision and insufficient feature representation. Prototypical learning is one potential and plausible way to handle this problem due to the nature of feature aggregation in prototype calculation. However, the previous works have not fully studied how to enhance the supervision quality and feature representation using prototypical learning under the semi-supervised condition. To address this issue, we propose an implicit-explicit alignment (IEPAlign) framework to foster semi-supervised consistency training. In specific, we develop an implicit prototype alignment method based on dynamic multiple prototypes on-the-fly. And then, we design a multiple prediction voting strategy for reliable unlabeled mask generation and prototype calculation to improve the supervision quality. Afterward, to boost the intra-class consistency and inter-class separability of pixel-wise features in semi-supervised segmentation, we construct a region-aware hierarchical prototype alignment, which transmits information from labeled to unlabeled and from certain regions to uncertain regions. We evaluate IEPAlign on three medical image segmentation tasks. The extensive experimental results demonstrate that the proposed method outperforms other popular semi-supervised segmentation methods and achieves comparable performance with fully-supervised training methods.


Asunto(s)
Aprendizaje Automático Supervisado , Votación , Procesamiento de Imagen Asistido por Computador
14.
Ultrason Sonochem ; 101: 106664, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931344

RESUMEN

We investigated laser-induced cavitation dynamics in a small container with elastic thin walls and free or partially confined surface both experimentally and by numerical investigations. The cuvette was only 8-25 times larger than the bubble in its center. The liquid surface was either free, or two thirds were confined by a piston-shaped pressure transducer. Different degrees of confinement were realized by filling the liquid up to the transducer surface or to the top of the cuvette. For reference, some experiments were performed in free liquid. We recorded the bubble dynamics simultaneously by high-speed photography, acoustic measurements, and detection of probe beam scattering. Simultaneous single-shot recording of radius-time curves and oscillation times enabled to perform detailed investigations of the bubble dynamics as a function of bubble size, acoustic feedback from the elastic walls, and degree of surface confinement. The bubble dynamics was numerically simulated using a Rayleigh-Plesset model extended by terms describing the acoustically mediated feedback from the bubble's environment. Bubble oscillations were approximately spherical as long as no secondary cavitation by tensile stress occurred. Bubble expansion was always similar to the dynamics in free liquid, and the environment influenced mainly the collapse phase and subsequent oscillations. For large bubbles, strong confinement led to a slight reduction of maximum bubble size and to a pronounced reduction of the oscillation time, and both effects increased with bubble size. The joint action of breakdown-induced shock wave and bubble expansion excites cuvette wall vibrations, which produce alternating pressure waves that are focused onto the bubble. This results in a prolongation of the collapse phase and an enlargement of the second oscillation, or in time-delayed re-oscillations. The details of the bubble dynamics depend in a complex manner on the degree of surface confinement and on bubble size. Numerical simulations of the first bubble oscillation agreed well with experimental data. They suggest that the alternating rarefaction/compression waves from breakdown-induced wall vibrations cause a prolongation of the first oscillation. By contrast, liquid mass movement in the cuvette corners result in wall vibrations causing late re-oscillations. The strong and rich interaction between the bubble and its surroundings may be relevant for a variety of applications such as intraluminal laser surgery and laser-induced cavitation in microfluidics.

15.
Biomed Opt Express ; 14(9): 4696-4712, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37791256

RESUMEN

LED array microscopy is a novel computational imaging technique that can achieve two-dimensional (2D) phase imaging and three-dimensional (3D) refractive index imaging with both high resolution and a large field of view. Although its experimental setup is simple, the errors caused by LED array position and light source central wavelength obviously decrease the quality of reconstructed results. To solve this problem, comprehensive error parameters optimized by the phase smoothing criterion are put forward in this paper. The central wavelength error and 3D misalignment model with six freedom degree errors of LED array are considered as the comprehensive error parameters when the spatial positional and optical features of arbitrarily placed LED array are unknown. Phase smoothing criterion is also introduced to the cost function for optimizing comprehensive error parameters to improve the convergence results. Compared with current system correction methods, the simulation and experimental results show that the proposed method in this paper has the best reconstruction accuracy, which can be well applied to an LED array microscope system with unknown positional and optical features of the LED array.

16.
J Biomed Opt ; 28(6): 065006, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37396684

RESUMEN

Significance: Resealing time based loading efficiency of optoporation is the key parameter for drug or gene delivery. This work describes a comparatively simple optical approach to directly measure the cell membrane resealing time of the gold nanoparticle mediated photoporation. Aim: To establish a membrane potential detection optical system, which can provide a direct measurement of resealing time of the optoporated cells. Approach: Voltage sensitive dye has been used to label the gold nanoparticle covered cell before laser activation and the resealing time was estimated from the voltage change due to the fluorescence light intensity change before and after laser activation. The approach has been validated by the simulated data based on diffusion model and Monte Carlo simulation and the experimental data obtained from a flow cytometry analysis. Results: The measured resealing time after perforation varied from 28.6 to 163.8 s on Hela cells when the irradiation fluence was increased, with a correlation coefficient (R2) of 0.9938. This result is in agreement with the resealing time (1-2 min) of photothermal porated Hela cells measured by electrical impedance method. The intracellular delivery efficiency of extracellular macromolecular under the same irradiation fluence depends mainly on diffusion velocity rather than pore size. Conclusion: The method described here can be used to directly measure resealing time of optoporated cells for accurately estimating the loading efficiency on discovering the mechanism of optoporation.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Humanos , Células HeLa , Membrana Celular , Preparaciones Farmacéuticas/metabolismo , Mamíferos
17.
Cell Rep ; 42(7): 112770, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37422761

RESUMEN

Increased metabolic activity usually provides energy and nutrients for biomass synthesis and is indispensable for the progression of the cell cycle. Here, we find a role for α-ketoglutarate (αKG) generation in regulating cell-cycle gene transcription. A reduction in cellular αKG levels triggered by malic enzyme 2 (ME2) or isocitrate dehydrogenase 1 (IDH1) depletion leads to a pronounced arrest in G1 phase, while αKG supplementation promotes cell-cycle progression. Mechanistically, αKG directly binds to RNA polymerase II (RNAPII) and increases the level of RNAPII binding to the cyclin D1 gene promoter via promoting pre-initiation complex (PIC) assembly, consequently enhancing cyclin D1 transcription. Notably, αKG addition is sufficient to restore cyclin D1 expression in ME2- or IDH1-depleted cells, facilitating cell-cycle progression and proliferation in these cells. Therefore, our findings indicate a function of αKG in gene transcriptional regulation and cell-cycle control.


Asunto(s)
Ciclina D1 , Ácidos Cetoglutáricos , Ciclina D1/genética , Ciclina D1/metabolismo , Ácidos Cetoglutáricos/metabolismo , ARN Polimerasa II , Ciclo Celular , Fase G1
18.
Proc Natl Acad Sci U S A ; 120(23): e2217869120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253016

RESUMEN

T cell lymphomas (TCLs) are a group of rare and heterogeneous tumors. Although proto-oncogene MYC has an important role in driving T cell lymphomagenesis, whether MYC carries out this function remains poorly understood. Here, we show that malic enzyme 2 (ME2), one of the NADPH-producing enzymes associated with glutamine metabolism, is essential for MYC-driven T cell lymphomagenesis. We establish a CD4-Cre; Myc flox/+transgenic mouse mode, and approximately 90% of these mice develop TCL. Interestingly, knockout of Me2 in Myc transgenic mice almost completely suppresses T cell lymphomagenesis. Mechanistically, by transcriptionally up-regulating ME2, MYC maintains redox homeostasis, thereby increasing its tumorigenicity. Reciprocally, ME2 promotes MYC translation by stimulating mTORC1 activity through adjusting glutamine metabolism. Treatment with rapamycin, an inhibitor of mTORC1, blocks the development of TCL both in vitro and in vivo. Therefore, our findings identify an important role for ME2 in MYC-driven T cell lymphomagenesis and reveal that MYC-ME2 circuit may be an effective target for TCL therapy.


Asunto(s)
Glutamina , Malato Deshidrogenasa , Linfocitos T , Animales , Ratones , Glutamina/metabolismo , Homeostasis , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Linfocitos T/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo
19.
IEEE Trans Image Process ; 32: 2593-2607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37126632

RESUMEN

Salient object detection (SOD) is an important task in computer vision that aims to identify visually conspicuous regions in images. RGB-Thermal SOD combines two spectra to achieve better segmentation results. However, most existing methods for RGB-T SOD use boundary maps to learn sharp boundaries, which lead to sub-optimal performance as they ignore the interactions between isolated boundary pixels and other confident pixels. To address this issue, we propose a novel position-aware relation learning network (PRLNet) for RGB-T SOD. PRLNet explores the distance and direction relationships between pixels by designing an auxiliary task and optimizing the feature structure to strengthen intra-class compactness and inter-class separation. Our method consists of two main components: A signed distance map auxiliary module (SDMAM), and a feature refinement approach with direction field (FRDF). SDMAM improves the encoder feature representation by considering the distance relationship between foreground-background pixels and boundaries, which increases the inter-class separation between foreground and background features. FRDF rectifies the features of boundary neighborhoods by exploiting the features inside salient objects. It utilizes the direction relationship of object pixels to enhance the intra-class compactness of salient features. In addition, we constitute a transformer-based decoder to decode multispectral feature representation. Experimental results on three public RGB-T SOD datasets demonstrate that our proposed method not only outperforms the state-of-the-art methods, but also can be integrated with different backbone networks in a plug-and-play manner. Ablation study and visualizations further prove the validity and interpretability of our method.

20.
Metabolites ; 13(4)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37110198

RESUMEN

Cancer metastasis is still a major challenge in clinical cancer treatment. The migration and invasion of cancer cells into surrounding tissues and blood vessels is the primary step in cancer metastasis. However, the underlying mechanism of regulating cell migration and invasion are not fully understood. Here, we show the role of malic enzyme 2 (ME2) in promoting human liver cancer cell lines SK-Hep1 and Huh7 cells migration and invasion. Depletion of ME2 reduces cell migration and invasion, whereas overexpression of ME2 increases cell migration and invasion. Mechanistically, ME2 promotes the production of pyruvate, which directly binds to ß-catenin and increases ß-catenin protein levels. Notably, pyruvate treatment restores cell migration and invasion of ME2-depleted cells. Our findings provide a mechanistic understanding of the link between ME2 and cell migration and invasion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...