Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
ACS Omega ; 9(17): 19311-19319, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708238

RESUMEN

Traditional Chinese medicine (TCM) formula decoctions easily form nanoaggregates due to self-assembly during the decoction process. However, research on nanoaggregates in TCM is still in its infancy with limited systematic studies. Maxing Shigan Decoction (MXSGT), a TCM formula, has been commonly used for the treatment of fever for thousands of years in China. This study used MXSGT as an example to investigate the antipyretic effects of MXSGT nanoaggregates (MXSGT-NAs) in its decoction, shedding light on the compatibility mechanisms of Chinese medicine. MXSGT-NAs were isolated by using high-speed centrifugation and dialysis techniques. The morphology, particle size distribution, and electrical potential of MXSGT-NAs were characterized. High-performance liquid chromatography (HPLC) was used to detect ephedrine and pseudoephedrine in MXSGT-NAs. The self-assembly mechanism of MXSGT-NAs was investigated by deconstructing the prescription. In pharmacodynamic experiments, a rat fever model was established through the subcutaneous injection of dry yeast to investigate the antipyretic effects of MXSGT-NAs. The results showed the presence of regularly shaped spherical nanoaggregates in MXSGT. It contains carbon, oxygen (O), sulfur (S), sodium, aluminum (Al), calcium (Ca), iron, magnesium, bismuth (Bi), etc. MXSGT-NAs exerted substantial antipyretic effects on febrile rats. Furthermore, we found micrometer-sized particles composed of Ca, O, S, potassium, and Bi in Shi gao decoctions. This study is the first to provide evidence for the self-assembling property of Shi gao, elucidate the scientific connotation of dispensing Shi gao in MXSGT, and provide a novel perspective for the study of TCM decoctions.

2.
Technol Cancer Res Treat ; 23: 15330338241249692, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706262

RESUMEN

PURPOSE: PIWI-interacting RNAs (piRNAs) are a type of noncoding small RNA that can interact with PIWI-like RNA-mediated gene silencing (PIWIL) proteins to affect biological processes such as transposon silencing through epigenetic effects. Recent studies have found that piRNAs are widely dysregulated in tumors and associated with tumor progression and a poor prognosis. Therefore, this study aimed to investigate the effect of piR-1919609 on the proliferation, apoptosis, and drug resistance of ovarian cancer cells. METHODS: In this study, we used small RNA sequencing to screen and identify differentially expressed piRNAs in primary ovarian cancer, recurrent ovarian cancer, and normal ovaries. A large-scale verification study was performed to verify the expression of piR-1919609 in different types of ovarian tissue, including ovarian cancer tissue and normal ovaries, by RT-PCR and to analyze its association with the clinical prognosis of ovarian cancer. The expression of PIWILs in ovarian cancer was verified by RT-PCR, Western blotting and immunofluorescence. The effects of piR-1919609 on ovarian cancer cell proliferation, apoptosis and drug resistance were studied through in vitro and in vivo models. RESULTS: (1) piR-1919609 was highly expressed in platinum-resistant ovarian cancer tissues (p < 0.05), and this upregulation was significantly associated with a poor prognosis and a shorter recurrence time in ovarian cancer patients (p < 0.05). (2) PIWIL2 was strongly expressed in ovarian cancer tissues (p < 0.05). It was expressed both in the cytoplasm and nucleus of ovarian cancer cells. (3) Overexpression of piR-1919609 promoted ovarian cancer cell proliferation, inhibited apoptosis, and promoted tumor growth in nude mice. (4) Inhibition of piR-1919609 effectively reversed ovarian cancer drug resistance. CONCLUSION: In summary, we showed that piR-1919609 is involved in the regulation of drug resistance in ovarian cancer cells and might be an ideal potential target for reversing platinum resistance in ovarian cancer.


Asunto(s)
Apoptosis , Proliferación Celular , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas , ARN Interferente Pequeño , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Humanos , Resistencia a Antineoplásicos/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Animales , Ratones , Línea Celular Tumoral , ARN Interferente Pequeño/genética , Pronóstico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , Platino (Metal)/uso terapéutico , Platino (Metal)/farmacología
3.
Acta Biomater ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729547

RESUMEN

The formation of pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor requires the communication between the tumor cells and the host environment. Pyruvate is a fundamental nutrient by which the tumor cells metabolically reshape the extracellular matrix in the lung to facilitate their own metastatic development. Here we report a combination regimen by integrating the photo-sensitizer and the mitochondrial pyruvate carrier (MPC) inhibitor in a dendritic polycarbonate core-hyaluronic acid shell nano-platform with multivalent reversible crosslinker embedded in it (DOH-NI+L) to reinforce photodynamic therapy (PDT) toward the primary tumor and interrupt PMN formation in the lung via impeding pyruvate uptake. We show that DOH-NI+L mediates tumor-specific MPC inhibitor liberation, inhibiting the aerobic respiration for facilitated PDT and restraining ATP generation for paralyzing cell invasion. Remarkably, DOH-NI+L is demonstrated to block the metabolic crosstalk of tumor cell-host environment by dampening pyruvate metabolism, provoking a series of metabolic responses and resulting in the pulmonary PMN interruption. Consequently, DOH-NI+L realizes a significant primary tumor inhibition and an efficient pulmonary metastasis prevention. Our research extends nano-based anti-metastatic strategies aiming at PMN intervention and such a dendritic core-shell nano-inhibitor provides an innovative paradigm to inhibit tumor growth and prevent metastasis efficiently. STATEMENT OF SIGNIFICANCE: In the progression of cancer metastasis, the formation of a pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor is one of the rate-limiting stages. The current nano-based anti-metastatic modalities mainly focus on targeted killing of tumor cells and specific inhibition of tumor cell invasion, while nanomedicine-mediated interruption of PMN formation has been rarely reported. Here we report a combination regimen by integrating a photo-sensitizer and an inhibitor of mitochondrial pyruvate carrier in a dendritic core-shell nano-platform with a reversible crosslinker embedded in it to reinforce PDT toward the primary tumor and interrupt PMN formation via impeding the uptake of pyruvate that is a fundamental nutrient facilitating aerobic respiration and PMN formation. Our research proposed a nano-based anti-metastatic strategy aiming at PMN intervention.

4.
J Control Release ; 371: 16-28, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38763388

RESUMEN

Metastasis leads to high mortality among cancer patients. It is a complex, multi-step biological process that involves the dissemination of cancer cells from the primary tumor and their systemic spread throughout the body, primarily through the epithelial-mesenchymal transition (EMT) program and immune evasion mechanisms. It presents a challenge in how to comprehensively treat metastatic cancer cells throughout the entire stage of the metastatic cascade using a simple system. Here, we fabricate a nanogel (HNO-NG) by covalently crosslinking a macromolecular nitric oxide (NO) donor with a photothermal IR780 iodide-containing hyaluronic acid derivative via a click reaction. This enables stable storage and tumor-targeted, photothermia-triggered release of NO to combat tumor metastasis throughout all stages. Upon laser irradiation (HNO-NG+L), the surge in NO production within tumor cells impairs the NF-κB/Snail/RKIP signaling loop that promotes the EMT program through S-nitrosylation, thus inhibiting cell dissemination from the primary tumor. On the other hand, it induces immunogenic cell death (ICD) and thereby augments anti-tumor immunity, which is crucial for killing both the primary tumor and systemically distributed tumor cells. Therefore, HNO-NG+L, by fully leveraging EMT reversal, ICD induction, and the lethal effect of NO, achieved impressive eradication of the primary tumor and significant prevention of lung metastasis in a mouse model of orthotropic 4T1 breast tumor that spontaneously metastasizes to the lungs, extending the NO-based therapeutic approach against tumor metastasis.

5.
Int J Gen Med ; 17: 2113-2128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766598

RESUMEN

Purpose: Evidence has indicated that PDZD11 is involved in regulating adherens junction. However, the distinct effect of its aberrant expression on epithelial ovarian cancer (EOC) awaits clarification. Methods: In this study, public databases (Gene Expression Omnibus, The Cancer Genome Atlas, and The Genotype-Tissue Expression), online analysis tools (Kaplan-Meier plotter and TIMER), and data analysis methods (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and the CIBERSORT algorithm) were fully utilized to analyze the differential expression, diagnostic efficiency, prognostic significance, potential function, and correlation with immune infiltration of PDZD11. The differential expression of PDZD11 was tested by immunohistochemistry in EOC tissues (78 cases) and control tissues (37 cases). Results: Our results indicate that PDZD11 was remarkably overexpressed in EOC, which was associated with advanced cancer stages, no lymphatic metastasis status, and poor prognosis. Moreover, PDZD11 played a role in cell adhesion, cell proliferation, and immune responses. Also, PDZD11 was significantly related to the abundances of infiltrating immune cells in EOC, including neutrophils, macrophages, dendritic cells, CD8+ T cells, and CD4+ T cells, and its expression was positively co-expressed with well-known immune checkpoints, including TIGIT, TIM3, LAG3, CTLA4, and PD-1. Conclusion: These results suggest that PDZD11 could be a potential diagnostic and prognostic biomarker associated with immune infiltration in EOC, and our findings might help elucidate the function of PDZD11 in carcinogenesis.

6.
Magn Reson Med ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651650

RESUMEN

PURPOSE: The effectiveness of prospective motion correction (PMC) is often evaluated by comparing artifacts in images acquired with and without PMC (NoPMC). However, such an approach is not applicable in clinical setting due to unavailability of NoPMC images. We aim to develop a simulation approach for demonstrating the ability of fat-navigator-based PMC in improving perivascular space (PVS) visibility in T2-weighted MRI. METHODS: MRI datasets from two earlier studies were used for motion artifact simulation and evaluating PMC, including T2-weighted NoPMC and PMC images. To simulate motion artifacts, k-space data at motion-perturbed positions were calculated from artifact-free images using nonuniform Fourier transform and misplaced onto the Cartesian grid before inverse Fourier transform. The simulation's ability to reproduce motion-induced blurring, ringing, and ghosting artifacts was evaluated using sharpness at lateral ventricle/white matter boundary, ringing artifact magnitude in the Fourier spectrum, and background noise, respectively. PVS volume fraction in white matter was employed to reflect its visibility. RESULTS: In simulation, sharpness, PVS volume fraction, and background noise exhibited significant negative correlations with motion score. Significant correlations were found in sharpness, ringing artifact magnitude, and PVS volume fraction between simulated and real NoPMC images (p ≤ 0.006). In contrast, such correlations were reduced and nonsignificant between simulated and real PMC images (p ≥ 0.48), suggesting reduction of motion effects with PMC. CONCLUSIONS: The proposed simulation approach is an effective tool to study the effects of motion and PMC on PVS visibility. PMC may reduce the systematic bias of PVS volume fraction caused by motion artifacts.

7.
ACS Appl Mater Interfaces ; 16(14): 17313-17322, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38534029

RESUMEN

Glucose oxidase (Gox)-mediated starvation therapy offers a prospective advantage for malignancy treatment by interrupting the glucose supply to neoplastic cells. However, the negative charge of the Gox surface hinders its enrichment in tumor tissues. Furthermore, Gox-mediated starvation therapy infiltrates large amounts of hydrogen peroxide (H2O2) to surround normal tissues and exacerbate intracellular hypoxia. In this study, a cascade-catalyzed nanogel (A-NE) was developed to boost the antitumor effects of starvation therapy by glucose consumption and cascade reactive release of nitric oxide (NO) to relieve hypoxia. First, the surface cross-linking structure of A-NE can serve as a bioimmobilization for Gox, ensuring Gox stability while improving the encapsulation efficiency. Then, Gox-mediated starvation therapy efficiently inhibited the proliferation of tumor cells while generating large amounts of H2O2. In addition, covalent l-arginine (l-Arg) in A-NE consumed H2O2 derived from glucose decomposition to generate NO, which augmented starvation therapy on metastatic tumors by alleviating tumor hypoxia. Eventually, both in vivo and in vitro studies indicated that nanogels remarkably inhibited in situ tumor growth and hindered metastatic tumor recurrence, offering an alternative possibility for clinical intervention.


Asunto(s)
Neoplasias , Óxido Nítrico , Polietilenglicoles , Polietileneimina , Humanos , Nanogeles , Peróxido de Hidrógeno/química , Estudios Prospectivos , Neoplasias/patología , Glucosa Oxidasa/química , Catálisis , Glucosa , Línea Celular Tumoral
8.
Cell Mol Life Sci ; 81(1): 32, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214780

RESUMEN

BACKGROUND: Dysbiosis of gut microbiota is frequent in liver cirrhosis (LC) patients, and splenectomy (SP) has been reported to improve LC. Herein, we report the effects of SP on gut microbiota, especially on Veillonella parvula, a Gram-negative coccus of the gastrointestinal tract, in LC mice, and the underlying mechanism. METHODS: LC mice models were induced by tail vein injection of concanavalin A (ConA), followed by SP. 16 s rRNA sequencing was conducted to analyze the effects of ConA induction and SP on mouse gut microbiota and the gene expression affected by gut microbiota. LC mice receiving SP were gavaged with Veillonella parvula. Likewise, hepatic stellate cells (HSC) and hepatocytes (HC) were induced with conditioned medium (CM) of Veillonella parvula. RESULTS: SP alleviated LC in mice by restoring gut barrier function and maintaining gut microbiota balance, with Veillonella as the key genus. The Veillonella parvula gavage on LC mice reversed the ameliorative effect of SP. The CM of Veillonella parvula promoted the activation of HSC and the release of IL-6, IL-1ß, and TNF-α. Also, the CM of Veillonella parvula induced HC pyroptosis and the release of ALT and AST. Veillonella parvula represented an imbalance in the gut microbiota, thus enhancing gut-derived endotoxins in the liver with the main target being Tlr4/Nlrp3. Inhibition of Tlr4 blocked Veillonella parvula-induced HC damage, HSC activation, and subsequent LC progression. CONCLUSION: SP-mediated gut microbiota regulation ameliorates ConA-related LC progression by inhibiting Tlr4/Nlrp3 in the liver.


Asunto(s)
Microbioma Gastrointestinal , Veillonella , Humanos , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Esplenectomía , Receptor Toll-Like 4/metabolismo , Cirrosis Hepática/terapia
9.
Int J Biol Sci ; 20(2): 585-605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169591

RESUMEN

Sirtuin 5 (SIRT5), localized in the mitochondria, has been identified as a protein desuccinylase and demalonylase in the mitochondria since the depletion of SIRT5 boosted the global succinylation and malonylation of mitochondrial proteins. We investigated the role of SIRT5 in diabetic cardiomyopathy (DCM) and identified the mechanism regarding lysine demalonylation in this process. Wild-type and SIRT5 knockout mice were induced with DCM, and primary cardiomyocytes and cardiac fibroblasts extracted from wild-type and SIRT5 knockout mice were subjected to high glucose (HG). SIRT5 deficiency exacerbated myocardial injury in DCM mice, aggravated HG-induced oxidative stress and mitochondrial dysfunction in cardiomyocytes, and intensified cardiomyocyte senescence, pyroptosis, and DNA damage. DCM-induced SIRT5 loss diminished glutathione S-transferase P (GSTP1) protein stability, represented by significantly increased lysine malonylation (Mal-Lys) modification of GSTP1. SIRT5 overexpression alleviated DCM-related myocardial injury, which was reversed by GSTP1 knockdown. Reduced SIRT5 transcription in DCM resulted from the downregulation of SPI1. SPI1 promoted the transcription of SIRT5, thereby ameliorating DCM-associated myocardial injury. However, SIRT5 deletion resulted in a significant reversal of the protective effect of SPI1. These observations suggest that SPI1 activates SIRT5 transcriptionally to mediate GSTP1 Mal-Lys modification and protein stability, thus ameliorating DCM-associated myocardial injury.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Sirtuinas , Animales , Ratones , Cardiomiopatías Diabéticas/genética , Glutatión Transferasa , Lisina/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Piroptosis , Sirtuinas/genética , Sirtuinas/metabolismo
10.
Chem Biol Drug Des ; 103(1): e14422, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230772

RESUMEN

Cancer is one of the leading causes of mortality worldwide, making it a public health concern. A novel series of pyrrolidine-carboxamide derivatives 7a-q were developed and examined in a cell viability assay utilizing a human mammary gland epithelial cell line (MCF-10A), where all the compounds exhibited no cytotoxic effects and more than 85% cell viability at a concentration of 50 µM. Antiproliferative activity was evaluated in vitro against four panels of cancer cell lines A-549, MCF-7, Panc-1, and HT-29. Compounds 7e, 7g, 7k, 7n, and 7o were the most active as antiproliferative agents capable of triggering apoptosis. Compound 7g was the most potent of all the derivatives, with a mean IC50 of 0.90 µM compared to IC50 of 1.10 µM for doxorubicin. Compound 7g inhibited A-549 (epithelial cancer cell line), MCF-7 (breast cancer cell line), and HT-29 (colon cancer cell line) more efficiently than doxorubicin. EGFR inhibitory assay results of 7e, 7g, 7k, 7n, and 7o demonstrated that the tested compounds inhibited EGFR with IC50 values ranging from 87 to 107 nM in comparison with the reference drug erlotinib (IC50 = 80 nM). 7e, 7g, 7k, 7n, and 7o inhibited CDK2 efficiently in comparison to the reference dinaciclib (IC50 = 20 nM), with IC50 values ranging from 15 to 31 nM. The results of inhibitory activity assay against different CDK isoforms revealed that the tested compounds had preferential inhibitory activity against the CDK2 isoform.


Asunto(s)
Antineoplásicos , Humanos , Estructura Molecular , Relación Estructura-Actividad , Proliferación Celular , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Receptores ErbB/metabolismo , Doxorrubicina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Simulación del Acoplamiento Molecular , Quinasa 2 Dependiente de la Ciclina/metabolismo
11.
Int J Biol Macromol ; 258(Pt 2): 129052, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161012

RESUMEN

Gut microbial dysbiosis has always served as a potential factor in the occurrence and development of liver fibrosis. Liver and gut microflora can regulate each other through the gut-liver axis. In this study, the 16S rRNA and RNA-seq were chosen to sequence gut microbiota alteration and liver differentially expressed genes (DEGs) in carbon tetrachloride (CCl4) included-liver fibrosis mice, and analyze the correlations between gut microbiota constituents and DEGs. Results indicated that, CCl4 significantly increased the abundance of Desulfobactera in the phylum level, destroyed gut microbiota balance in the genus levels, especially Enterorhabdus and Desulfovibrio. Through analysis, 1416 genes were found differentially expressed in mice liver tissue in the CCl4 Group, compared with the Control Group; and the DEGs were mainly involved in the lipid metabolic process and immune system process. The correlation analysis revealed that the relative abundance of microbiota phylum (Desulfobactera) and genus (Enterorhabdus and Desulfovibrio) was negatively correlated with the metabolism related genes, while positively correlated with immune-related genes and the genes enriched in PI3K-Akt signaling pathway. To sum up, CCl4 can partially regulate gene expression in metabolism, immune response and the PI3K/Akt pathway, and further maintain the stability of the gut environment in liver fibrosis mice.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Microbioma Gastrointestinal/genética , Disbiosis/metabolismo , ARN Ribosómico 16S/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hígado/metabolismo , Cirrosis Hepática/patología , Factores Inmunológicos/metabolismo
12.
J Control Release ; 364: 261-271, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37839641

RESUMEN

Glioblastoma multiforme (GBM) remains incurable in clinical, nanotechnology-based drug delivery strategies show promising perspective in alleviating GBM, while limited blood-brain-barrier (BBB) permeation, short blood half-live accompanied by the poor tumor accumulation and penetration, significantly restrict the therapeutic outcomes. Herein, a versatile super-small zwitterionic nano-system (MCB(S)) based on carboxybetaine (CB) zwitterion functionalized hyperbranched polycarbonate (HPCB) is developed to overcome the brain delivery challenges. After grafting with amino-functionalized IR780 (free IR780), the ultimate paclitaxel (PTX)-encapsulated micelles (MCB(S)-IR@PTX) are precisely activated by near-infrared (NIR) for accelerated drug release and effective combinational GBM therapy. Importantly, MCB(S)-IR@PTX with the crosslinked structure and CB zwitterion prolongs blood-circulation, and CB-zwitterion further facilitates BBB-traversing through betaine/γ-aminobutyric acid (GABA) transporter-1 (BGT-1) pathway. Combined with the benefit of super small-size, MCB(S)-IR@PTX highly accumulates at tumor sites and penetrates deeply, thus efficiently inhibiting tumor growth and strikingly improving survival time in U87MG orthotopic GBM-bearing mouse model. The ingenious nanoplatform furnishes a versatile strategy for delivering therapeutics into the brain and realizing efficient brain cancer therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Ratones , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Micelas , Barrera Hematoencefálica , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Paclitaxel , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología
13.
PLoS One ; 18(8): e0289068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37549144

RESUMEN

OBJECTIVE: Recent research has suggested that m6A modification takes on critical significance to Neurodegeneration. As indicated by the genome-wide map of m6A mRNA, genes in Alzheimer's disease model achieved significant m6A methylation. This study aimed to investigate the hub gene and pathway of m6A modification in the pathogenesis of AD. Moreover, possible brain regions with higher gene expression levels and compounds exerting potential therapeutic effects were identified. Thus, this study can provide a novel idea to explore the treatment of AD. METHODS: Differential expression genes (DEGs) of GSE5281 and GSE48350 from the Gene Expression Omnibus (GEO) database were screened using the Limma package. Next, the enrichment analysis was conducted on the screened DEGs. Moreover, the functional annotation was given for N6-methyladenosine (m6A) modification gene. The protein-protein interaction network (PPI) analysis and the visualization analysis were conducted using STRING and Cytoscape. The hub gene was identified using CytoHubba. The expression levels of Hub genes in different regions of brain tissue were analyzed based on Human Protein Atlas (HPA) database and Bgee database. Subsequently, the candidate drugs targeting hub genes were screened using cMAP. RESULTS: A total of 42 m6A modified genes were identified in AD (20 up-regulated and 22 down-regulated genes). The above-described genes played a certain role in biological processes (e.g., retinoic acid, DNA damage response and cysteine-type endopeptidase activity), cellular components (e.g., mitochondrial protein complex), and molecular functions (e.g., RNA methyltransferase activity and ubiquitin protein ligase). KEGG results suggested that the above-mentioned genes were primarily involved in the Hippo signaling pathway of neurodegeneration disease. A total of 10 hub genes were screened using the protein-protein interaction network, and the expression of hub genes in different regions of human brain was studied. Furthermore, 10 compounds with potential therapeutic effects on AD were predicted. CONCLUSION: This study revealed the potential role of the m6A modification gene in Alzheimer's disease through the bioinformatics analysis. The biological changes may be correlated with retinoic acid, DNA damage response and cysteine-type endopeptidase activity, which may occur through Hippo signaling pathway. The hub genes (SOX2, KLF4, ITGB4, CD44, MSX1, YAP1, AQP1, EGR2, YWHAZ and TFAP2C) and potential drugs may provide novel research directions for future prognosis and precise treatment.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Cisteína , Adenosina/genética , Bases de Datos de Proteínas , Endopeptidasas , Fenotipo
14.
ACS Appl Mater Interfaces ; 15(28): 33309-33321, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37408134

RESUMEN

Chemotherapy predominates in clinical treatment of prostate cancer (PCa), while irreversible resistance to chemotherapeutics and severe side effects hinder the therapeutic efficacy, especially in castration-resistant PCa (CRPC). Herein, a bombesin (BBN)-decorated two-in-one prodrug (T-NO/E2-PMs) incorporating a polymeric nitric oxide (NO) donor and acetal-linked 17ß-estradiol (E2) in one backbone is developed, aiming to inhibit androgen receptor (AR) expression, reprogram the tumor microenvironment of CRPC, and enhance estradiol-mediated hypoxic CRPC therapy. Following efficient internalization mediated by BBN, T-NO/E2-PMs releases estradiol and NO in response to the unique intracellular environments. Both in vitro and in vivo studies demonstrate that the T-NO/E2-PMs nano-prodrug along with NO release potently downregulates AR levels to reverse CRPC and further enhances the chemo-sensitization of estradiol to PCa PC-3 cell apoptosis and the inhibition of metastasis. Collectively, this two-in-one nano-prodrug strategy offers a promising platform for construction of advanced nanomedicine to boost the therapeutic efficacy.


Asunto(s)
Profármacos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Profármacos/farmacología , Profármacos/uso terapéutico , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Próstata/patología , Estradiol , Óxido Nítrico/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral
15.
Methods Mol Biol ; 2695: 1-8, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450108

RESUMEN

The detection of CTCs is related to the development of tumors and can be used in medical fields such as early diagnosis, postoperative evaluation, monitoring treatment, and predicting disease prognosis. This article focuses on the entire process of CTC detection, including negative enrichment isolation and immunofluorescence in situ hybridization detection.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Técnica del Anticuerpo Fluorescente , Biomarcadores de Tumor/genética
16.
J Control Release ; 359: 147-160, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37277053

RESUMEN

Bacteria-infected chronic wound is one of the most serious complications of diabetes and characterized with high morbidity and risk of lower extremity amputation. Nitric oxide (NO) represents a promising strategy to accelerate wound healing through down-regulating inflammation, promoting angiogenesis and bacterial eradication. However, stimuli-responsive and control release of NO at the wound microenvironment remains a challenge. In this work, an injectable, self-healing and antibacterial hydrogel characterized with glucose-responsive and constant NO release behaviors has been engineered for diabetic wound management. The hydrogel (CAHG) is prepared by in situ crosslinking of L-arginine (L-Arg)-coupled chitosan and glucose oxidase (GOx)-modified hyaluronic acid based on Schiff-base reaction. The system is capable of mediating a continuous release of hydrogen peroxide (H2O2) and NO by the cascaded consumption of glucose and L-Arg in the presence of hyperglycemia environment. In vitro studies demonstrate that bacteria proliferation is significantly inhibited by CAHG hydrogel involving in the cascaded release of H2O2 and NO. More importantly, a full-thickness skin wound model on a diabetic mouse demonstrates that H2O2 and NO release from CAHG hydrogel exhibits a superior efficiency for wound healing through bacterial inhibition, down-regulation of pro-inflammatory factors and the elevation of M2-type macrophage, contributing to the collagen deposition and angiogenesis. In conclusion, CAHG hydrogel with excellent biocompatibility and glucose-responsive NO release characteristic can serve as a highly efficient therapeutic strategy for diabetic wound treatment.


Asunto(s)
Diabetes Mellitus , Glucosa , Animales , Ratones , Hidrogeles , Óxido Nítrico , Peróxido de Hidrógeno , Antibacterianos/uso terapéutico , Arginina
17.
Sensors (Basel) ; 23(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37299783

RESUMEN

Microwave plasma can improve the performance of ignition and combustion, as well as reduce pollutant emissions. By designing a novel microwave feeding device, the combustor can be used as a cavity resonator to generate microwave plasma and improve the performance of ignition and combustion. In order to feed the energy of microwave into the combustor as much as possible, and effectively adapt to the change in resonance frequency of combustor during ignition and combustion, the combustor was designed and manufactured by optimizing the size of slot antenna and setting the tuning screws, according to the simulation results of HFSS software (version: 2019 R 3). The relationship between the size, position of metal tip in the combustor and the discharge voltage was studied using HFSS software, as well as the interaction between ignition kernel, flame and microwave. The resonant characteristics of combustor and the discharge of microwave-assisted igniter were subsequently studied via experiments. The results show that the combustor as microwave cavity resonator has a wider resonance curve and can adapt to the change in resonance frequency during ignition and combustion. It is also indicated that microwave can enhance the discharge development of igniter and increase the discharge size. Based on this, the electric and magnetic field effects of microwave are decoupled.


Asunto(s)
Contaminantes Ambientales , Microondas , Programas Informáticos
18.
Pathogens ; 12(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37111396

