RESUMEN
Current researches on pesticides in wetlands are limited in terms of screening and quantification of many types of pesticides. Understanding the spatial and temporal dynamics, distribution patterns, and environmental risks of pesticides in multiple media is important for wetland ecological conservation. In this study, 222 pesticides were determined in multimedia samples collected simultaneously from the Songhua Wetland during four seasons. Concentrations of target pesticides in water, ice, sediment and soil ranged from 94.1 to 7445 ng/L, 62.6-953 ng/L, 0.82-50.2 ng/g dw, and 4.32-146 ng/g dw. Large spatial differences (p < 0.05) in pesticide concentrations in ice were found. However, there were no significant differences in the spatial and temporal distribution of pesticides in water, sediment, and soil (p > 0.05), suggesting that there were no correlation between the spatial and temporal use of pesticides. The dynamic exchange of pesticides between water-ice indicated that most pesticides were more enriched in water. However, there were still some pesticides (Dichlorvos and Biphenyl) that showed a stronger tendency to transfer from water to ice. Sediment-water exchange suggested that sediment is a source of secondary releases of most pesticides in wetland ecology, but is a sink for Biphenyl and Oxadiazon. The correlation between concentration ratios and fugacity fraction supported this finding. Most individual pesticides in wetland water and ice had shown low or moderate ecological risk conducted using risk quotient. The cumulative toxic effects of multiple pesticides had a high potential to pose a threat to wetland aquatic organisms.
RESUMEN
The hazards of polycyclic aromatic hydrocarbons (PAHs) on occupationally exposed population have been widely acknowledged. However, the occupational exposure risks associated their derivatives, methylated PAHs, remain poorly understood. This study conducted a screen of 126 PAHs and 6 oxidative stress biomarkers (OSBs) in paired serum-urine samples from 110 petrochemical workers to assess the risk associated with different PAHs exposure. The results showed that the median concentrations of unmetabolized 16 priority PAHs (p-PAHs), 16 regular PAHs (R-PAHs), 50 methyl-PAHs (Me-PAHs), and 30 nitro-PAHs (N-PAHs) in serum (urine) were 97.98 (66.46), 11.02 (0.00), 77.76 (31.77), and 1.93 (0.10) ng/mL, respectively. The median concentration of metabolized hydroxy PAHs (OH-PAHs) in urine was 12.00 ng/mL (9.49 ng/mg creatinine). OSBs indicate that the hazards of Me-PAHs on exposed populations manifest as protein damage, while the hazards of p-PAHs mainly result in lipid and DNA damage. Results from common diseases and PAH exposure demonstrate a correlation between liver damage and PAH exposure, and Me-PAHs are more difficult to metabolize through urine due to their stronger lipophilicity. This study suggests that traditional health screenings targeting p-PAHs may be insufficient and likely underestimate the exposure risks for occupational populations.
RESUMEN
As a ubiquitous tire antioxidant, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylene- diamine (6PPD) exists widely in various environmental media and has been detected at high levels in the environment. However, the effects of 6PPD on plants are still poorly understood. In this study, a hydroponic experiment was carried out to investigate the response of white clover (Trifolium repens L.) stressed by 6PPD on physiology and metabolomics. The results indicated that the length of stem and root, as well as biomass were significantly reduced after 500 µg L-1 6PPD treatment. Photosynthetic performances including photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr) and chlorophyll content of leaves decreased in all treatments except 500 µg L-1 of 6PPD. The malondialdehyde (MDA) content in the shoot of white clover increased by 66.33 % when exposed to 500 µg L-1 of 6PPD compared to control group (CK). Hydrogen peroxide and superoxide anion presented a U-shape trend and began to increase at 500 µg L-1. Besides, peroxidase and catalase significantly decreased compared to CK after exposure to 500 µg L-1. Metabolic analysis of clover showed that 6PPD treatment induced changes in 10 metabolic pathways of white clover. Metabolites were significantly down-regulated after exposure to 500 µg L-1 in shoot, while significantly down-regulated in all treatment groups except 500 µg L-1 in root. These findings may provide a novel perspective for phytotoxicity assessment and phytoremediation of 6PPD.
