Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124754, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38955067

RESUMEN

Hypochlorous acid (HClO) as a kind of reactive oxygen species (ROS) plays a vital role in many biological processes. Organic fluorescence probes have attracted great interests for the detection of HClO, due to their relatively high selectivity and sensitivity, satisfactory spatiotemporal resolution and good biocompatibility. Constructing fluorescence probes to detect HClO with advantages of large Stokes shift, wide emission gap, near infrared emission and good water solubility is still challenging. In this work, a new ratiometric fluorescence probe (named HCY) for HClO was developed. FRET-based HCY was constructed by bonding a coumarin and a flavone fluorophore. In absence of HClO, HCY exists FRET process, however, FRET is inhibited in the presence of HClO because the conjugated double bond broke. Due to the good match of the emission spectrum of the donor and the absorption spectrum of the acceptor, the FRET system appears favorable energy transfer efficiency. HCY showed high sensitivity and rapid response time. The linearity between the ratios of fluorescence intensity and concentration of HClO was established with a low limit of detection. What's more, HCY was also applied for fluorescence images of HClO in RAW264.7 cells.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Ácido Hipocloroso , Ácido Hipocloroso/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Animales , Ratones , Células RAW 264.7 , Cumarinas/química , Límite de Detección
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124486, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38788506

RESUMEN

In this work, we developed a ratiometric fluorescent probe (NT) based on ICT framework in near-infrared (NIR) which could detect pH and viscosity simultaneously. Long emission wavelength in NIR could protect the probe from interference of background fluorescence and improve the accuracy of the test. Due to the presence of thiazole-salt, the probe possessed good water solubility and could respond immediately to pH in water system. The pH values measured by NT in the actual samples were not much different from that measured by the pH meter, therefore, NT could give excellent accuracy. NT realized the reversible detection of pH by protonation and deprotonation. NT was used successfully to detect the pH of actual water samples, human serum and meat, as well as the viscosity variation caused by thickeners. Additionally, NT could monitor the changes of pH and viscosity in living cells. Therefore, the novel probe exhibited potential application in the fields of the environment, human health and food safety evaluation.


Asunto(s)
Colorantes Fluorescentes , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Viscosidad , Humanos , Espectrometría de Fluorescencia , Espectroscopía Infrarroja Corta/métodos , Animales , Carne/análisis , Células HeLa , Agua/química
3.
Anal Chim Acta ; 1305: 342588, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38677842

RESUMEN

BACKGROUND: Sulfur dioxide (SO2) is a significant gas signaling molecule in organisms, and viscosity is a crucial parameter of the cellular microenvironment. They are both involved in regulating many physiological processes in the human body. However, abnormalities in SO2 and viscosity levels are associated with various diseases, such as cardiovascular disease, lung cancer, respiratory diseases, neurological disorders, diabetes and Alzheimer's disease. Hence, it is essential to explore novel and efficient fluorescent probes for simultaneously monitoring SO2 and viscosity in organisms. RESULTS: We selected quinolinium salt with good stability, high fluorescence intensity, good solubility and low cytotoxicity as the fluorophore and developed a highly sensitive ratiometric probe QQD to identify SO2 and viscosity changes based on Förster resonance energy transfer/twisted intramolecular charge transfer (FRET/TICT) mechanism. Excitingly, compared with other probes for SO2 detection, QQD not only identified HSO3-/SO32- with a large Stokes shift (218 nm), low detection limit (1.87 µM), good selectivity, high energy transfer efficiency (92 %) and wide recognition range (1.87-200 µM), but also identified viscosity with a 26-fold fluorescence enhancement and good linearity. Crucially, QQD was applied to detect HSO3-/SO32- and viscosity in actual water and food samples. In addition, QQD had low toxicity and good photostability for imaging HSO3-/SO32- and viscosity in cells. These results confirmed the feasibility and reliability of QQD for HSO3-/SO32- and viscosity imaging and environmental detection. SIGNIFICANCE: We reported a unique ratiometric probe QQD for detecting HSO3-/SO32- and viscosity based on the quinolinium skeleton. In addition to detecting HSO3-/SO32- and viscosity change in actual water and food samples, QQD could also monitor the variations of HSO3-/SO32- and viscosity in cells, which provided an experimental basis for further exploration of the role of SO2 derivatives and viscosity in biological systems.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Viscosidad , Humanos , Dióxido de Azufre/análisis , Sulfitos/análisis , Sulfitos/química , Límite de Detección , Compuestos de Quinolinio/química
4.
Talanta ; 275: 126135, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677165

RESUMEN

Hydrogen peroxide (H2O2) and viscosity play vital roles in the cellular environment as signaling molecule and microenvironment parameter, respectively, and are associated with many physiological and pathological processes in biological systems. We developed a near-infrared fluorescent probe, CQ, which performed colorimetric and ratiometric detection of H2O2 and viscosity based on the FRET mechanism, and was capable of monitoring changes in viscosity and H2O2 levels simultaneously through two different channels. Based on the specific reaction of H2O2 with borate ester, CQ exhibited a significant ratiometric response to H2O2 with a large Stokes shift of 221 nm, a detection limit of 0.87 µM, a near-infrared emission wavelength of 671 nm, a response time of 1 h, a wide detection ranges of 0.87-800 µM and a high energy transfer efficiency of 99.9 %. CQ could also recognize viscosity by the TICT mechanism, and efficiently detect viscosity changes caused by food thickeners. More importantly, CQ could successfully detect endogenous/exogenous H2O2 and viscosity in live HeLa cells, which was expected to be a practical tool for detecting H2O2 and viscosity in live cells.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Peróxido de Hidrógeno , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , Colorantes Fluorescentes/química , Humanos , Células HeLa , Transferencia Resonante de Energía de Fluorescencia/métodos , Viscosidad , Rayos Infrarrojos , Límite de Detección , Supervivencia Celular
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123822, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176193

RESUMEN

Fluoride ion is not only important for dental health, but also a contributing factor in a variety of diseases. At the same time, fluoride ions and cell viscosity are both important to the physiological environment of mitochondria. We developed a dual-response ratiometric fluorescent probe BDF based on Förster resonance energy transfer (FRET) and intramolecular charge transfer (ICT) mechanism for the detection of F- and viscosity. BDF has an outstanding intramolecular energy transfer efficiency of 97.7% and shows excellent performance for fluorine ion detection. In addition, when the system viscosity increases, the fluorescence emission intensity of BDF is greatly heightened, indicating the possibility of viscosity detection. Finally, based on the fluorescence properties of BDF, we used the probe to detect F- in the toothpaste sample and image exogenous fluoride ions in HeLa cells.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Fluoruros , Humanos , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes , Células HeLa , Flúor , Viscosidad
6.
Anal Chim Acta ; 1288: 342184, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220311

RESUMEN

BACKGROUND: Sulfur dioxide (SO2) is a common gaseous pollutant that significantly threatens environmental pollution and human health. Meanwhile, viscosity is an essential parameter of the intracellular microenvironment, manipulating many physiological roles such as nutrient transport, metabolism, signaling regulation and apoptosis. Currently, most of the fluorescent probes used for detecting SO2 derivatives and viscosity are single-emission probes or probes based on the ICT mechanism, which suffer from short emission wavelengths, small Stokes shifts or susceptibility to environmental background. Therefore, the development of powerful high-performance probes for real-time monitoring of sulfur dioxide derivatives and viscosity is of great significance for human health. RESULTS: In this research, we designed the fluorescent probe QQC to detect SO2 derivatives and viscosity based on FRET platform with quinolinium salt as donor and quinolinium-carbazole as acceptor. QQC exhibited a ratiometric fluorescence response to SO2 with a low detection limit (0.09 µM), large Stokes shift (186 nm) and high energy transfer efficiency (95 %), indicating that probe QQC had good sensitivity and specificity. In addition, QQC was sensitive to viscosity, with an 9.10-folds enhancement of orange fluorescence and an excellent linear relationship (R2 = 0.98) between the logarithm of fluorescence intensity at 592 nm and viscosity. Importantly, QQC could not only recognize SO2 derivatives in real water samples and food, but also detect viscosity changes caused by food thickeners and thereby had broad market application prospects. SIGNIFICANCE: We have developed a ratiometric fluorescent probe based on the FRET platform for detecting sulfur dioxide derivatives and viscosity. QQC could not only successfully detect SO2 derivatives in food and water samples, but also be made into test strips for detecting HSO3-/SO32- solution. In addition, the probe was also used to detect viscosity changes caused by food thickeners. Therefore, this novel probe had significant value in food and environmental detection applications.


Asunto(s)
Colorantes Fluorescentes , Dióxido de Azufre , Humanos , Transferencia Resonante de Energía de Fluorescencia , Viscosidad , Agua , Células HeLa
7.
Talanta ; 271: 125684, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262131

RESUMEN

This work presented a FRET-ICT based fluorescent probe (named NTC) composed of coumarin-benzothiazole as the acceptor and 4-nitrobenzo[c][1,2,5] oxadiazole (NBD) as the donor for the detection of SO2 derivatives in NIR. Probe NTC possessed superior performance including selectivity, quickly response toward SO32-/HSO3- and high energy transfer efficiency (94 %). The test strips provided a simple and effective tool in detecting the presence of bisulfite. Besides, NTC was applied to test the sulfur dioxide derivatives in food samples and cells.


Asunto(s)
Colorimetría , Colorantes Fluorescentes , Humanos , Dióxido de Azufre , Sulfitos , Transferencia Resonante de Energía de Fluorescencia , Células HeLa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...