Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Med Chem ; 67(9): 7431-7442, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38664896

RESUMEN

Since hydrogen sulfide (H2S) is an important endogenous gaseous mediator, therapeutic manipulation of H2S is promising for anticancer treatment. In this work, we develop a novel theranostic nanoplatform with H2S-specific and photocontrolled synergistic activation for imaging-guided H2S depletion and downregulation along with promoted photothermal therapy. Such a nanoplatform is fabricated by integration of a H2S-responsive molecule probe that can generate a cystathionine-ß-synthase (CBS) inhibitor AOAA and a photothermal transducer into an NIR-light-responsive container. Our nanoplatform can turn on NIR fluorescence specifically in H2S-rich cancers, guiding further laser irradiation. Furthermore, prominent conversion of photoenergy into heat guarantees special container melting with controllable AOAA release for H2S-level downregulation. This smart regulation of the endogenous H2S level amplifies the PTT therapeutic effect, successfully suppressing colorectal tumor in living mice under NIR fluorescence imaging guidance. Thus, we believe that this nanoplatform may provide a powerful tool toward H2S-concerned cancer treatment with an optimized diagnostic and therapeutic effect.


Asunto(s)
Neoplasias Colorrectales , Regulación hacia Abajo , Sulfuro de Hidrógeno , Terapia Fototérmica , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/química , Animales , Terapia Fototérmica/métodos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Humanos , Ratones , Regulación hacia Abajo/efectos de los fármacos , Cistationina betasintasa/metabolismo , Cistationina betasintasa/antagonistas & inhibidores , Imagen Óptica , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Rayos Infrarrojos , Línea Celular Tumoral , Nanomedicina Teranóstica/métodos
2.
J Hematol Oncol ; 17(1): 1, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178200

RESUMEN

Antibody-drug conjugates (ADCs) represent an important class of cancer therapies that have revolutionized the treatment paradigm of solid tumors. To date, many ongoing studies of ADC combinations with a variety of anticancer drugs, encompassing chemotherapy, molecularly targeted agents, and immunotherapy, are being rigorously conducted in both preclinical studies and clinical trial settings. Nevertheless, combination therapy does not always guarantee a synergistic or additive effect and may entail overlapping toxicity risks. Therefore, understanding the current status and underlying mechanisms of ADC combination therapy is urgently required. This comprehensive review analyzes existing evidence concerning the additive or synergistic effect of ADCs with other classes of oncology medicines. Here, we discuss the biological mechanisms of different ADC combination therapy strategies, provide prominent examples, and assess their benefits and challenges. Finally, we discuss future opportunities for ADC combination therapy in clinical practice.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Inmunoterapia
3.
Cancer ; 130(S8): 1415-1423, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38079306

RESUMEN

BACKGROUND: Immune-checkpoint blockade (ICB) therapy shows promise for treating aggressive triple-negative breast cancer (TNBC). However, only some patients benefit from ICB, revealing an urgent need for identifying novel strategies for sensitizing patients to ICB. Previously, the authors demonstrated that type-I protein arginine methyltransferases (PRMTs) regulated antiviral innate-immune responses in TNBC by altering RNA splicing. This study aimed to explore the effects of targeting type-I PRMTs on the tumor microenvironment (TME) and the efficacy of ICB therapy against TNBC. METHODS: Single-cell transcriptomic analysis was performed to investigate the effects of type-I PRMT inhibition on the TME, especially T-cell subsets. Single-cell T-cell receptor sequencing was performed to analyze the diversity and dynamics of the T-cell repertoire. A syngeneic murine model of TNBC was used to evaluate the therapeutic efficacy and immune memory effect of combining a type-I PRMT inhibitor (MS023) with an anti-programmed cell death protein 1 (PD-1) antibody. RESULTS: Type-I PRMT inhibition combined with anti-PD-1 therapy reduced tumor growth. Mechanistically, type-I PRMT inhibition reshaped the TME. Increased CD8 T-cell infiltration was verified using flow cytometry. Increased clonotypes and clonal diversity were also observed after MS023 treatment, which contributed to immune memory following combination treatment. CONCLUSIONS: Targeting type-I PRMT can potentially improve immunotherapeutic efficacies in patients with TNBC. By enhancing the tumor immunogenicity and promoting a more favorable immune microenvironment, this combined approach may enable more patients with TNBC to benefit from immunotherapies.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Receptor de Muerte Celular Programada 1 , Proteína-Arginina N-Metiltransferasas/genética , Inmunoterapia , Muerte Celular , Microambiente Tumoral
4.
J Med Chem ; 67(1): 433-449, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38112492

