Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(15): e35405, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170318

RESUMEN

Objective: To explore the possible mechanisms by which follicle-stimulating hormone (FSH) regulates postmenopausal osteoporosis through the FSH/FSH receptor (FSHr)/G protein/C/EBPß/heat shock protein 90 alpha (HSP90α) signalling pathways. Methods: We measured serum FSH, luteinising hormone (LH), and HSP90α levels in the serum and adipose tissue of women of childbearing age and menopausal status. In the in vivo studies, 12 B57CL female mice were divided equally into Sham, OVX, and OVX + FSHr Blocker groups. Serum levels of alkaline phosphatase, FSH, and HSP90α, along with StRACP vitality, were determined, and femur micro-computed tomography was performed. Additionally, FSH, FSHr, G protein, C/EBPß, and HSP90α levels were assessed using quantitative polymerase chain reaction. Finally, we divided the human multiple myeloma cell line U266 into three groups. The activity of tartrate-resistant acid phosphatase (TRAP) in the supernatant at different stages was detected, and myeloma cells were stained with TRAP. Results: HSP90α levels in adipose tissue supernatant and serum were lower in women of childbearing age than in menopausal women (P < 0.05). Serum FSH and HSP90α levels demonstrated a strong correlation. Treatment with FSHr blockers resulted in decreased FSH, FSHr, G protein, C/EBPß, and HSP90α levels in mice. TRAP staining of osteoclast-like cells exhibited a significantly higher intensity in the M-CSF + RANKL + recombinant HSP90α group than in the M-CSF + RANKL and blank control groups (P < 0.05). Conclusions: Our results indicate that FSH promotes HSP90α secretion by adipocytes via the FSHr/G protein/C/EBPß pathway. This mechanism affects osteoclast activity and exacerbates osteoporosis.

2.
Int J Lab Hematol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019548

RESUMEN

INTRODUCTION: Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome (MDS-h) are bone marrow failure disease and difficult to distinguish merely by morphological analysis. In this study, we investigated the value of flow cytometry (FCM) in the differential diagnosis of AA and MDS-h. METHODS: We included 822 patients (626 control, 69 AA, 22 MDS-h and 105 dilution patients) from January 2017 to December 2022 for a retrospective study. Bone marrow myeloid progenitor (MP) cell and mature lymphocytes proportions were analyzed by FCM. The ratio of MP cell proportion and mature lymphocytes proportion, MPLR, was calculated. Data were compared by Kruskal-Wallis test. Differential diagnostic efficacy was evaluated by receiver operating characteristic (ROC) curve. Cutoff value was determined by the maximum Youden index. RESULTS: Bone marrow MP cell proportion and MPLR of MDS-h patients were higher than AA patients. Mature lymphocytes proportion of MDS-h patients was lower than AA patients. Area under ROC curve (AUC of ROC) of MP cell proportion, MPLR and mature lymphocytes proportion to distinguish AA from MDS-h were 0.992, 0.988, and 0.850, respectively. Moreover, MPLR of dilution patients was higher than AA patients but lower than MDS-h patients. The AUC of ROC curves of MPLR to distinguish MDS-h and AA from dilution were 0.854 and 0.871, respectively. CONCLUSION: Bone marrow MP cell proportion and MPLR can effectively discriminate AA from MDS-h with similar differential efficacy, which is higher than mature lymphocytes proportion. Moreover, MPLR can evaluate the quality of bone marrow aspirates, which would interfere with the differential diagnosis.

3.
Blood ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046762

RESUMEN

Atypical acute promyelocytic leukemia (aAPL) presents a complex landscape of retinoic acid receptor (RAR) fusion genes beyond the well-known PML::RARA fusion. Among these, 31 individually rare RARA and RARG fusion genes have been documented, often reported in the canonical X::RAR bipartite fusion form. Intriguingly, some artificially mimicked bipartite X::RAR fusions respond well to all-trans retinoic acid (ATRA) in vitro, contrasting with the ATRA resistance observed in patients. To unravel the underlying mechanisms, we conducted a comprehensive molecular investigation into the fusion transcripts in 27 RARA fusion gene-positive aAPL (RARA-aAPL) and 21 RARG-aAPL cases. Our analysis revealed an unexpected novel form of X::RAR::X or X::RAR::Y-type tripartite fusions in certain RARA- and all RARG-aAPL cases, with shared features and notable differences between these two disease subgroups. In RARA-aAPL cases, the occurrence of RARA 3' splices was associated with their 5' fusion partner genes, mapping across the coding region of helix 11_12 (H11_12) within the ligand-binding domain (LBD), resulting in LBD-H12 or H11_12 truncation. In RARG-aAPL cases, RARG 3' splices were consistently localized to the terminus of exon 9, leading to LBD-H11_12 truncation. Significant differences were also observed between RARA and RARG 5' splice patterns. Our analysis also revealed extensive involvement of transposable elements in constructing RARA and RARG 3' fusions, suggesting transposition mechanisms for fusion gene ontogeny. Both protein structural analysis and experimental results highlighted the pivotal role of LBD-H11_12/H12 truncation in driving ATRA unresponsiveness and leukemogenesis in tripartite fusion-positive aAPL, through a protein allosteric dysfunction mechanism.

4.
Mol Carcinog ; 63(8): 1429-1435, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38860593

RESUMEN

Mixed phenotype acute leukemia (MPAL) is a type of acute leukemia in which encompasses mixed features of myeloid, T-lymphoid, and/or B-lymphoid differentiation. Philadelphia chromosome-positive (Ph+) MPAL is a rare subgroup with a poor prognosis and accounts for <1% of adult acute leukemia. Until now, there is still no consensus on how to best treat Ph+ MPAL. Here, we report a 62-year-old male with Ph+ (atypical e13a2 BCR-ABL1 fusion protein) MPAL. This patient presented with recurrent and intense bone pain due to bone marrow necrosis (BMN). Besides, he did not achieve a complete remission for the first two chemotherapies, until he received flumatinib combined with hyper-CVAD (B) (a dose-intensive regimen include methotrexate and cytarabine). To our knowledge, this is the first report to describe the coexistence of BMN and atypical e13a2 BCR-ABL1 transcripts in patients with MPAL. This finding will bring new understandings in the diagnosis and treatment of Ph+ MPAL.


Asunto(s)
Médula Ósea , Proteínas de Fusión bcr-abl , Necrosis , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Fusión bcr-abl/genética , Médula Ósea/patología , Leucemia Bifenotípica Aguda/genética , Leucemia Bifenotípica Aguda/patología , Leucemia Bifenotípica Aguda/tratamiento farmacológico
6.
Int J Mol Med ; 53(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606498

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell invasion assay data shown in Figs. 2C and 4B were strikingly similar to data appearing in different form in a paper by different authors at a different research institute that had already been submitted for publication. Owing to the fact that the contentious data in the above article had already been submitted for publication prior to its submission to International Journal of Molecular Medicine, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 46: 2078­2088, 2020; DOI: 10.3892/ijmm.2020.4749].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...