RESUMEN
Global monitoring of persistent organic pollutants (POPs) has intensified following regulatory efforts aimed at reducing their release. In this context, we compiled over 10,000 POP measurements, reported from 1980 to 2023, to assess the effectiveness of these legislative measures in the global marine environments. While a general decreasing trend in legacy POP concentrations is evident across various maritime regions, highlighting the success of source control measures, the Arctic Ocean and its marginal seas have experienced a rise in POP levels. This increase suggests the northward migration of pollutants via ocean currents from mid-latitude regions to polar areas. Despite global efforts to reduce emissions, the continued transport and accumulation of pollutants to the Arctic regions may have substantial ecological impacts. Addressing these environmental challenges demands a thorough understanding of POP dynamics, including response times, multiphase transport, and biogeochemical cycling. Continued research into these processes is vital to accurately map their distribution and temporal variations within marine systems.
RESUMEN
Widely used antioxidants can enter the environment via urban stormwater systems and form disinfection byproducts (DBPs) during chlorination in downstream drinking water processes. Herein, we comprehensively investigated the occurrence of 39 antioxidants from stormwater runoff to surface water. After a storm event, the concentrations of the antioxidants in surface water increased by 1.4-fold from 102-110 ng/L to 128-139 ng/L. Widespread antioxidants during the stormwater event could transform into toxic DBPs during disinfection. Moreover, the yields of trihalomethanes, haloacetaldehydes, haloacetonitriles (HANs), and halonitromethanes during the chlorination of widely used antioxidants considerably increased with an increasing chlorine dose and contact time. Specifically, the yields of dichloroacetonitrile during the chlorination of diphenylamine (DPA) and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) were higher than those of most reported amino acid precursors, indicating that DPA and 6PPD might be important precursors of HANs. Exploring the intermediates using GC × GC-time-of-flight high-resolution mass spectrometry helped reveal potential pathways from DPA to HANs, whose formation could be attributed to the intermediate carbazole and indole moieties detected in this study. This study provides insights into the transport and transformation of commonly used antioxidants in a water environment and during water treatment processes, highlighting the potential risks of anthropogenic pollutants from a DBP perspective.
Asunto(s)
Antioxidantes , Desinfección , Contaminantes Químicos del Agua/química , Purificación del Agua , HalogenaciónRESUMEN
Landfill leachate contributes significantly to the presence of pharmaceuticals and personal care products (PPCPs) in the environment, and is a crucial source of contamination. To examine the occurrence of PPCPs and microbial communities, this study comprehensively investigated the concentrations of PPCPs and the abundance of microorganisms in the leachate from 17 municipal landfills across China. Generally, Lidocaine, Linear alkylbenzene sulfonate-C11, and Triclocarban, which are closely associated with human activities, exhibited a detection frequency of 100 % in the leachate. Driven by consumer demand, analgesic and antipyretic drugs have emerged as the most prominent PPCPs in leachate (accounting for 39.9 %). Notably, the Ibuprofen peaked at 56.3 µg/L. Regarding spatial distribution, the contamination of PPCPs in leachates from the eastern regions of China was significantly higher than that in other regions, owing to the level of economic development and demographic factors. Furthermore, the 16S rRNA results revealed significant differences in microbial communities among the leachates from different areas. Although the impact of PPCPs on microbial communities may not be as significant as that of environmental factors, most positive correlations between PPCPs and microorganisms indicate their potential role in providing nutrients and creating favorable conditions for microbial growth. Overall, this research offers new perspectives on the residual features of PPCPs and the microbial community structure in leachates from various regions in China.
Asunto(s)
Cosméticos , Monitoreo del Ambiente , ARN Ribosómico 16S , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Preparaciones Farmacéuticas/análisis , Cosméticos/análisis , ARN Ribosómico 16S/genética , Microbiota , Bacterias/clasificación , CiudadesRESUMEN
In this study, to understand the seasonal dynamics of air-sea exchange and its regulation mechanisms, we investigated polycyclic aromatic hydrocarbons (PAHs) at the air-sea interface in the western Taiwan Strait in combination with measurements and machine learning (ML) predictions. For 3-ring PAHs and most of 4- to 6-ring, volatilization and deposition fluxes were observed, respectively. Seasonal variations in air-sea exchange flux suggest the influence of monsoon transitions. Results of interpretable ML approach (XGBoost) indicated that volatilization of 3-ring PAHs was significantly controlled by dissolved PAH concentrations (contributed 24.0 %), and the gaseous deposition of 4- to 6-ring PAHs was related to more contaminated air masses originating from North China during the northeast monsoon. Henry's law constant emerged as a secondary factor, influencing the intensity of air-sea exchange, particularly for low molecular weight PAHs. Among environmental parameters, notably high wind speed emerges as the primary factor and biological pump's depletion of PAHs in surface seawater amplifies the gaseous deposition process. The distinct dynamics of exchanges at the air-water interface for PAHs in the western TWS can be attributed to variations in primary emission intensities, biological activity, and the inconsistent pathways of long-range atmospheric transport, particularly within the context of the monsoon transition.
RESUMEN
A large number of pesticides have been widely manufactured and applied, and are released into the environment with negative impact on human health. Pesticides are largely used in densely populated urban environments, in green zones, along roads and on private properties. In order to characterize the potential exposure related health effects of pesticide and their occurrence in the urban environment, 222 pesticides were screened and quantified in 228 road dust and 156 green-belt soil samples in autumn and spring from Harbin, a megacity in China, using GC-MS/MS base quantitative trace analysis. The results showed that a total of 33 pesticides were detected in road dust and green-belt soil, with the total concentrations of 650 and 236 ng/g (dry weight = dw), respectively. The concentrations of pesticides in road dust were significantly higher than that in green-belt soil. Pesticides in the environment were influenced by the seasons, with the highest concentrations of insecticides in autumn and the highest levels of herbicides in spring. In road dust, the concentrations of highways in autumn and spring (with the mean values of 94.1 and 68.2 ng/g dw) were much lower than that of the other road classes (arterial roads, sub-arterial roads and branch ways). Whereas in the green-belt soil, there was no significant difference in the concentration of pesticides between the different road classes. A first risk assessment was conducted to evaluate the potential adverse health effects of the pesticides, the results showed that the highest hazard index (HI) for a single pesticide in dust and soil was 0.12, the hazard index for children was higher than that for adults, with an overall hazard index of less than 1. Our results indicated that pesticide levels do not have a significant health impact on people.
Asunto(s)
Ciudades , Polvo , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Plaguicidas , China , Plaguicidas/análisis , Humanos , Exposición a Riesgos Ambientales/análisis , Polvo/análisis , Monitoreo del Ambiente/métodos , Población Urbana , Estaciones del Año , Contaminantes del Suelo/análisis , Ensayos Analíticos de Alto RendimientoRESUMEN
Compared to the particle-gas partition coefficients (KPG), the rain-gas (KRG) and snow-gas (KSG) partition coefficients are also essential in studying the environmental behavior and fate of chemicals in the atmosphere. While the temperature dependence for the KPG have been extensively studied, the study for KRG and KSG are still lacking. Adsorption coefficients between water surface-air (KIA) and snow surface-air (KJA), as well as partition coefficients between water-air (KWA) and octanol-air (KOA) are vital in calculating KRG and KSG. These four basic adsorption and partition coefficients are also temperature-dependent, given by the well-known two-parameters Antoine equation logKXY = AXY + BXY/T, where KXY is the adsorption or partition coefficients, AXY and BXY are Antoine parameters (XY stand for IA, JA, WA, and OA), and T is the temperature in Kelvin. In this study, the parameters AXY and BXY are calculated for 943 chemicals, and logKXY can be estimated at any ambient temperature for these chemicals using these Antoine parameters. The results are evaluated by comparing these data with published experimental and modeled data, and the results show reasonable accuracy. Based on these coefficients, temperature-dependence of logKRG and logKSG is studied. It is found that both logKRG and logKSG are linearly related to 1/T, and Antoine parameters for logKRG and logKSG are also estimated. Distributions of the 943 chemicals in the atmospheric phases (gas, particle, and rain/snow), are illustrated in a Chemical Space Map. The findings reveal that, at environmental temperatures and precipitation days, the dominant state for the majority of chemicals is the gaseous phase. All the AXY and BXY values for logKSG, logKRG, and basic adsorption and partition coefficients, both modeled by this study and collected from published work, are systematically organized into an accessible dataset for public utilization.
Asunto(s)
Lluvia , Nieve , Temperatura , Nieve/química , Lluvia/química , Adsorción , Gases/química , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Atmósfera/química , Monitoreo del Ambiente/métodos , Agua/químicaRESUMEN
Household and personal care chemicals (HPCCs) constitute a significant component of everyday products, with their global usage on the rise. HPCCs are eventually discharged into municipal wastewater treatment plants (WWTPs). However, the behaviors of HPCCs inside the Bacillus Bioreactor (BBR) process, including their prevalence, fate, and elimination mechanisms, remain underexplored. Addressing this gap, our study delves into samples collected from a BBR process at a significant WWTP in the northeast of China. Our results spotlight the dominance of linear alkylbenzene sulfonates (LASs) in the influent with concentrations ranging between 238 and 789 µg/L, much higher than the other HPCC concentrations, and remained dominant in the subsequent treatment units. After treatment using the BBR process, the concentrations of HPCCs in the effluent were diminished. Examination of different treatment units underscores the grit chamber removed over 60% of higher-concentration HPCCs, while the performance of the (RBC) tank needs to be improved. Except for the ultraviolet radiation (UV)-filters, seasonal variations exert minimal impact on the concentrations and removal efficiencies of other HPCCs in the BBR process. According to the mass balance analysis, the important mechanisms for HPCC removal were biodegradation and sludge adsorption. Also, the octocrylene (OCT) concerns raised by the environmental risk assessment of the HPCCs residuals in the final effluent, indicate a moderate risk to the surrounding aquatic environment (0.1 < RQ < 1), whereas other HPCCs have a lower risk level (RQ < 0.1). Overall, the research offers new perspectives on the fate and elimination mechanisms of HPCCs throughout the BBR process.
Asunto(s)
Bacillus , Reactores Biológicos , Estaciones del Año , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Reactores Biológicos/microbiología , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Eliminación de Residuos Líquidos/métodos , Bacillus/metabolismo , China , Biodegradación Ambiental , Cosméticos/análisis , Productos Domésticos/análisis , Ácidos Alcanesulfónicos/análisis , Monitoreo del Ambiente , Aguas del AlcantarilladoRESUMEN
Polycyclic aromatic hydrocarbons (PAHs) have the capability for solar radiation absorption related to climate forcing. Herein, pollution characteristics and absorption spectra of size-resolved PAHs in atmospheric particles in a cold megacity were comprehensively investigated. The mean concentrations of Σ18PAHs in all the 11 particle size ranges were 3.95 ± 4.77 × 104 pg/m3 and 2.17 ± 1.54 × 103 pg/m3 in heating period (HP) and non-heating period (NHP), respectively. Except for most PAHs with 2 and 3 benzene rings in NHP, most other PAHs showed a unimodal distribution pattern with the peak at 0.56-1.0 µm in both periods, which was caused by PAH emission sources. The PAH-related climate forcing was mainly caused by the solar radiation absorptions at â¼325 (â¼330) nm and â¼365 nm. In general, the absorption intensities were higher in HP than NHP. The absorption intensity in the particle size range of 0.56-1.0 µm was the highest, and benzo[e]pyrene was the dominant contributor. In colder periods in HP, higher PAH concentrations caused more intensive PAH-related climate forcing. This study provided new insights for pollution characteristics and absorption spectra of size-resolved PAHs in atmospheric particles, which will be useful for better understanding PAH-related climate forcing.
RESUMEN
Convenient transportation facilities not only bring the higher standard of living to big cities, but also bring some environmental pollution problems. In order to understand the presence and sources of methylated polycyclic aromatic hydrocarbons (Me-PAHs) in environmental samples and their association with total organic carbon (TOC), 49 Me-PAHs were analyzed in road dust, green belt soil and parking lot dust samples in Harbin. The results showed that the ranges of the total Me-PAHs (ΣMe-PAHs) content in road dust were 221-5826 ng/g in autumn and 697-7302 ng/g in spring, and those in green belt soil were 170-2509 ng/g and 155-9215 ng/g in autumn and spring, respectively. And ΣMe-PAHs content in parking lot dust ranged from 269 to 2515 ng/g in surface parking lots and from 778 to 10,052 ng/g in underground parking lots. In these samples, the composition profile of Me-PAHs was dominated by 4-ring Me-PAHs. The results of diagnostic ratios and principal component analysis (PCA) indicated that petrogenic and pyrogenic sources were the main sources of Me-PAHs in the samples. Spearman correlation analysis showed that there was no correlation for Me-PAHs in road dust and green belt soil on the same road. Furthermore, there was a significant positive relationship (0.12 ≤ R2 ≤ 0.67, P < 0.05) between Me-PAHs concentrations and the TOC content. This study demonstrated the presence of Me-PAHs with high concentrations in the road environment samples of Harbin.