RESUMEN

Proprotein convertase subtilisin/kexin type-9 (PCSK9), a secreted protein that is synthesized and spontaneously cleaved in the endoplasmic reticulum, has become a hot lipid-lowering target chased by pharmaceutical companies in recent years. Autophagosome-tethering compounds (ATTECs) represent a new strategy to degrade targeted biomolecules. Here, we designed and synthesized PCSK9·ATTECs that are capable of lowering PCSK9 levels via autophagy in vivo, providing the first report of the degradation of a secreted protein by ATTECs. OY3, one of the PCSK9·ATTECs synthesized, shows greater potency to reduce plasma low-density lipoprotein cholesterol (LDL-C) levels and improve atherosclerosis symptoms than treatment with the same dose of simvastatin. OY3 also significantly reduces the high expression of PCSK9 caused by simvastatin administration in atherosclerosis model mice and subsequently increases the level of low-density lipoprotein receptor, promoting simvastatin to clear plasma LDL-C and alleviate atherosclerosis symptoms. Thus, we developed a new candidate compound to treat atherosclerosis that could also promote statin therapy.


Asunto(s)
Aterosclerosis , Proproteína Convertasa 9 , Ratones , Animales , Proproteína Convertasa 9/metabolismo , LDL-Colesterol/metabolismo , LDL-Colesterol/uso terapéutico , Simvastatina/farmacología , Simvastatina/uso terapéutico , Receptores de LDL/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Autofagia
5.
Clin Cancer Res ; 30(5): 984-997, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113039

RESUMEN

PURPOSE: Antibody-drug conjugate (ADC) has had a transformative effect on the treatment of many solid tumors, yet it remains unclear how ADCs exert bystander activity in the tumor microenvironment. EXPERIMENTAL DESIGN: Here, we directly visualized and spatiotemporally quantified the intratumor biodistribution and pharmacokinetics of different ADC components by developing dual-labeled fluorescent probes. RESULTS: Mechanistically, we found that tumor penetration of ADCs is distinctly affected by their ability to breach the binding site barrier (BSB) in perivascular regions of tumor vasculature, and bystander activity of ADC can only partially breach BSB. Furthermore, bystander activity of ADCs can work in synergy with coadministration of their parental antibodies, leading to fully bypassing BSBs and enhancing tumor penetration via a two-step process. CONCLUSIONS: These promising preclinical data allowed us to initiate a phase I/II clinical study of coadministration of RC48 and trastuzumab in patients with malignant stomach cancer to further evaluate this treatment strategy in humans.


Asunto(s)
Vacunas contra el Cáncer , Inmunoconjugados , Neoplasias Gástricas , Humanos , Anticuerpos , Sitios de Unión , Inmunoconjugados/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Distribución Tisular , Microambiente Tumoral
6.
Small ; : e2309529, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100303

RESUMEN

Carbon monoxide shows great therapeutic potential in anti-cancer. In particular, the construction of multifunctional CO delivery systems can promote the precise delivery of CO and achieve ideal therapeutic effects, but there are still great challenges in design. In this work, a RSS and ROS sequentially activated CO delivery system is developed for boosting NIR imaging-guided on-demand photodynamic therapy. This designed system is composed of a CO releaser (BOD-CO) and a photosensitizer (BOD-I). BOD-CO can be specifically activated by hydrogen sulfide with simultaneous release of CO donor and NIR fluorescence that can identify H2 S-rich tumors and guide light therapy, also depleting H2 S in the process. Moreover, BOD-I generates 1 O2 under long-wavelength light irradiation, enabling both PDT and precise local release of CO via a photooxidation mechanism. Such sequential activation of CO release by RSS and ROS ensured the safety and controllability of CO delivery, and effectively avoided leakage during delivery. Importantly, cytotoxicity and in vivo studies reveal that the release of CO combined with the depletion of endogenous H2 S amplified PDT, achieving ideal anticancer results. It is believed that such theranostic nanoplatform can provide a novel strategy for the precise CO delivery and combined therapy involved in gas therapy and PDT.

7.
Nat Commun ; 14(1): 7758, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012202

RESUMEN

Formic acid (FA) has emerged as a promising one-carbon feedstock for biorefinery. However, developing efficient microbial hosts for economically competitive FA utilization remains a grand challenge. Here, we discover that the bacterium Vibrio natriegens has exceptional FA tolerance and metabolic capacity natively. This bacterium is remodeled by rewiring the serine cycle and the TCA cycle, resulting in a non-native closed loop (S-TCA) which as a powerful metabolic sink, in combination with laboratory evolution, enables rapid emergence of synthetic strains with significantly improved FA-utilizing ability. Further introduction of a foreign indigoidine-forming pathway into the synthetic V. natriegens strain leads to the production of 29.0 g · L-1 indigoidine and consumption of 165.3 g · L-1 formate within 72 h, achieving a formate consumption rate of 2.3 g · L-1 · h-1. This work provides an important microbial chassis as well as design rules to develop industrially viable microorganisms for FA biorefinery.


Asunto(s)
Vibrio , Vibrio/metabolismo , Formiatos/metabolismo , Carbono/metabolismo
8.
Folia Histochem Cytobiol ; 61(3): 172-182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37787036

RESUMEN

INTRODUCTION: Sonodynamic therapy (SDT), a promising non-invasive therapeutic modality, has attracted increasing attention in the treatment of pancreatic cancer (PC). At present, the role of autophagy in SDT of PC remains unclear. This study aims to explore the role of autophagy in SDT of PC and its effect on apoptosis of PC cells. MATERIAL AND METHODS: PC cells (Capan-1 and BxPC-3) underwent incubation with 5-aminolevulinic acid (5-ALA) or/and ultrasound (US) exposure (control, 5-ALA, US, and SDT groups), followed by measurement of cell apoptosis and autophagy. Specifically, cell viability, apoptosis, and the expression of apoptosis-related proteins (cleaved Caspase-3, Bax, and Bcl-2) were measured using CCK-8 assay, flow cytometry, and western blot analysis, respectively. The mitochondrial morphology was observed with the transmission electron microscopy, accompanied by the detection of autophagosome marker (LC3) co-located with Mito and the protein expression of LC3II/I. Before SDT treatment, the autophagy inhibitor 3-MA and the apoptosis inhibitor z-VAD were respectively added to PC cell cultures to evaluate the effects of autophagy inhibition on apoptosis and apoptosis inhibition on autophagy in PC cells. RESULTS: Compared with the control group, cell viability was inhibited and cell apoptosis and autophagy were enhanced in the SDT group, while cell viability, autophagy, and apoptosis in the 5-ALA and US groups were not significantly changed. Moreover, 3-MA treatment inhibited autophagy and accelerated apoptosis, whereas z-VAD treatment reduced apoptosis but did not affect autophagy in PC cells. CONCLUSIONS: Autophagy was activated in SDT-treated PC cells, and inhibition of autophagy promoted cell apoptosis in PC cells.


Asunto(s)
Neoplasias Pancreáticas , Terapia por Ultrasonido , Humanos , Apoptosis , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Autofagia , Proteínas Reguladoras de la Apoptosis , Neoplasias Pancreáticas/terapia , Línea Celular Tumoral
9.
ACS Appl Mater Interfaces ; 15(40): 47669-47681, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37755336

RESUMEN

Metasurfaces have recently experienced revolutionary progress in sensing and super-resolution imaging fields, mainly due to their manipulation of electromagnetic waves on subwavelength scales. However, on the one hand, the addition of metasurfaces can multiply the complexity of retrieving target information from detected electromagnetic fields. On the other hand, many existing studies utilize deep learning methods to provide compelling tools for electromagnetic problems but mainly concentrate on resolving one single function, limiting their versatilities. In this work, a multifunctional deep learning network is demonstrated to reconstruct diverse target information in a metasurface-target interactive system. First, a preliminary experiment verifies that the metasurface-involved scenario can tolerate the system noises. Then, the captured electric field distributions are fed into the multifunctional network, which can not only accurately sense the quantity and relative permittivity of targets but also generate super-resolution images precisely. The deep learning network, thus, paves an alternative way to recover the targets' information in metasurface-target interactive systems, accelerating the progression of target sensing and superimaging areas. Besides, another new network that allows forward electromagnetic prediction is also proposed and demonstrated. To sum up, the deep learning methodology may hold promise for inverse reconstructions or forward predictions in many electromagnetic scenarios.

