Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ISA Trans ; 147: 1-12, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342650

RESUMEN

This paper mainly studies the consensus control strategy for a novel heuristic nonlinear multi-agent system. Compared with most existing related researches, firstly, the novel heuristic nonlinear multi-agent system has the ability to construct its communication network topology heuristically, and can withstand long-term DOS(Denial of Service) attacks, with the advantages of high practicality and security. Secondly, in order to control the multi-agent system, a control protocol based on both saturation effect and impulse control mechanism is studied, which has the advantages of high efficiency, low cost and wide applicability. Thirdly, for the multi-agent system, its dynamic model is constructed and analyzed by Lyapunov stability theory and matrix measure theory, and some sufficient conditions for achieving consensus are obtained. Finally, through two simulation experiments and some corresponding comparative analysis, the correctness, efficiency, and superiority of the theories proposed in this paper were verified.

2.
BMC Genomics ; 24(1): 550, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723472

RESUMEN

BACKGROUND: Phosphorus is one of the essential nutrients for plant growth. Phosphate-solubilizing microorganisms (PSMs) can alleviate available P deficiency and enhance plant growth in an eco-friendly way. Although ammonium toxicity is widespread, there is little understanding about the effect of ammonium stress on phosphorus solubilization (PS) of PSMs. RESULTS: In this study, seven PSMs were isolated from mangrove sediments. The soluble phosphate concentration in culture supernatant of Bacillus aryabhattai NM1-A2 reached a maximum of 196.96 mg/L at 250 mM (NH4)2SO4. Whole-genome analysis showed that B. aryabhattai NM1-A2 contained various genes related to ammonium transporter (amt), ammonium assimilation (i.e., gdhA, gltB, and gltD), organic acid synthesis (i.e., ackA, fdhD, and idh), and phosphate transport (i.e., pstB and pstS). Transcriptome data showed that the expression levels of amt, gltB, gltD, ackA and idh were downregulated, while gdhA and fdhD were upregulated. The inhibition of ammonium transporter and glutamine synthetase/glutamate synthase (GS/GOGAT) pathway contributed to reducing energy loss. For ammonium assimilation under ammonium stress, accompanied by protons efflux, the glutamate dehydrogenase pathway was the main approach. More 2-oxoglutarate (2-OG) was induced to provide abundant carbon skeletons. The downregulation of formate dehydrogenase and high glycolytic rate resulted in the accumulation of formic acid and acetic acid, which played key roles in PS under ammonium stress. CONCLUSIONS: The accumulation of 2-OG and the inhibition of GS/GOGAT pathway played a key role in ammonium detoxification. The secretion of protons, formic acid and acetic acid was related to PS. Our work provides new insights into the PS mechanism, which will provide theoretical guidance for the application of PSMs.


Asunto(s)
Fósforo , Protones , Fosfatos , Ácido Acético
3.
Sci Total Environ ; 862: 160930, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526186

RESUMEN

The mangrove ecosystem has a high nitrate reduction capacity, which significantly alleviates severe nitrogen pollution. However, current research on nitrate reduction mechanisms in the mangrove ecosystem is limited. Furthermore, Spartina alterniflora invasion has disrupted the balance of the mangrove ecosystem and the effect of S. alterniflora on nitrate reduction has not yet been fully elucidated. Nitrate reduction was comprehensively investigated in a subtropical mangrove ecosystem in this study, which has been invaded by S. alterniflora for 40 years. Results showed that S. alterniflora significantly increased the relative and absolute abundance of nitrate reduction genes, especially nirS (nitrite reductase), in the mangrove ecosystem. Dissimilatory nitrate reduction to ammonium was the main pathway of nitrate reduction in the mangrove ecosystem. Nitrate reduction was mainly performed by Desulfobacterales and occurred in the shallow layers (0-10 cm) of mangrove sediments. A strong positive correlation was found between nitrate reduction and sulfur oxidation (especially sulfide oxidation), and the sulfide content was significantly positively correlated with the relative abundance of nitrate reduction genes. Moreover, 207 metagenomic assembled genomes (MAGs) were constructed, including 50 MAGs with high numbers (≥ 10) of nitrate reduction genes. This finding indicates that the dominant microbes had strong nitrate reduction potential in mangrove sediments. Our findings highlight the impact of S. alterniflora invasion on nitrate reduction in a subtropical marine mangrove ecosystem. This study provides new insights into our understanding of nitrogen pollution control and contributes to the exploration of new nitrogen-degrading microbes in mangrove ecosystems.


Asunto(s)
Ecosistema , Humedales , Nitratos/metabolismo , Especies Introducidas , Poaceae/metabolismo , Nitrógeno/análisis , Azufre/metabolismo , China
4.
Microb Ecol ; 85(2): 478-494, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35157108

RESUMEN

Excessive phosphorus can lead to eutrophication in marine and coastal ecosystems. Sulfur metabolism-associated microorganisms stimulate biological phosphorous removal. However, the integrating co-biotransformation mechanism of phosphorus and sulfur in subtropical marine mangrove ecosystems with Spartina alterniflora invasion is poorly understood. In this study, an ecological model of the coupling biotransformation of sulfur and phosphorus is constructed using metagenomic analysis and quantitative polymerase chain reaction strategies. Phylogenetic analysis profiling, a distinctive microbiome with high frequencies of Gammaproteobacteria and Deltaproteobacteria, appears to be an adaptive characteristic of microbial structures in subtropical mangrove ecosystems. Functional analysis reveals that the levels of sulfate reduction, sulfur oxidation, and poly-phosphate (Poly-P) aggregation decrease with increasing depth. However, at depths of 25-50 cm in the mangrove ecosystems with S. alterniflora invasion, the abundance of sulfate reduction genes, sulfur oxidation genes, and polyphosphate kinase (ppk) significantly increased. A strong positive correlation was found among ppk, sulfate reduction, sulfur oxidation, and sulfur metabolizing microorganisms, and the content of sulfide was significantly and positively correlated with the abundance of ppk. Further microbial identification suggested that Desulfobacterales, Anaerolineales, and Chromatiales potentially drove the coupling biotransformation of phosphorus and sulfur cycling. In particular, Desulfobacterales exhibited dominance in the microbial community structure. Our findings provided insights into the simultaneous co-biotransformation of phosphorus and sulfur bioconversions in subtropical marine mangrove ecosystems with S. alterniflora invasion.


Asunto(s)
Microbiota , Humedales , Polifosfatos/análisis , Polifosfatos/metabolismo , Filogenia , Especies Introducidas , Nitrógeno/metabolismo , Fósforo/metabolismo , Poaceae , Azufre/metabolismo , Sulfatos/metabolismo , China
5.
Microbiol Spectr ; 10(3): e0068221, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35604174

RESUMEN

Nitrogen fixation (NF) and phosphorus solubilization (PS) play a key role in maintaining the stability of mangrove ecosystems. In China, the invasion of Spartina alterniflora has brought a serious threat to the mangrove ecosystem. However, systematic research on NF and PS in mangrove sediments has not been conducted, and limited studies have focused on the response of NF and PS to S. alterniflora invasion, particularly at different sediment depths. In the present study, shotgun metagenomics and quantitative PCR were used to study the 0- to 100-cm sediment profile of the mangrove ecosystem in the Beibu Gulf of China. Results showed that the PS potential of mangrove sediments was primarily caused by enzymes encoded by phoA, phoD, ppx, ppa, and gcd genes. S. alterniflora changed environmental factors, such as total nitrogen, total phosphorus, and total organic carbon, and enhanced the potential of NF and PS in sediments. Moreover, most microorganisms involved in NF or PS (NFOPSMs) responded positively to the invasion of S. alterniflora. Cd, available iron, and salinity were the key environmental factors that affected the distribution of NF and PS genes (NFPSGs) and NFOPSMs. A strong coupling effect was observed between NF and PS in the mangrove ecosystem. S. alterniflora invasion enhanced the coupling of NF and PS and the interaction of microorganisms involved in NF and PS (NFAPSM), thereby promoting the turnover of NP and improving sediment quality. Finally, 108 metagenome-assembled genomes involved in NF or PS were reconstructed to further evaluate NFOPSMs. IMPORTANCE This study revealed the efficient nutrient cycling mechanism of mangroves. Positive coupling effects were observed in sediment quality, NF and PS processes, and NFOPSMs with the invasion of S. alterniflora. This research contributed to the understanding of the effects of S. alterniflora invasion on the subtropical mangrove ecosystem and provided theoretical guidance for mangrove protection, restoration, and soil management. Additionally, novel NFOPSMs provided a reference for the development of marine biological fertilizers.


Asunto(s)
Ecosistema , Fósforo , Especies Introducidas , Fijación del Nitrógeno , Poaceae/fisiología , Humedales
6.
Front Genet ; 13: 853612, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464838

RESUMEN

With the upgrade and development of the high-throughput sequencing technology, multi-omics data can be obtained at a low cost. However, mapping tools that existed for microbial multi-omics data analysis cannot satisfy the needs of data description and result in high learning costs, complex dependencies, and high fees for researchers in experimental biology fields. Therefore, developing a toolkit for multi-omics data is essential for microbiologists to save effort. In this work, we developed MicrobioSee, a real-time interactive visualization tool based on web technologies, which could visualize microbial multi-omics data. It includes 17 modules surrounding the major omics data of microorganisms such as the transcriptome, metagenome, and proteome. With MicrobioSee, methods for plotting are simplified in multi-omics studies, such as visualization of diversity, ROC, and enrichment pathways for DEGs. Subsequently, three case studies were chosen to represent the functional application of MicrobioSee. Overall, we provided a concise toolkit along with user-friendly, time-saving, cross-platform, and source-opening for researchers, especially microbiologists without coding experience. MicrobioSee is freely available at https://microbiosee.gxu.edu.cn.

7.
Sci Total Environ ; 769: 144562, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33460836

RESUMEN

The amount of nitrogen compounds discharged into the natural environment has increased drastically due to frequent human activities and led to worsening pollution. The mangrove ecosystem can remove nitrogen pollution, in this regard, few studies had focused on the relationship among nitrogen cycling genes, environmental factors, and taxonomic composition. In this study, shotgun metagenomic sequencing and quantitative polymerase chain reaction were used to understand the nitrogen cycle in the subtropical mangrove ecosystem in the Beibu Gulf of China. Eight nitrogen cycling pathways were annotated. Nitrogen metabolism activities were significantly higher in the wet season than those in the dry season. The most abundant genes were those related to the synthesis and degradation of organic nitrogen, followed by the genes involved in nitrate reduction (denitrification, dissimilation/assimilation nitrate reduction). Furthermore, dissimilation nitrate reduction was the main nitrate reduction pathway. Desulfobacterales plays an important role in nitrogen cycling and contributes 12% of the genes of nitrogen pathways on average; as such, a strong coupling relationship exists among nitrogen cycling, sulfur cycling, and carbon cycling in the mangrove ecosystem. Nitrogen pollution in the mangrove wetland can be efficiently alleviated by nitrate reduction of Desulfobacterales. Nevertheless, only 50% of genes can be matched among the known species, suggesting that many unknown microorganisms in the mangrove ecosystem can perform nitrogen cycling. Total phosphorus, available iron, and total organic carbon are the key environmental factors that influence the distribution of nitrogen cycling genes, related pathways, and the taxonomic composition. Our study clearly illustrates how the mangrove ecosystem mitigates nitrogen pollution through Desulfobacterales. This finding could provide a research reference for the whole nitrogen cycling in the mangrove ecosystem.


Asunto(s)
Ecosistema , Nitratos , China , Humanos , Nitrógeno , Humedales
8.
Sensors (Basel) ; 19(4)2019 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-30781499

RESUMEN

Clustering analysis of massive data in wireless multimedia sensor networks (WMSN) has become a hot topic. However, most data clustering algorithms have difficulty in obtaining latent nonlinear correlations of data features, resulting in a low clustering accuracy. In addition, it is difficult to extract features from missing or corrupted data, so incomplete data are widely used in practical work. In this paper, the optimally designed variational autoencoder networks is proposed for extracting features of incomplete data and using high-order fuzzy c-means algorithm (HOFCM) to improve cluster performance of incomplete data. Specifically, the feature extraction model is improved by using variational autoencoder to learn the feature of incomplete data. To capture nonlinear correlations in different heterogeneous data patterns, tensor based fuzzy c-means algorithm is used to cluster low-dimensional features. The tensor distance is used as the distance measure to capture the unknown correlations of data as much as possible. Finally, in the case that the clustering results are obtained, the missing data can be restored by using the low-dimensional features. Experiments on real datasets show that the proposed algorithm not only can improve the clustering performance of incomplete data effectively, but also can fill in missing features and get better data reconstruction results.

9.
Sensors (Basel) ; 17(9)2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28862684

RESUMEN

The traditional beam selection algorithms determine the optimal beam direction by feeding back the perfect channel state information (CSI) in a millimeter wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) system. Popular beam selection algorithms mostly focus on the methods of feedback and exhaustive search. In order to reduce the extra computational complexity coming from the redundant feedback and exhaustive search, a position fingerprint (PFP)-based mmWave multi-cell beam selection scheme is proposed in this paper. In the proposed scheme, the best beam identity (ID) and the strongest interference beam IDs from adjacent cells of each fingerprint spot are stored in a fingerprint database (FPDB), then the optimal beam and the strongest interference beams can be determined by matching the current PFP of the user equipment (UE) with the PFP in the FPDB instead of exhaustive search, and the orthogonal codes are also allocated to the optimal beam and the strongest interference beams. Simulation results show that the proposed PFP-based beam selection scheme can reduce the computational complexity and inter-cell interference and produce less feedback, and the system sum-rate for the mmWave heterogeneous networks is also improved.

10.
Sensors (Basel) ; 17(4)2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28350374

RESUMEN

The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA