Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mater Chem A Mater ; 11(30): 16115-16126, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38013759

RESUMEN

Inorganic cesium lead iodide (CsPbI3) perovskite solar cells (PSCs) have attracted enormous attention due to their excellent thermal stability and optical bandgap (∼1.73 eV), well-suited for tandem device applications. However, achieving high-performance photovoltaic devices processed at low temperatures is still challenging. Here we reported a new method for the fabrication of high-efficiency and stable γ-CsPbI3 PSCs at lower temperatures than was previously possible by introducing the long-chain organic cation salt ethane-1,2-diammonium iodide (EDAI2) and regulating the content of lead acetate (Pb(OAc)2) in the perovskite precursor solution. We find that EDAI2 acts as an intermediate that can promote the formation of γ-CsPbI3, while excess Pb(OAc)2 can further stabilize the γ-phase of CsPbI3 perovskite. Consequently, improved crystallinity and morphology and reduced carrier recombination are observed in the CsPbI3 films fabricated by the new method. By optimizing the hole transport layer of CsPbI3 inverted architecture solar cells, we demonstrate efficiencies of up to 16.6%, surpassing previous reports examining γ-CsPbI3 in inverted PSCs. Notably, the encapsulated solar cells maintain 97% of their initial efficiency at room temperature and under dim light for 25 days, demonstrating the synergistic effect of EDAI2 and Pb(OAc)2 in stabilizing γ-CsPbI3 PSCs.

2.
Fungal Biol ; 127(9): 1276-1283, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37821149

RESUMEN

The microecology of endophytic fungi in special habitats, such as the interior of different tissues from a medicinal plant, and its effects on the formation of metabolites with different biological activities are of great importance. However, the factors affecting fungal community formation are unclear. This study is the first to utilize "mini-community" remodeling to understand the above phenomena. First, high-throughput sequencing technology was applied to explore the community composition and diversity of endophytic fungi in the above-ground tissues (Ea) and below-ground tissues (Eb) of Ephedra sinica. Second, fungi were obtained through culture-dependent technology and used for "mini-community" remodeling in vitro. Then, the effects of environmental factors, partner fungi, and plant tissue fluid (internal environment) on endophytic fungal community formation were discussed. Results showed that environmental factors played a decisive role in the selection of endophytic fungi, that is, in Ea and Eb, 93.8% and 25.3% of endophytic fungi were halophilic, respectively, and 10.6% and 60.2% fungi were sensitive to high temperature (33 °C), respectively. Meanwhile, pH had little effect on fungal communities. The internal environment of the plant host further promoted the formation of endophytic fungal communities.


Asunto(s)
Ephedra sinica , Micobioma , Biodiversidad , Endófitos/genética , Ecosistema , Hongos/genética , Plantas/microbiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-37747611

RESUMEN

Earthquake is one of the main factors causing structural disasters in current buildings. Under earthquake action, adjacent building structures are generally in different vibration stages, and collisions may occur in the structures, which may cause serious damage to the structure. In order to prevent certain earthquakes from damaging the designed buildings, this article mainly introduced the design and analysis of a numerical algorithm for seismic nonlinear structural dynamic response based on the HVSR algorithm. This article evenly divided the acceleration response time series into 15 time periods and then selected the position corresponding to the peak point of instantaneous amplitude within each period as the selected data point position. The same seismic load can be applied at the bottom of the established nonlinear model to extract the dynamic response data of the top layer of the structure, and then, the instantaneous amplitude and corresponding instantaneous phases and frequencies of the main components of the structural dynamic response can be extracted through the time-varying filter and Hilbert transform based on the discrete analytic mode decomposition. Under the influence of these four ground motions, the collision force within the range of 0-50 kN accounted for over 87% of the total number of collisions. In the comparison results of collision response to peak displacement, the four ground motions all led to structural collision, and the collision inhibited the positive peak displacement response of node 1512. Compared with noncollision, the peak displacement was reduced by 27.273, 33.675, 27.727, and 37.248%, respectively. The peak displacement of 1512 nodes was suppressed and reduced by 18.856%. The results indicate that the HVSR algorithm can obtain the instantaneous characteristic parameters of nonlinear structural dynamic response and achieve model correction.

4.
Sci Rep ; 13(1): 12017, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491388

RESUMEN

The mining of open pit mines is widespread in China, and there are many cases of landslide accidents. Therefore, the problem of slope stability is highlighted. The stability of the slope is a factor that directly affects the mining efficiency and the safety of the entire mining process. According to the statistics, there is a 15 percent chance of finding landslide risk in China's large-scale mines. And due to the expansion of the mining scale of the enterprise, the problem of slope stability has become increasingly obvious, which has become a major subject in the study of open-pit mine engineering. In order to better predict the slope stability coefficient, this study takes a mine in China as a case to deeply discuss the accuracy of different algorithms in the stability calculation, and then uses a deep learning algorithm to study the stability under rainfall conditions. The change of the coefficient and the change of the stability coefficient before and after the slope treatment are experimentally studied with the displacement of the monitoring point. The result shows that the safety coefficient calculated by the algorithm in this paper is about 7% lower than that of the traditional algorithm. In the slope stability analysis before treatment, the safety factor calculated by the algorithm in this paper is 1.086, and the algorithm in this paper is closer to reality. In the stability analysis of the slope after treatment, the safety factor calculated by the algorithm in this paper is 1.227, and the stability factor meets the requirements of the specification. It also shows that the deep learning algorithm effectively improves the efficiency of the slope stability factor prediction and improves security during project development.