10.
J Mater Chem B ; 11(38): 9300-9310, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37727911

RESUMEN

The problems of bacterial resistance and high oxidation level severely limit wound healing. Therefore, we constructed a multifunctional platform of chitosan quaternary ammonium salts (QCS)/polyvinyl alcohol (PVA)/polyethylene glycol (PEG) hydrogels (QPP) loaded with ZnO@CeO2 (ZC-QPP). Firstly, the hydrogel was co-cross-linked by hydrogen and borate ester bonds, which allows easy adherence to a tissue surface for offering a protective barrier and moist environment for wounds. The chitosan quaternary ammonium salts due to their amino groups have inherent antibacterial properties to induce bacterial death. In response to the acidic conditions of the bacterial infection microenvironment, the borate ester bonds in the QPP hydrogel break and the ZC NCs dispersed in the hydrogel are released. The gradual dissociation of Zn2+ under acidic conditions can directly damage bacterial membranes. The wound site of bacterial infection always causes overexpression of reactive oxygen species (ROS) levels, often leading to inflammation and preventing rapid wound repair. CeO2 can eliminate excess ROS to reduce the inflammatory response. From in vitro and in vivo results, the high biosafety of the ZC-QPP hydrogel has demonstrated excellent antibacterial and antioxidant performance to enhance wound healing. Therefore, the ZC-QPP hydrogel opens a method to develop multifunctional synergistic therapeutic platforms combining enzyme-like nanomaterials with hydrogels for synergistic antibacterial and antioxidant treatment to promote wound healing.

11.
J Appl Toxicol ; 43(11): 1702-1718, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37393915

RESUMEN

Emodin has been demonstrated to possess multiple pharmacological activities. However, emodin has also been reported to induce nephrotoxicity at high doses and with long-term use, and the underlying mechanism has not been fully disclosed. The current study aimed to investigate the roles of oxidative stress and ferroptosis in emodin-induced kidney toxicity. Mice were intraperitoneally treated with emodin, and NRK-52E cells were exposed to emodin in the presence or absence of treatment with Jagged1, SC79, or t-BHQ. Emodin significantly upregulated the levels of blood urea nitrogen, serum creatinine, malondialdehyde, and Fe2+ , reduced the levels of superoxide dismutase and glutathione, and induced pathological changes in the kidneys in vivo. Moreover, the viability of NRK-52E cells treated with emodin was reduced, and emodin induced iron accumulation, excessive reactive oxygen species production, and lipid peroxidation and depolarized the mitochondrial membrane potential (ΔΨm). In addition, emodin treatment downregulated the activity of neurogenic locus notch homolog protein 1 (Notch1), reduced the nuclear translocation of nuclear factor erythroid-2 related factor 2 (Nrf2), and decreased glutathione peroxidase 4 protein levels. However, Notch1 activation by Jagged1 pretreatment, Akt activation by SC79 pretreatment, or Nrf2 activation by t-BHQ pretreatment attenuated the toxic effects of emodin in NRK-52E cells. Taken together, these results revealed that emodin-induced ferroptosis triggered kidney toxicity through inhibition of the Notch1/Nrf2/glutathione peroxidase 4 axis.


Asunto(s)
Emodina , Ferroptosis , Insuficiencia Renal , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Emodina/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/farmacología , Riñón , Especies Reactivas de Oxígeno/metabolismo
12.
Angew Chem Int Ed Engl ; 62(39): e202306691, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37455257

RESUMEN

Life-like hierarchical architecture shows great potential for advancing intelligent biosensing, but modular expansion of its sensitivity and functionality remains a challenge. Drawing inspiration from intracellular liquid-liquid phase separation, we discovered that a DNA-encoded artificial cell with a liquid core (LAC) can enhance peroxidase-like activity of Hemin and its DNA G-quadruplex aptamer complex (DGAH) without substrate-selectivity, unlike its gelled core (GAC) counterpart. The LAC is easily engineered as an ultrasensitive biosensing system, benefiting from DNA's high programmability and unique signal amplification capability mediated by liquid-liquid phase separation. As proof of concept, its versatility was successfully demonstrated by coupling with two molecular recognition elements to monitor tumor-related microRNA and profile cancer cell phenotypes. This scalable design philosophy offers new insights into the design of next generation of artificial cells-based biosensors.


Asunto(s)
Aptámeros de Nucleótidos , Células Artificiales , Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , MicroARNs , Neoplasias , Humanos , ADN/genética , Hemina , ADN Catalítico/metabolismo
13.
Saudi Pharm J ; 31(7): 1219-1228, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37293563

RESUMEN

Benign prostatic hyperplasia (BPH) is a common urinary disease among the elderly, characterized by abnormal prostatic cell proliferation. Neferine is a dibenzyl isoquinoline alkaloid extracted from Nelumbo nucifera and has antioxidant, anti-inflammatory and anti-prostate cancer effects. The beneficial therapeutic effects and mechanism of action of neferine in BPH remain unclear. A mouse model of BPH was generated by subcutaneous injection of 7.5 mg/kg testosterone propionate (TP) and 2 or 5 mg/kg neferine was given orally for 14 or 28 days. Pathological and morphological characteristics were evaluated. Prostate weight, prostate index (prostate/body weight ratio), expression of type Ⅱ 5α-reductase, androgen receptor (AR) and prostate specific antigen were all decreased in prostate tissue of BPH mice after administration of neferine. Neferine also downregulated the expression of pro-caspase-3, uncleaved PARP, TGF-ß1, TGF-ß receptor Ⅱ (TGFBR2), p-Smad2/3, N-cadherin and vimentin. Expression of E-cadherin, cleaved PARP and cleaved caspase-3 was increased by neferine treatment. 1-100 µM neferine with 1 µM testosterone or 10 nM TGF-ß1 were added to the culture medium of the normal human prostate stroma cell line, WPMY-1, for 24 h or 48 h. Neferine inhibited cell growth and production of reactive oxygen species (ROS) in testosterone-treated WPMY-1 cells and regulated the expression of androgen signaling pathway proteins and those related to epithelial-mesenchymal transition (EMT). Moreover, TGF-ß1, TGFBR2 and p-Smad2/3, N-cadherin and vimentin expression were increased but E-cadherin was decreased after 24 h TGF-ß1 treatment in WPMY-1 cells. Neferine reversed the effects of TGF-ß1 treatment in WPMY-1 cells. Neferine appeared to suppress prostate growth by regulating the EMT, AR and TGF-ß/Smad signaling pathways in the prostate and is suggested as a potential agent for BPH treatment.

14.
ACS Synth Biol ; 12(7): 2135-2146, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37358911

RESUMEN

Protein lysine acetylation (PLA) is a crucial post-translational modification in organisms that regulates a variety of metabolic and physiological activities. Many advances have been made in PLA-related research; however, the quick and accurate identification of causal relationships between specific protein acetylation events and phenotypic outcomes at the proteome level remains challenging due to the lack of efficient targeted modification techniques. In this study, based on the characteristics of transcription-translation coupling in bacteria, we designed and constructed an in situ targeted protein acetylation (TPA) system integrating the dCas12a protein, guiding element crRNA, and bacterial acetylase At2. Rapid identification of multiple independent protein acetylation and cell phenotypic analyses in Gram-negative Escherichia coli and Gram-positive Clostridium ljungdahlii demonstrated that TPA is a specific and efficient targeting tool for protein modification studies and engineering.


Asunto(s)
Acetiltransferasas , Proteínas Bacterianas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Acetilación , Acetiltransferasas/metabolismo , Sistemas CRISPR-Cas , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Poliésteres/metabolismo
15.
Foods ; 12(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37174451

RESUMEN

In this study, the characteristics of indica rice kernels (IRK) and flour (IRF) annealed in different conditions were evaluated, and the quality of rice noodles made with these IRK and IRF was determined. Native IRK and IRF were annealed in deionized water at a kernel or flour to water ratio of 1:3 (w/v) and temperatures of 50, 55, 60, and 65 °C for 12 and 24 h. Annealing increased the paste viscosity of IRK while decreasing that of IRF. Both annealed IRK and IRF exhibited increases in the gelatinization enthalpy change and relative crystallinity. Annealed IRK gel showed higher hardness, and annealed IRF gel displayed greater springiness. Unlike native rice noodles, annealed IRK noodles exhibited denser pores, while annealed IRF noodles exhibited a looser microstructure. With increasing annealing temperature and time, both annealed IRK and IRF noodles showed enhanced tensile properties. Rice noodles made from IRF annealed at 65 °C for 12 h exhibited a fracture strain of 2.7 times that of native rice noodles. In brief, IRK and IRF exhibited different degrees of susceptibility to annealing. Annealing had more significant effects on IRF than IRK. This study highlights the possibility of using annealed IRK and IRF in rice noodles.

16.
Chem Commun (Camb) ; 59(47): 7259-7262, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37223984

RESUMEN

Dynamic covalent polymeric networks (DCPNs) with hindered urea bonds and free thiol groups were prepared. Due to the catalyst-free conversion of dynamic hindered urea bonds to dynamic thiourethane bonds, these materials showed enhanced mechanical properties along with time or triggered by elevated temperature, and exhibited excellent self-healing performance.