Asunto(s)
Polvo , Hidrocarburos Policíclicos Aromáticos , Ciudades , Contaminación Ambiental , SueloRESUMEN
Per- and polyfluoroalkyl substances (PFASs) have potential carcinogenicity, immunotoxicity, and hepatotoxicity. Research has been conducted on PFAS exposure in people to discuss their potential health effects, excluding lung cancer. In this study, we recruited participants (n = 282) with lung cancer from Heilongjiang Province, northeast China. The PFAS concentrations were measured in their serum to fill the data gap of exposure, and relationships were explored in levels between PFASs and clinical indicators of tumor, immune and liver function. Ten PFASs were found in over 80 % of samples and their total concentrations were 5.27-152 ng/mL, with the highest level for perfluorooctanesulfonate (median: 12.4 ng/mL). Long-chain PFASs were the main congeners and their median concentration (20.5 ng/mL) was nearly three times to that of short-chain PFASs (7.61 ng/mL). Significantly higher concentrations of perfluorobutanoic acid, perfluorononanoic acid and perfluorohexanesulfonate were found in males than in females (p < 0.05). Serum levels of neuro-specific enolase were positively associated with perfluoropentanoic acid in all participants and were negatively associated with perfluorononanesulfonate in females (p < 0.05, multiple linear regression models). Exposure to PFAS mixture was significantly positively associated with the lymphocytic absolute value (difference: 0.224, 95% CI: 0.018, 0.470; p < 0.05, quantile g-computation models) and serum total bilirubin (difference: 2.177, 95% CI: 0.0335, 4.33; p < 0.05). Moreover, PFAS exposure can affect γ-glutamyl transpeptidase through several immune markers (p < 0.05, mediating test). Our results suggest that exposure to certain PFASs could interfere with clinical indicators in lung cancer patients. To our knowledge, this is the first study to detect serum PFAS occurrence and check their associations with clinical indicators in lung cancer patients.
Asunto(s)
Ácidos Alcanesulfónicos , Exposición a Riesgos Ambientales , Contaminantes Ambientales , Fluorocarburos , Neoplasias Pulmonares , Humanos , Fluorocarburos/sangre , Femenino , Masculino , Persona de Mediana Edad , China , Ácidos Alcanesulfónicos/sangre , Anciano , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/sangre , Adulto , Ácidos SulfónicosRESUMEN
Pharmaceutical compounds (PhCs) pose a growing concern with potential environmental impacts, commonly introduced into the environment via wastewater treatment plants (WWTPs). The occurrence, removal, and season variations of 60 different classes of PhCs were investigated in the baffled bioreactor (BBR) wastewater treatment process during summer and winter. The concentrations of 60 PhCs were 3400 ± 1600 ng/L in the influent, 2700 ± 930 ng/L in the effluent, and 2400 ± 120 ng/g dw in sludge. Valsartan (Val, 1800 ng/L) was the main contaminant found in the influent, declining to 520 ng/L in the effluent. The grit chamber and BBR tank were substantially conducive to the removal of VAL. Nonetheless, the BBR process showcased variable removal efficiencies across different PhC classes. Sulfadimidine had the highest removal efficiency of 87 ± 17% in the final effluent (water plus solid phase). Contrasting seasonal patterns were observed among PhC classes within BBR process units. The concentrations of many PhCs were higher in summer than in winter, while some macrolide antibiotics exhibited opposing seasonal fluctuations. A thorough mass balance analysis revealed quinolone and sulfonamide antibiotics were primarily eliminated through degradation and transformation in the BBR process. Conversely, 40.2 g/d of macrolide antibiotics was released to the natural aquatic environment via effluent discharge. Gastric acid and anticoagulants, as well as cardiovascular PhCs, primarily experienced removal through sludge adsorption. This study provides valuable insights into the intricate dynamics of PhCs in wastewater treatment, emphasizing the need for tailored strategies to effectively mitigate their release and potential environmental risks.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos , Estaciones del Año , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Antibacterianos/análisis , Medición de Riesgo , Macrólidos/análisis , Preparaciones FarmacéuticasRESUMEN
The knowledge of polycyclic aromatic hydrocarbons (PAHs) in wetlands remains limited. There is a research need for the dynamics between interfaces of multimedia when ice is present in this fragile ecosystem. In this study, sediment, open-water, sub-ice water, and ice samples were collected from the Songhua wetland to study the behaviors of PAHs with and without influences from ice. The concentration of all individual PAHs in sub-ice water (370-1100 ng/L) were higher than the open-water collected from non-ice-covered seasons (50-250 ng/L). Enrichment of PAHs in the ice of wetland was found, particularly for high-molecular-weight PAHs (HMW). This could be attributed to the relatively lower polarity of hydrocarbons compounds, making them more likely to remain in the ice layer during freezing. Source assessments reveal common sources for sub-ice water and ice, which differ from those in the open water in non-ice-covered seasons. This difference is primarily attributed to heating activities in the Harbin during winter. The average percentage contributions were 79% for sub-ice water and 36% for ice related to vehicle exhausts and coal combustion. Additionally, wood burning contributed 25% to sub-ice water and 62% to ice. Sediment in the wetland was found to serve as a final deposit particularly for heavier PAHs, especially those with 6 rings. Sediment also has the potential to act as a source for the secondary emission of low-molecular-weight PAHs (LMW) congeners into the water. PAHs in wetland displayed low ecological risk, while HMW PAHs with relative higher ecological risk is recommended to be further monitored.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año , Humedales , Ecosistema , Multimedia , Monitoreo del Ambiente , Agua , China , Contaminantes Químicos del Agua/análisis , Sedimentos GeológicosRESUMEN
Aniline antioxidants (ANs) are widely used as industrial chemicals in products composed of rubber. ANs originate mainly from vehicles, where tire wear particles end up in dust and soil after being deposited on roads. Nowadays, limited information is available on the fate and seasonal variation of ANs in the road environment. In this study, we investigated the occurrence of 32 ANs in dust and soil from different road environments, including road dust, garage dust, parking lot dust, and green-belt soil. The total concentrations of ANs were 369 ng g-1 in road dust, 712 ng g-1 in garage dust, and 687 ng g-1 in parking lot dust. These concentrations are several times higher than that in green-belt soil (128 ng g-1). The highest concentrations of N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6PPD) were found in dust and soil. Furthermore, notable seasonal differences were observed, with significantly higher concentrations of ANs in autumn than those in spring. In the main urban area, roads with high traffic volume exhibited higher concentrations of ANs than those with low traffic volume, indicating that ANs were produced by vehicle-related sources.
RESUMEN
Pharmaceuticals and personal care products (PPCPs) have attracted wide attention due to their environmental impacts and health risks. PPCPs released through wastewater treatment plants (WWTPs) are estimated to be 80 %. Nevertheless, the occurrence of PPCPs in the WWTPs equipped with Bacillus spec.-based bioreactors (BBR) treatment system remains unclear. In this study, sludge and waste water samples were collected during separate winter and summer sampling campaigns from a typical BBR treatment system. The results indicate that out of 58 target PPCPs, 27 compounds were detected in the waste water (0.06-1900 ng/L), and 23 were found in the sludge (0.6-7755 ng/g dw). Paraxanthine was the chemical of the highest abundance in the influent due to the high consumption of the parent compounds caffeine and theobromine. The profile for PPCPs in the wastewater and sludge exhibited no seasonal variation. Overall, the removal of target PPCPs in summer is more effective than the winter. In the BBR bio-reactor, it was found that selected PPCPs (at ng/L level) can be completely removed. The efficiency for individual PPCP removal was increased from 1.0 % to 50 % in this unit, after target specific adjustments of the process. The effective removal of selected PPCPs by the BBR treatment system is explained by combined sorption and biodegradation processing. The re-occurrence of PPCPs in the wastewater was monitored. Negative removal efficiency was explained by the cleavage of Phase II metabolites after the biotransformation process, and the lack of equilibrium for PPCPs in the sludge of the second clarifier. A compound specific risk quotient (RQ) was calculated and applied for studying the potential environmental risks. Diphenhydramine is found with the highest environmental risk in wastewater, and 15 other PPCPs show negligible risks in sewage sludge.
Asunto(s)
Cosméticos , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Cosméticos/análisis , Purificación del Agua/métodos , Preparaciones Farmacéuticas , Monitoreo del AmbienteRESUMEN
PURPOSE: To observe the effects of oxidative stress on vascular endothelial growth factor (VEGF) and connections of lens epithelial cells. METHODS: Human lens epithelium of patients with age-related cataract (ARC), both SRA01/04 cells and whole mice lens stimulated by H2O2 were employed. VEGF in human aqueous humor of ARC-patients and the supernatant of SRA01/04 cells was determined by ELISA. The expressions of VEFG in human lens epithelium were detected by immunofluorescence staining. Multiple linear regression analysis and spearman rank-order correlation were used to determine the associations between VEGF and parameters of ARC individuals. In H2O2-induced SRA01/04 cells, Catalase (CAT), PP1 (inhibitor of c-Src kinase) and Avastin (VEGF antibody) were used to inhibit the effects of H2O2, activation of c-Src kinase and VEGF, which were detected by Western blot. The alterations of ZO-1 and N-cadherin were tested by immunofluorescence staining and Western blot. In H2O2-induced whole lens, the changes of opacification area in different treatment of inhibitors were observed. RESULTS: The secretion of VEGF in aqueous humor and expression of VEGF in the lens epithelium of ARC patients increased significantly with age. In H2O2-induced SRA01/04 cells, the VEGF in the supernatant was increased with the culture duration and the dose of H2O2. The expressions of p-Src418 and VEGF were also up-regulated, whereas the expressions of ZO-1 and N-cadherin were down-regulated. CAT effectively prevented these changes induced by H2O2, while PP1 inhibited not only p-Src418 but also up-regulation of VEGF, Avastin partially inhibited VEGF up-regulation. Both PP1 and Avastin prevented down-regulation of ZO-1 and N-cadherin, respectively, but Avastin combined with PP1 had no significant synergistic effects. In H2O2-induced cataract, CAT prevented development of opacification area effectively, and PP1 and Avastin did partially. CONCLUSIONS: Oxidative stress disrupts connections of lens epithelial cells by activating c-Src/VEGF, inhibiting which may prevent cataract.
Asunto(s)
Catarata , Cristalino , Humanos , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína Tirosina Quinasa CSK/metabolismo , Bevacizumab/farmacología , Peróxido de Hidrógeno/farmacología , Catarata/metabolismo , Cristalino/metabolismo , Células Epiteliales/metabolismo , Estrés Oxidativo , Cadherinas , ApoptosisRESUMEN
Few simultaneous studies of organochlorine pesticides (OCPs) in the atmosphere have been conducted across Southeast and Northeast China, and no data on the gas/particle (G/P) partitioning behaviors of several current-use OCPs are available. In this study, a one-year synchronous monitoring program was conducted for OCPs in Chinese atmosphere spanning 30° latitude and 60 °C temperature. A total of 111 pairs of gas and particle samples were collected from Mohe and Harbin in Northeast China and from Shenzhen in Southeast China. The detection frequency for 66.7 % of the OCPs exceeded 80 %, indicating their prevalence in the atmosphere. The concentrations of individual OCPs spanned six orders of magnitude, indicating different pollution levels. Highest levels of hexachlorobenzene were observed at all sites. Banned OCPs were found predominantly in secondary distribution patterns, whereas current-use OCPs were dominated by primary distribution patterns. In Harbin and Mohe, the concentrations of OCPs were highest in summer, followed by autumn and winter. No obvious seasonal variation was observed in Shenzhen associated with different cultivation types. At all three sites, OCPs were predominantly found in the gas phase, and higher percentages of particle-phase OCPs were observed in Harbin and Mohe than in Shenzhen. In this study, G/P partitioning models were used to study the G/P partitioning mechanism of OCPs. The Li-Ma-Yang model provided the most accurate prediction of the G/P partitioning behavior of OCPs with high molecular weights and low vapor pressures, particularly at low temperatures. However, OCPs with lower molecular weights and higher vapor pressures were predominantly in the equilibrium state, for which the Junge-Pankow model was suitable. This systematic cross-scale study provides new insights into pollution, G/P partitioning, and the environmental behavior of OCPs in the atmosphere.