5.
Adv Sci (Weinh) ; 10(15): e2300057, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36995051

RESUMEN

Organic phototransistors can enable many important applications such as nonvolatile memory, artificial synapses, and photodetectors in next-generation optical communication and wearable electronics. However, it is still a challenge to achieve a big memory window (threshold voltage response ∆Vth ) for phototransistors. Here, a nanographene-based heterojunction phototransistor memory with large ∆Vth responses is reported. Exposure to low intensity light (25.7 µW cm-2 ) for 1 s yields a memory window of 35 V, and the threshold voltage shift is found to be larger than 140 V under continuous light illumination. The device exhibits both good photosensitivity (3.6 × 105 ) and memory properties including long retention time (>1.5 × 105  s), large hysteresis (45.35 V), and high endurance for voltage-erasing and light-programming. These findings demonstrate the high application potential of nanographenes in the field of optoelectronics. In addition, the working principle of these hybrid nanographene-organic structured heterojunction phototransistor memory devices is described which provides new insight into the design of high-performance organic phototransistor devices.

6.
Nanomaterials (Basel) ; 12(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35407309

RESUMEN

Flexible sensors are highly advantageous for integration in portable and wearable devices. In this work, we propose and validate a simple strategy to achieve whole wafer-size flexible SERS substrate via a one-step metal-assisted chemical etching (MACE). A pre-patterning Si wafer allows for PSi structures to form in tens of microns areas, and thus enables easy detachment of PSi film pieces from bulk Si substrates. The morphology, porosity, and pore size of PS films can be precisely controlled by varying the etchant concentration, which shows obvious effects on film integrity and wettability. The cracks and self-peeling of Psi films can be achieved by the drying conditions after MACE, enabling transfer of Psi films from Si wafer to any substrates, while maintaining their original properties and vertical alignment. After coating with a thin layer of silver (Ag), the rigid and flexible PSi films before and after transfer both show obvious surface-enhanced Raman scattering (SERS) effect. Moreover, flexible PSi films SERS substrates have been demonstrated with high sensitivity (down to 2.6 × 10-9 g/cm2) for detection of methyl parathion (MPT) residues on a curved apple surface. Such a method provides us with quick and high throughput fabrication of nanostructured materials for sensing, catalysis, and electro-optical applications.

7.
Nanoscale ; 10(7): 3518-3525, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29406546

RESUMEN

Silicon nanowires (SiNWs) are widely used as photocathodes because of their large electrochemically available surface-area density and inherent ability to decouple light absorption from the transport of minority carriers. In order to minimize overpotential for solar-driven hydrogen (H2) production, a combination of an ultrathin molybdenum disulfide (MoS2) layer with SiNWs as photocathode has attracted much attention. Herein, for the first time, this study presents the synthesis of a composite photocathode via direct growth of ultrathin MoS2 nanosheets on SiNWs (referred to as SiNWs/MoS2) by one-step chemical vapor deposition (CVD). Due to the high surface-area density of the arrays of SiNWs, the discontinuous MoS2 nanosheets grown on the SiNWs achieved a much higher density of active sites. Moreover, the coating of MoS2 on the SiNWs was found to protect the photocathode during the photoelectrochemical (PEC) reaction. A high efficiency with photocurrent jsc of 16.5 mA cm-2 (at 0 V vs. reversible hydrogen electrode) and an excellent stability over 48 h of PEC operation were achieved under a simulated 1 sun irradiation.

8.
Nanoscale Res Lett ; 11(1): 316, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27356563

RESUMEN

In this work, perovskite solar cells (PSCs) with CH3NH3PbI3-x Cl x as active layer and spiro-OMeTAD as hole-transport media have been fabricated by one-step method. The methylammonium iodide (CH3NH3I) solution with different concentrations is used to modify the interface between mesoporous TiO2 (meso-TiO2) film and CH3NH3PbI3-x Cl x perovskite layer. Several techniques including X-ray diffraction, scanning electron microscopy, optical absorption, electrochemical impedance spectroscopy (EIS) and photoluminescence are used to investigate the effect of the interfacial modification. It is found that the interfacial modification by CH3NH3I enhance the crystallinity and increase the grain size of CH3NH3PbI3-x Cl x layer, and improve the surface wetting properties of perovskite precursor on meso-TiO2 film. The sunlight absorption and external quantum efficiency of PSCs in the visible region with wavelength less than 600 nm have been improved. The Nyquist plots obtained from the EIS suggest that the CH3NH3I modification can reduce the charge recombination rates. The photoluminescence measurement shows that the exciton dissociation in the modified devices is more effective than that in the control samples. The photovoltaic performance of the modified devices can be significantly improved with respect to the reference (control) devices. The CH3NH3I modified devices at the optimized concentration demonstrate the average power conversion efficiency of 12.27 % in comparison with the average efficiency of 9.68 % for the reference devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...