Asunto(s)
Polímeros , Compuestos de Sulfhidrilo , Urea
17.
Eur J Med Chem ; 257: 115502, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37224761

RESUMEN

SuFEx click chemistry has been a method for the rapid synthesis of functional molecules with desirable properties. Here, we demonstrated a workflow that allows for in situ synthesis of sulfonamide inhibitors based on SuFEx reaction for high-throughput testing of their cholinesterase activity. According to fragment-based drug discovery (FBDD), sulfonyl fluorides [R-SO2F] with moderate activity were identified as fragment hits, rapidly diversified into 102 analogs in SuFEx reactions, and the sulfonamides were directly screened to yield drug-like inhibitors with 70-fold higher potency (IC50 = 94 nM). Moreover, the improved molecule J8-A34 can ameliorate cognitive function in Aß1-42-induced mouse model. Since this SuFEx linkage reaction succeeds on picomole scale for direct screening, this methodology can accelerate the development of robust biological probes and drug candidates.


Asunto(s)
Fluoruros , Compuestos de Azufre , Animales , Ratones , Fluoruros/química , Estructura Molecular , Compuestos de Azufre/química , Química Clic , Sulfonamidas/farmacología , Azufre/química
18.
Food Chem X ; 18: 100674, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37101422

RESUMEN

The physicochemical properties of sweet potato flour (SPF) can be modified by annealing. Native SPF was annealed in deionized water at a flour-to-water ratio of 1:3 (w/v) and temperatures of 50, 55, 60, or 65 °C for either 12 or 24 h. Annealed SPF maintained the A-type crystalline region and displayed increased relative crystallinity, increased pasting temperature, and decreased breakdown. SPF gels showed enhanced hardness together with better springiness when SPF was annealed at low temperature/long time or high temperature/short time. Annealed SPF hydrogel sheets contained larger, more uniform, and smoother pores than native ones. Noticeably, hydrogel sheets made of SPF annealed at 50 °C for 24 h exhibited advanced fracture strain from 93% to 176%. Overall, this work showed that annealing could modulate the characteristics of SPR hydrogels, which may widen the extent of applications in food industries. However, the annealing conditions need to be optimized.

19.
Foods ; 12(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36900600

RESUMEN

In this study, a rapid fluorescent and colorimetric dual-mode detection strategy for Hg2+ in seafoods was developed based on the cyclic binding of the organic fluorescent dye rhodamine 6G hydrazide (R6GH) to Hg2+. The luminescence properties of the fluorescent R6GH probe in different systems were investigated in detail. Based on the UV and fluorescence spectra, it was determined that the R6GH has good fluorescence intensity in acetonitrile and good selective recognition of Hg2+. Under optimal conditions, the R6GH fluorescent probe showed a good linear response to Hg2+ (R2 = 0.9888) in the range of 0-5 µM with a low detection limit of 2.5 × 10-2 µM (S/N = 3). A paper-based sensing strategy based on fluorescence and colorimetric analysis was developed for the visualization and semiquantitative analysis of Hg2+ in seafoods. The LAB values of the paper-based sensor impregnated with the R6GH probe solution showed good linearity (R2 = 0.9875) with Hg2+ concentration in the range of 0-50 µM, which means that the sensing paper can be combined with smart devices to provide reliable and efficient Hg2+ detection.

20.
Phys Chem Chem Phys ; 25(13): 9548-9558, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36939192

RESUMEN

The rapid rise of two-dimensional (2D) materials has aroused increasing interest in the fields of microelectronics and optoelectronics; various types of 2D van der Waals heterostructures (vdWHs), especially those based on MoS2, have been widely investigated in theory and experiment. However, the interfacial properties of MoS2 and the uncommon crystal surface of traditional three-dimensional (3D) metals are yet to be explored. In this paper, we studied heterostructures composed of MoS2 and metal(001) slabs, based on the first-principles calculations, and we uncovered that MoS2/Au(001) and MoS2/Ag(001) vdWHs reveal Schottky contacts, and MoS2/Cu(001) belongs to Ohmic contact and possesses ultrahigh electron tunneling probability at the equilibrium distance. Thus, the MoS2/Cu(001) heterostructure exhibits the best contact performance. Further investigations demonstrate that external longitudinal strain can modulate interfacial contact to engineer the Schottky-Ohmic contact transition and regulate interfacial charge transport. We believe that it is a general strategy to exploit longitudinal strain to improve interfacial contact performance to design and fabricate a multifunctional MoS2-based electronic device.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA