Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 19(2): e2204694, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403215

RESUMEN

Disturbed blood flow induces endothelial pro-inflammatory responses that promote atherogenesis. Nanoparticle-based therapeutics aimed at treating endothelial inflammation in vasculature where disturbed flow occurs may provide a promising avenue to prevent atherosclerosis. By using a vertical-step flow apparatus and a microfluidic chip of vascular stenosis, herein, it is found that the disk-shaped versus the spherical nanoparticles exhibit preferential margination (localization and adhesion) to the regions with the pro-atherogenic disturbed flow. By employing a mouse model of carotid partial ligation, superior targeting and higher accumulation of the disk-shaped particles are also demonstrated within disturbed flow areas than that of the spherical particles. In hyperlipidemia mice, administration of disk-shaped particles loaded with hypomethylating agent decitabine (DAC) displays greater anti-inflammatory and anti-atherosclerotic effects compared with that of the spherical counterparts and exhibits reduced toxicity than "naked" DAC. The findings suggest that shaping nanoparticles to disk is an effective strategy for promoting their delivery to atheroprone endothelia.


Asunto(s)
Aterosclerosis , Nanopartículas , Animales , Ratones , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Arterias Carótidas
2.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810252

RESUMEN

Vascular endothelial cells are exposed to shear stresses with disturbed vs. laminar flow patterns, which lead to proinflammatory vs. antiinflammatory phenotypes, respectively. Effective treatment against endothelial inflammation and the consequent atherogenesis requires the identification of new therapeutic molecules and the development of drugs targeting these molecules. Using Connectivity Map, we have identified vitexin, a natural flavonoid, as a compound that evokes the gene-expression changes caused by pulsatile shear, which mimics laminar flow with a clear direction, vs. oscillatory shear (OS), which mimics disturbed flow without a clear direction. Treatment with vitexin suppressed the endothelial inflammation induced by OS or tumor necrosis factor-α. Administration of vitexin to mice subjected to carotid partial ligation blocked the disturbed flow-induced endothelial inflammation and neointimal formation. In hyperlipidemic mice, treatment with vitexin ameliorated atherosclerosis. Using SuperPred, we predicted that apurinic/apyrimidinic endonuclease1 (APEX1) may directly interact with vitexin, and we experimentally verified their physical interactions. OS induced APEX1 nuclear translocation, which was inhibited by vitexin. OS promoted the binding of acetyltransferase p300 to APEX1, leading to its acetylation and nuclear translocation. Functionally, knocking down APEX1 with siRNA reversed the OS-induced proinflammatory phenotype, suggesting that APEX1 promotes inflammation by orchestrating the NF-κB pathway. Animal experiments with the partial ligation model indicated that overexpression of APEX1 negated the action of vitexin against endothelial inflammation, and that endothelial-specific deletion of APEX1 ameliorated atherogenesis. We thus propose targeting APEX1 with vitexin as a potential therapeutic strategy to alleviate atherosclerosis.


Asunto(s)
Apigenina/genética , Apigenina/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Células Endoteliales/metabolismo , Transporte Activo de Núcleo Celular , Animales , Aterosclerosis , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación , Ratones , Fenotipo , Fosforilación , Unión Proteica , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Factores de Transcripción p300-CBP/metabolismo
3.
Cell Death Dis ; 11(1): 35, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959742

RESUMEN

Vascular smooth muscle cell (SMC) from arterial stenotic-occlusive diseases is featured with deficiency in mitochondrial respiration and loss of cell contractility. However, the regulatory mechanism of mitochondrial genes and mitochondrial energy metabolism in SMC remains elusive. Here, we described that DNA methyltransferase 1 (DNMT1) translocated to the mitochondria and catalyzed D-loop methylation of mitochondrial DNA in vascular SMCs in response to platelet-derived growth factor-BB (PDGF-BB). Mitochondrial-specific expression of DNMT1 repressed mitochondrial gene expression, caused functional damage, and reduced SMC contractility. Hypermethylation of mitochondrial D-loop regions were detected in the intima-media layer of mouse carotid arteries subjected to either cessation of blood flow or mechanical endothelial injury, and also in vessel specimens from patients with carotid occlusive diseases. Likewise, the ligated mouse arteries exhibited an enhanced mitochondrial binding of DNMT1, repressed mitochondrial gene expression, defects in mitochondrial respiration, and impaired contractility. The impaired contractility of a ligated vessel could be restored by ex vivo transplantation of DNMT1-deleted mitochondria. In summary, we discovered the function of DNMT1-mediated mitochondrial D-loop methylation in the regulation of mitochondrial gene transcription. Methylation of mitochondrial D-loop in vascular SMCs contributes to impaired mitochondrial function and loss of contractile phenotype in vascular occlusive disease.


Asunto(s)
Metilación de ADN/genética , ADN Mitocondrial/genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Animales , Becaplermina/farmacología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Respiración de la Célula/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Enfermedades Vasculares/genética , Enfermedades Vasculares/patología
4.
Sci Rep ; 7(1): 14996, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118325

RESUMEN

The earliest atherosclerotic lesions preferentially develop in arterial regions experienced disturbed blood flow, which induces endothelial expression of pro-atherogenic genes and the subsequent endothelial dysfunction. Our previous study has demonstrated an up-regulation of DNA methyltransferase 1 (DNMT1) and a global hypermethylation in vascular endothelium subjected to disturbed flow. Here, we determined that DNMT1-specific inhibition in arterial wall ameliorates the disturbed flow-induced atherosclerosis through, at least in part, targeting cell cycle regulator cyclin A and connective tissue growth factor (CTGF). We identified the signaling pathways mediating the flow-induction of DNMT1. Inhibition of the mammalian target of rapamycin (mTOR) suppressed the DNMT1 up-regulation both in vitro and in vivo. Together, our results demonstrate that disturbed flow influences endothelial function and induces atherosclerosis in an mTOR/DNMT1-dependent manner. The conclusions obtained from this study might facilitate further evaluation of the epigenetic regulation of endothelial function during the pathological development of atherosclerosis and offer novel prevention and therapeutic targets of this disease.


Asunto(s)
Aterosclerosis/patología , Endotelio Vascular/patología , Epigénesis Genética/fisiología , Hemorreología/fisiología , Animales , Arterias/patología , Arterias/fisiopatología , Aterosclerosis/genética , Aterosclerosis/fisiopatología , Bovinos , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Ciclina A/genética , Ciclina A/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/fisiología , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Regiones Promotoras Genéticas/genética , Serina-Treonina Quinasas TOR/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(31): 8271-8276, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716920

RESUMEN

Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-specific initiation of EC-to-SMC signaling remains elusive. Our previous study demonstrated that endothelial microRNA-126-3p (miR-126-3p) acts as a key intercellular molecule to increase turnover of the recipient SMCs, and that its release is reduced by atheroprotective laminar shear (12 dynes/cm2) to ECs. Here we provide evidence that atherogenic oscillatory shear (0.5 ± 4 dynes/cm2), but not atheroprotective pulsatile shear (12 ± 4 dynes/cm2), increases the endothelial secretion of nonmembrane-bound miR-126-3p and other microRNAs (miRNAs) via the activation of SNAREs, vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated protein 23 (SNAP23). Knockdown of VAMP3 and SNAP23 reduces endothelial secretion of miR-126-3p and miR-200a-3p, as well as the proliferation, migration, and suppression of contractile markers in SMCs caused by EC-coculture. Pharmacological intervention of mammalian target of rapamycin complex 1 in ECs blocks endothelial secretion and EC-to-SMC transfer of miR-126-3p through transcriptional inhibition of VAMP3 and SNAP23. Systemic inhibition of VAMP3 and SNAP23 by rapamycin or periadventitial application of the endocytosis inhibitor dynasore ameliorates the disturbed flow-induced neointimal formation, whereas intraluminal overexpression of SNAP23 aggravates it. Our findings demonstrate the flow-pattern-specificity of SNARE activation and its contribution to the miRNA-mediated EC-SMC communication.


Asunto(s)
Hiperplasia/patología , MicroARNs/metabolismo , Músculo Liso Vascular/citología , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/metabolismo , Animales , Células Endoteliales/fisiología , Humanos , Ratones , Ratones Noqueados , MicroARNs/genética , Miocitos del Músculo Liso/fisiología , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Proteínas SNARE/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...