RESUMEN

Six swine coronaviruses (SCoVs), which include porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine hemagglutination encephalomyelitis virus (PHEV), porcine respiratory coronavirus (PRCV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine delta coronavirus (PDCoV), have been reported as infecting and causing serious diseases in pigs. To investigate the genetic diversity and spatial distribution of SCoVs in clinically healthy pigs in China, we collected 6400 nasal swabs and 1245 serum samples from clinically healthy pigs at slaughterhouses in 13 provinces in 2017 and pooled them into 17 libraries by type and region for next-generation sequencing (NGS) and metavirome analyses. In total, we identified five species of SCoVs, including PEDV, PDCoV, PHEV, PRCV, and TGEV. Strikingly, PHEV was detected from all the samples in high abundance and its genome sequences accounted for 75.28% of all coronaviruses, while those belonging to TGEV (including PRCV), PEDV, and PDCoV were 20.4%, 2.66%, and 2.37%, respectively. The phylogenetic analysis showed that two lineages of PHEV have been circulating in pig populations in China. We also recognized two PRCVs which lack 672 nucleotides at the N-terminus of the S gene compared with that of TGEV. Together, we disclose preliminarily the genetic diversities of SCoVs in clinically healthy pigs in China and provide new insights into two SCoVs, PHEV and PRCV, that have been somewhat overlooked in previous studies in China.

19.
Front Microbiol ; 14: 1105529, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960283

RESUMEN

Since 2017, the new H7N9 highly pathogenic avian influenza viruses (HPAIVs) have been responsible for more than 200,000 cases of chicken infection and more than 120,000 chicken deaths in China. Our previous study found that the Q26 was chicken-origin H7N9 HPAIV. In this study, we analyzed the genetic characterization of Q24, Q65, Q66, Q85, and Q102 H7N9 avian influenza viruses isolated from Guangdong, China in 2017. Our results showed that these viruses were highly pathogenic and belonged to two different genotypes, which suggested they occurred genetic reassortant. To investigate the pathogenicity, transmission, and host immune responses of H7N9 virus in chickens, we selected Q24 and Q26 viruses to inoculate chickens. The Q24 and Q26 viruses killed all inoculated chickens within 3 days and replicated effectively in all tested tissues. They were efficiently transmitted to contact chickens and killed them within 4 days through direct contact. Furthermore, we found that the expressions of several immune-related genes (e.g., TLR3, TLR7, MDA5, MAVS, IFN-ß, IL-6, IL-8, OAS, Mx1, MHC I, and MHC II) were upregulated obviously in the lungs and spleen of chickens inoculated with the two H7N9 viruses at 24 h post-inoculation (HPI). Among these, IL-6 and IFN-ß in lungs were the most upregulated (by 341.02-381.48-fold and 472.50-500.56-fold, respectively). These results suggest that the new H7N9 viruses isolated in 2017, can replicate and transmit effectively and trigger strong immune responses in chickens, which helps us understand the genetic and pathogenic variations of H7N9 HPAIVs in China.

20.
Am J Transl Res ; 15(1): 596-611, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777831

RESUMEN

OBJECTIVE: To explore the pharmacological mechanism and molecular targets of Tianma Gouteng Decoction (TMGTD) in the treatment of Parkinson's disease (PD). METHODS: We applied network pharmacology to screen the active components of TMGTD and predict target genes in multiple Chinese herbal medicine databases and compound databases, and built a drug-ingredient-target network. Then, we used the CytoHubba plug-in to filter out the core components of TMGTD according to the order of degree value. We screened PD-related pathogenic targets in the DrugBank, Genecard and OMIM databases from high to low in Betweenness Centrality (BC) value and Closeness Centrality (CC) value. Subsequently, we determined the intersection target of TMGTD and PD by Venn diagram and performed protein-protein interaction (PPI) analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on core molecules and intersection targets. Finally, molecular docking was performed to verify the binding of the top three core molecules of TMGTD with the top three core targets of PD. RESULTS: The core components of TMGTD are quercetin, kaempferol and palmitic acid. The main targets of TMGTD in the treatment of PD are ALB, GAPDH and AKT1. GO analysis and KEGG analysis showed that the biological process of TMGTD in the treatment of PD is closely related to the activities of neurotransmitter receptors, G protein-coupled receptors and dopamine neurotransmitter receptors. TMGTD possesses therapeutic effects on PD mainly through the PI3K-Akt signaling pathway and MAPK signaling pathway. Molecular docking shows the high affinity of the quercetin, kaempferol and palmitic acid with PD core targets. CONCLUSION: TMGTD plays a pivotal role in the treatment of PD through multiple components, multiple targets and multiple pathways. The results provide a research direction for the subsequent exploration of the mechanism of TMGTD in PD treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA