Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Toxicol In Vitro ; : 105876, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876226

RESUMEN

Fangchinoline (FA) is an alkaloid derived from the traditional Chinese medicine Fangji. Numerous studies have shown that FA has a toxic effect on various cancer cells, but little is known about its toxic effects on germ cells, especially oocytes. In this study, we investigated the effects of FA on mouse oocyte maturation and its potential mechanisms. Our results showed that FA did not affect meiosis resumption but inhibited the first polar body extrusion. This inhibition is not due to abnormalities at the organelle level, such as chromosomes and mitochondrial, which was proved by detection of DNA damage and reactive oxygen species Further studies revealed that FA arrested the oocyte at the metaphase I stage, and this arrest was not caused by abnormal kinetochore-microtubule attachment or spindle assembly checkpoint activation. Instead, FA inhibits the activity of anaphase-promoting complexes (APC/C), as evidenced by the inhibition of CCNB1 degeneration. The decreased activity of APC/C may be due to a reduction in CDC25B activity as indicated by the high phosphorylation level of CDC25B (Ser323). This may further enhance Maturation-Promoting Factor (MPF) activity, which plays a critical role in meiosis. In conclusion, our study suggests that the metaphase I arrest caused by FA may be due to abnormalities in MPF and APC/C activity.

2.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38546043

RESUMEN

The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Meiosis , Animales , Femenino , Ratones , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Oocitos/metabolismo , Ubiquitinas/metabolismo
3.
iScience ; 26(10): 107828, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736051

RESUMEN

The zona pellucida (ZP) is an extracellular glycoprotein matrix surrounding mammalian oocytes. Recently, numerous mutations in genes encoding ZP proteins have been shown to be possibly related to oocyte abnormality and female infertility; few reports have confirmed the functions of these mutations in living animal models. Here, we identified a novel heterozygous missense mutation (NM_001376231.1:c.1616C>T, p.Thr539Met) in ZP2 from a primary infertile female. We showed that the mutation reduced ZP2 expression and impeded ZP2 secretion in cell lines. Furthermore, we constructed the mouse model with the mutation (Zp2T541M) using CRISPR-Cas9. Zp2WT/T541M female mice had normal fertility though generated oocytes with the thin ZP, whereas Zp2T541M female mice were completely infertile due to degeneration of oocytes without ZP. Additionally, ZP deletion impaired folliculogenesis and caused female infertility in Zp2T541M mice. Our study not only expands the spectrum of ZP2 mutation sites but also, more importantly, increases the understanding of pathogenic mechanisms of ZP2 mutations.

4.
Biol Reprod ; 108(3): 437-446, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36503987

RESUMEN

As the most abundant organelles in oocytes, mitochondria play an important role in maintaining oocyte quality. Here, we report that March5, encoding a mitochondrial ubiquitin ligase that promotes mitochondrial elongation, plays a critical role in mouse oocyte meiotic maturation via regulating mitochondrial function. The subcellular localization of MARCH5 was similar to the mitochondrial distribution during mouse oocyte meiotic progression. Knockdown of March5 caused decreased ratios of the first polar body extrusion. March5-siRNA injection resulted in oocyte mitochondrial dysfunctions, manifested by increased reactive oxygen species, decreased ATP content as well as decreased mitochondrial membrane potential, leading to reduced ability of spindle formation and an increased ratio of kinetochore-microtubule detachment. Further study showed that the continuous activation of the spindle assembly checkpoint and the failure of Cyclin B1 degradation caused MI arrest and first polar body (PB1) extrusion failure in March5 knockdown oocytes. Taken together, our results demonstrated that March5 plays an essential role in mouse oocyte meiotic maturation, possibly via regulation of mitochondrial function and/or ubiquitination of microtubule dynamics- or cell cycle-regulating proteins.


Asunto(s)
Oogénesis , Ubiquitina-Proteína Ligasas , Animales , Ratones , Mitocondrias/metabolismo , Oocitos/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Exp Cell Res ; 416(1): 113135, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35398309

RESUMEN

Microtubule plus-end tracking proteins (+TIPs) associate with growing microtubule plus ends and control microtubule dynamics and interactions with different cellular structures during cell division, cell migration and morphogenesis. Microtubule-associated RP/EB family member 2 (MAPRE2/EB2) is a highly conserved core component of +TIPs networks, but whether this molecule is required for mammalian meiotic progression is unknown. In this study, we investigated the expression and function of MAPRE2 during oocyte maturation. Our results showed that MAPRE2 was consistently expressed from germinal vesicle (GV) to metaphase II (MII) stages and that MAPRE2 was distributed in the cytoplasm of oocytes at GV stage and along the spindle at metaphase I (MI) and MII stages. Small interfering RNA-mediated knockdown of Mapre2 severely impaired microtubule stability, kinetochore-microtubule attachment, and chromosome alignment and subsequently caused spindle assembly checkpoint (SAC) activation and cyclin B1 nondegradation, leading to failure of chromosome segregation and first polar body extrusion. This study demonstrates for the first time that MAPRE2 plays an important role during mouse oocyte meiosis.


Asunto(s)
Meiosis , Huso Acromático , Animales , Segregación Cromosómica , Mamíferos , Metafase , Ratones , Oocitos/metabolismo , Huso Acromático/metabolismo
6.
Front Cell Dev Biol ; 9: 647103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842473

RESUMEN

There are two important events in oocyte meiotic maturation, the G2/M transition and metaphase I progression. Thousands of proteins participate in regulating oocyte maturation, which highlights the importance of the ubiquitin proteasome system (UPS) in regulating protein synthesis and degradation. Skp1-Cullin-F-box (SCF) complexes, as the best characterized ubiquitin E3 ligases in the UPS, specifically recognize their substrates. F-box proteins, as the variable adaptors of SCF, can bind substrates specifically. Little is known about the functions of the F-box proteins in oocyte maturation. In this study, we found that depletion of FBXO34, an F-box protein, led to failure of oocyte meiotic resumption due to a low activity of MPF, and this phenotype could be rescued by exogenous overexpression of CCNB1. Strikingly, overexpression of FBXO34 promoted germinal vesicle breakdown (GVBD), but caused continuous activation of spindle assembly checkpoint (SAC) and MI arrest of oocytes. Here, we demonstrated that FBXO34 regulated both the G2/M transition and anaphase entry in meiotic oocytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA