Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Asunto principal
Intervalo de año de publicación
1.
Poult Sci ; 103(7): 103832, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38781766

RESUMEN

The assessment of animal genetic structure had significant importance for the preservation and breeding of animal germplasm resources. Selection signals are genotype markers generated during the process of biological evolution, and the detection of selection signals could reveal the direction of species evolution. The aim of this study was to generate a whole-genome resequencing data from Jinding duck, Shanma duck, Youxian Partridge duck, and Taiwan Brown tsaiya duck to reveal their population structure and selection signals. The population structure analysis revealed significant genetic differences among the 4 indigenous laying ducks, indicating their independent lineage. Specifically, Shanma duck and Youxian partridge duck were closely and likely originated from a common ancestor. In addition, selection sweep analysis was performed using the population genetic differentiation coefficient (Fst) and nucleotide diversity ratio (π ratio). The top 5% was used as the threshold for the Fst and π ratio, and the 2 thresholds were combined to identify selected genomic regions. In the selected regions of the 3 comparison groups, 136, 143, and 268 candidate genes were detected. Further screening of all candidate genes revealed that 35 candidate genes appeared simultaneously in 3 comparative groups, with 16 genes annotated. The 16 genes were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The results revealed 5 functional genes (AQP3, PIK3C3, NOL6, RPP25, and DCTN3) that may be related to important economic traits in laying ducks and involved mainly invasopressin-regulated water reabsorption, ribosome biogenesis, and the PI3K signaling pathway. The results provide insights into the protection and exploitation of genetic resources of Chinese indigenous laying ducks.

2.
Poult Sci ; 103(1): 103255, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039938

RESUMEN

To explore the differential regulation mechanism of heat stress on the egg production performance and egg quality of Jinding ducks, 200 Jinding ducks (360-day-old) in good health and with similar body weights and a normal appetite were selected and randomly divided into a control (normal temperature [NT]) group (20°C-25°C) and a heat stress (HS) group (32°C-36°C), with 4 replicates in each group and 25 ducks in each replicate. The pretrial period was 1 wk, and the formal trial period was 4 wk. At the end of the 4th wk, 12 duck eggs were collected from each replicate to determine egg quality. Pituitary and ovarian tissues of Jinding ducks were collected, transcriptome sequencing was performed to screen differentially expressed miRNAs and mRNAs related to high temperature and heat stress, and a competitive endogenous RNA regulatory network was constructed. The sequencing data were verified by qRT‒PCR method. The following results were obtained: (1) Compared with the NT group, the HS group had a significantly lower laying rate, total egg weight, average egg weight, total feed intake, and feed intake per duck (P < 0.01), an extremely significantly higher feed-to-egg ratio (P < 0.01), and a higher mortality rate. (2) Compared with the NT group, the HS group had an extremely significantly lower egg weight, egg yolk weight, eggshell weight, and eggshell strength (P < 0.01) and an extremely significantly lower yolk ratio and eggshell thickness (P < 0.01, P < 0.05); however, there was no significant difference in the egg shape index, Haugh unit or protein height (P > 0.05). (3) A total of 1,974 and 1,202 genes were identified in the pituitary and ovary, respectively, and there were 5 significantly differentially expressed miRNAs. The differentially expressed genes were involved in the arginine and proline metabolism pathways, ether lipid metabolism pathway, and drug metabolism-cytochrome P450 pathway, which are speculated to be related to the egg production performance of Jingding ducks under high-temperature heat stress. (4) Novel_221 may target the PRPS1 gene to participate in egg production performance; novel_168 and novel_289 may target PIGW; novel_289 may target Q3MUY2; and novel_289 and novel_208 may target PIGN or genes that may be related to high-temperature heat stress. (5) In pituitary tissue, upregulated novel_141 (center of the network) formed a regulatory network with HSPB1 and HSP30A, and downregulated novel_366 (center of the network) formed a regulatory network with the JIP1 gene. In ovarian tissue, downregulated novel_289 (center of the network) formed a regulatory network with the ZSWM7, ABI3, and K1C23 genes, novel_221 formed a regulatory network with the IGF1, BCL7B, SMC6, APOA4, and FARP2 genes, and upregulated novel_40 formed a regulatory network with the HA1FF10 gene. In summary, heat stress affects the production performance and egg quality of Jinding ducks by regulating the secretion of endocrine-related hormones and the release of neurotransmitters as well as the expression of miRNAs and mRNAs in pituitary and ovarian tissues. The miRNA‒mRNA regulatory network provides a theoretical basis for the molecular mechanism that regulates the stress response in pituitary and ovarian tissues, egg quality, and production performance under heat stress.


Asunto(s)
Pollos , Patos , Femenino , Animales , Patos/fisiología , Pollos/fisiología , Respuesta al Choque Térmico , Ingestión de Alimentos , Ovario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA