Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 14(6): 1048-1063, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38393391

RESUMEN

Early kinetics of circulating tumor DNA (ctDNA) in plasma predict response to pembrolizumab but typically requires sequencing of matched tumor tissue or fixed gene panels. We analyzed genome-wide methylation and fragment-length profiles using cell-free methylated DNA immunoprecipitation and sequencing (cfMeDIP-seq) in 204 plasma samples from 87 patients before and during treatment with pembrolizumab from a pan-cancer phase II investigator-initiated trial (INSPIRE). We trained a pan-cancer methylation signature using independent methylation array data from The Cancer Genome Atlas to quantify cancer-specific methylation (CSM) and fragment-length score (FLS) for each sample. CSM and FLS are strongly correlated with tumor-informed ctDNA levels. Early kinetics of CSM predict overall survival and progression-free survival, independently of tumor type, PD-L1, and tumor mutation burden. Early kinetics of FLS are associated with overall survival independently of CSM. Our tumor-naïve mutation-agnostic ctDNA approach integrating methylomics and fragmentomics could predict outcomes in patients treated with pembrolizumab. SIGNIFICANCE: Analysis of methylation and fragment length in plasma using cfMeDIP-seq provides a tumor-naive approach to measure ctDNA with results comparable with a tumor-informed bespoke ctDNA. Early kinetics within the first weeks of treatment in methylation and fragment quantity can predict outcomes with pembrolizumab in patients with various advanced solid tumors. This article is featured in Selected Articles from This Issue, p. 897.


Asunto(s)
Anticuerpos Monoclonales Humanizados , ADN Tumoral Circulante , Metilación de ADN , Neoplasias , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/sangre , Neoplasias/mortalidad , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Antineoplásicos Inmunológicos/uso terapéutico , Femenino , Masculino , Epigenoma , Pronóstico , Resultado del Tratamiento
2.
Cancer Discov ; 14(1): 104-119, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-37874259

RESUMEN

People with Li-Fraumeni syndrome (LFS) harbor a germline pathogenic variant in the TP53 tumor suppressor gene, face a near 100% lifetime risk of cancer, and routinely undergo intensive surveillance protocols. Liquid biopsy has become an attractive tool for a range of clinical applications, including early cancer detection. Here, we provide a proof-of-principle for a multimodal liquid biopsy assay that integrates a targeted gene panel, shallow whole-genome, and cell-free methylated DNA immunoprecipitation sequencing for the early detection of cancer in a longitudinal cohort of 89 LFS patients. Multimodal analysis increased our detection rate in patients with an active cancer diagnosis over uni-modal analysis and was able to detect cancer-associated signal(s) in carriers prior to diagnosis with conventional screening (positive predictive value = 67.6%, negative predictive value = 96.5%). Although adoption of liquid biopsy into current surveillance will require further clinical validation, this study provides a framework for individuals with LFS. SIGNIFICANCE: By utilizing an integrated cell-free DNA approach, liquid biopsy shows earlier detection of cancer in patients with LFS compared with current clinical surveillance methods such as imaging. Liquid biopsy provides improved accessibility and sensitivity, complementing current clinical surveillance methods to provide better care for these patients. See related commentary by Latham et al., p. 23. This article is featured in Selected Articles from This Issue, p. 5.


Asunto(s)
Ácidos Nucleicos Libres de Células , Síndrome de Li-Fraumeni , Humanos , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patología , Proteína p53 Supresora de Tumor/genética , Detección Precoz del Cáncer , Ácidos Nucleicos Libres de Células/genética , Genes p53 , Mutación de Línea Germinal , Predisposición Genética a la Enfermedad
3.
Bioinformatics ; 39(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37402621

RESUMEN

SUMMARY: Cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq) has emerged as a promising liquid biopsy technology to detect cancers and monitor treatments. While several bioinformatics tools for DNA methylation analysis have been adapted for cfMeDIP-seq data, an end-to-end pipeline and quality control framework specifically for this data type is still lacking. Here, we present the MEDIPIPE, which provides a one-stop solution for cfMeDIP-seq data quality control, methylation quantification, and sample aggregation. The major advantages of MEDIPIPE are: (i) ease of implementation and reproducibility with Snakemake containerized execution environments that will be automatically deployed via Conda; (ii) flexibility to handle different experimental settings with a single configuration file; and (iii) computationally efficiency for large-scale cfMeDIP-seq profiling data analysis and aggregation. AVAILABILITY AND IMPLEMENTATION: This pipeline is an open-source software under the MIT license and it is freely available at https://github.com/pughlab/MEDIPIPE.


Asunto(s)
Ácidos Nucleicos Libres de Células , Programas Informáticos , Reproducibilidad de los Resultados , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoprecipitación , Control de Calidad
4.
Cancer Res Commun ; 3(2): 267-280, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36860651

RESUMEN

Uveal melanomas are rare tumors arising from melanocytes that reside in the eye. Despite surgical or radiation treatment, approximately 50% of patients with uveal melanoma will progress to metastatic disease, most often to the liver. Cell-free DNA (cfDNA) sequencing is a promising technology due to the minimally invasive sample collection and ability to infer multiple aspects of tumor response. We analyzed 46 serial cfDNA samples from 11 patients with uveal melanoma over a 1-year period following enucleation or brachytherapy (n = ∼4/patient) using targeted panel, shallow whole genome, and cell-free methylated DNA immunoprecipitation sequencing. We found detection of relapse was highly variable using independent analyses (P = 0.06-0.46), whereas a logistic regression model integrating all cfDNA profiles significantly improved relapse detection (P = 0.02), with greatest power derived from fragmentomic profiles. This work provides support for the use of integrated analyses to improve the sensitivity of circulating tumor DNA detection using multi-modal cfDNA sequencing. Significance: Here, we demonstrate integrated, longitudinal cfDNA sequencing using multi-omic approaches is more effective than unimodal analysis. This approach supports the use of frequent blood testing using comprehensive genomic, fragmentomic, and epigenomic techniques.


Asunto(s)
Ácidos Nucleicos Libres de Células , Melanoma , Neoplasias de la Úvea , Humanos , Ácidos Nucleicos Libres de Células/genética , Recurrencia Local de Neoplasia , Melanoma/diagnóstico , Neoplasias de la Úvea/diagnóstico
5.
Nat Cancer ; 1(4): 452-468, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121966

RESUMEN

Advanced and metastatic tumors with complex treatment histories drive cancer mortality. Here we describe the POG570 cohort, a comprehensive whole-genome, transcriptome and clinical dataset, amenable for exploration of the impacts of therapies on genomic landscapes. Previous exposure to DNA-damaging chemotherapies and mutations affecting DNA repair genes, including POLQ and genes encoding Polζ, were associated with genome-wide, therapy-induced mutagenesis. Exposure to platinum therapies coincided with signatures SBS31 and DSB5 and, when combined with DNA synthesis inhibitors, signature SBS17b. Alterations in ESR1, EGFR, CTNNB1, FGFR1, VEGFA and DPYD were consistent with drug resistance and sensitivity. Recurrent noncoding events were found in regulatory region hotspots of genes including TERT, PLEKHS1, AP2A1 and ADGRG6. Mutation burden and immune signatures corresponded with overall survival and response to immunotherapy. Our data offer a rich resource for investigation of advanced cancers and interpretation of whole-genome and transcriptome sequencing in the context of a cancer clinic.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico
6.
Proc Natl Acad Sci U S A ; 116(38): 19098-19108, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31471491

RESUMEN

Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of MGMT expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Glioblastoma/patología , Células Madre Neoplásicas/patología , Microambiente Tumoral/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Neoplasias Encefálicas/genética , Estudios de Casos y Controles , Proliferación Celular , Metilación de ADN , Resistencia a Antineoplásicos , Femenino , Perfilación de la Expresión Génica , Glioblastoma/genética , Humanos , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Transcriptoma , Células Tumorales Cultivadas , Secuenciación Completa del Genoma , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Artículo en Inglés | MEDLINE | ID: mdl-31160355

RESUMEN

Pancreatic neuroendocrine neoplasms (PanNENs) represent a minority of pancreatic neoplasms that exhibit variability in prognosis. Ongoing mutational analyses of PanNENs have found recurrent abnormalities in chromatin remodeling genes (e.g., DAXX and ATRX), and mTOR pathway genes (e.g., TSC2, PTEN PIK3CA, and MEN1), some of which have relevance to patients with related familial syndromes. Most recently, grade 3 PanNENs have been divided into two groups based on differentiation, creating a new group of well-differentiated grade 3 neuroendocrine tumors (PanNETs) that have had a limited whole-genome level characterization to date. In a patient with a metastatic well-differentiated grade 3 PanNET, our study utilized whole-genome sequencing of liver metastases for the comparative analysis and detection of single-nucleotide variants, insertions and deletions, structural variants, and copy-number variants, with their biologic relevance confirmed by RNA sequencing. We found that this tumor most notably exhibited a TSC1-disrupting fusion, showed a novel CHD7-BEND2 fusion, and lacked any somatic variants in ATRX, DAXX, and MEN1.


Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Genómica , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Adulto , Biopsia con Aguja Gruesa , Perfilación de la Expresión Génica , Fusión Génica , Humanos , Hígado/patología , Masculino , Metástasis de la Neoplasia , Tumores Neuroendocrinos/clasificación , Tumores Neuroendocrinos/patología , Páncreas/patología , Neoplasias Pancreáticas/clasificación , Neoplasias Pancreáticas/patología , Pronóstico , Secuenciación del Exoma
8.
Nat Methods ; 16(6): 505-507, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110280

RESUMEN

Tumors from individuals with cancer are frequently genetically profiled for information about the driving forces behind the disease. We present the CancerMine resource, a text-mined and routinely updated database of drivers, oncogenes and tumor suppressors in different types of cancer. All data are available online ( http://bionlp.bcgsc.ca/cancermine ) and downloadable under a Creative Commons Zero license for ease of use.


Asunto(s)
Minería de Datos/métodos , Bases de Datos Factuales , Genes Supresores de Tumor , Neoplasias/genética , Oncogenes , Publicaciones Periódicas como Asunto , Programas Informáticos , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Humanos
9.
Artículo en Inglés | MEDLINE | ID: mdl-30833417

RESUMEN

We report a case of early-onset pancreatic ductal adenocarcinoma in a patient harboring biallelic MUTYH germline mutations, whose tumor featured somatic mutational signatures consistent with defective MUTYH-mediated base excision repair and the associated driver KRAS transversion mutation p.Gly12Cys. Analysis of an additional 730 advanced cancer cases (N = 731) was undertaken to determine whether the mutational signatures were also present in tumors from germline MUTYH heterozygote carriers or if instead the signatures were only seen in those with biallelic loss of function. We identified two patients with breast cancer each carrying a pathogenic germline MUTYH variant with a somatic MUTYH copy loss leading to the germline variant being homozygous in the tumor and demonstrating the same somatic signatures. Our results suggest that monoallelic inactivation of MUTYH is not sufficient for C:G>A:T transversion signatures previously linked to MUTYH deficiency to arise (N = 9), but that biallelic complete loss of MUTYH function can cause such signatures to arise even in tumors not classically seen in MUTYH-associated polyposis (N = 3). Although defective MUTYH is not the only determinant of these signatures, MUTYH germline variants may be present in a subset of patients with tumors demonstrating elevated somatic signatures possibly suggestive of MUTYH deficiency (e.g., COSMIC Signature 18, SigProfiler SBS18/SBS36, SignatureAnalyzer SBS18/SBS36).


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal Pancreático/genética , ADN Glicosilasas/genética , Mutación , Neoplasias Pancreáticas/genética , Edad de Inicio , ADN Glicosilasas/deficiencia , Femenino , Mutación de Línea Germinal , Humanos , Pérdida de Heterocigocidad , Persona de Mediana Edad , Proteínas Proto-Oncogénicas p21(ras)/genética
10.
Blood ; 133(12): 1313-1324, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30617194

RESUMEN

Although generally curable with intensive chemotherapy in resource-rich settings, Burkitt lymphoma (BL) remains a deadly disease in older patients and in sub-Saharan Africa. Epstein-Barr virus (EBV) positivity is a feature in more than 90% of cases in malaria-endemic regions, and up to 30% elsewhere. However, the molecular features of BL have not been comprehensively evaluated when taking into account tumor EBV status or geographic origin. Through an integrative analysis of whole-genome and transcriptome data, we show a striking genome-wide increase in aberrant somatic hypermutation in EBV-positive tumors, supporting a link between EBV and activation-induced cytidine deaminase (AICDA) activity. In addition to identifying novel candidate BL genes such as SIN3A, USP7, and CHD8, we demonstrate that EBV-positive tumors had significantly fewer driver mutations, especially among genes with roles in apoptosis. We also found immunoglobulin variable region genes that were disproportionally used to encode clonal B-cell receptors (BCRs) in the tumors. These include IGHV4-34, known to produce autoreactive antibodies, and IGKV3-20, a feature described in other B-cell malignancies but not yet in BL. Our results suggest that tumor EBV status defines a specific BL phenotype irrespective of geographic origin, with particular molecular properties and distinct pathogenic mechanisms. The novel mutation patterns identified here imply rational use of DNA-damaging chemotherapy in some patients with BL and targeted agents such as the CDK4/6 inhibitor palbociclib in others, whereas the importance of BCR signaling in BL strengthens the potential benefit of inhibitors for PI3K, Syk, and Src family kinases among these patients.


Asunto(s)
Biomarcadores de Tumor/genética , Linfoma de Burkitt/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Genes de Inmunoglobulinas , Genoma Humano , Mutación , Transcriptoma , Adolescente , Adulto , Linfoma de Burkitt/patología , Linfoma de Burkitt/virología , Niño , Preescolar , Estudios de Cohortes , Citidina Desaminasa/genética , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/virología , Femenino , Estudios de Seguimiento , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo , Pronóstico , Adulto Joven
11.
JCO Precis Oncol ; 3: 1-25, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35100702

RESUMEN

PURPOSE: This study investigated therapeutic potential of integrated genome and transcriptome profiling of metastatic sarcoma, a rare but extremely heterogeneous group of aggressive mesenchymal malignancies with few systemic therapeutic options. METHODS: Forty-three adult patients with advanced or metastatic non-GI stromal tumor sarcomas of various histology subtypes who were enrolled in the Personalized OncoGenomics program at BC Cancer were included in this study. Fresh tumor tissues along with blood samples underwent whole-genome and transcriptome sequencing. RESULTS: The most frequent genomic alterations in this cohort are large-scale structural variation and somatic copy number variation. Outlier RNA expression as well as somatic copy number variations, structural variations, and small mutations together suggest the presence of one or more potential therapeutic targets in the majority of patients in our cohort. Point mutations or deletions in known targetable cancer genes are rare; for example, tuberous sclerosis complex 2 provides a rationale for targeting the mammalian target of rapamycin pathway, resulting in a few patients with exceptional clinical benefit from everolimus. In addition, we observed recurrent 17p11-12 amplifications, which seem to be a sarcoma-specific event. This may suggest that this region harbors an oncogene(s) that is significant for sarcoma tumorigenesis. Furthermore, some sarcoma tumors carrying a distinct mutational signature suggestive of homologous recombination deficiency seem to demonstrate sensitivity to double-strand DNA-damaging agents. CONCLUSION: Integrated large-scale genomic analysis may provide insights into potential therapeutic targets as well as novel biologic features of metastatic sarcomas that could fuel future experimental and clinical research and help design biomarker-driven basket clinical trials for novel therapeutic strategies.

12.
Artículo en Inglés | MEDLINE | ID: mdl-29844223

RESUMEN

Genome sequencing of cancer has fundamentally advanced our understanding of the underlying biology of this disease, and more recently has provided approaches to characterize and monitor tumors in the clinic, guiding and evaluating treatment. Although cancer research is relying more on whole-genome characterization, the clinical application of genomics is largely limited to targeted sequencing approaches, tailored to capture specific clinically relevant biomarkers. However, as sequencing costs reduce, and the tools to effectively analyze complex and large-scale data improve, the ability to effectively characterize whole genomes at scale in a clinically relevant time frame is now being piloted. This ability effectively blurs the line between clinical cancer research and the clinical management of the disease. This leads to a new paradigm in cancer management in which real-time analysis of an individual's disease can have a rapid and lasting impact on our understanding of how clinical practices need to change to exploit novel therapeutic rationales. In this article, we will discuss how whole-genome sequencing (WGS), often combined with transcriptome analysis, has been used to understand cancer and how this approach is uniquely positioned to provide a comprehensive view of an evolving disease in response to therapy.


Asunto(s)
Neoplasias/genética , Secuenciación Completa del Genoma/métodos , Neoplasias Encefálicas/genética , Neoplasias Colorrectales/genética , Inestabilidad Genómica/genética , Variación Estructural del Genoma/genética , Recombinación Homóloga/genética , Proyecto Genoma Humano , Humanos , Inmunoterapia/métodos , Cariotipo , Neoplasias/terapia , Síndromes Neoplásicos Hereditarios/genética , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/tendencias
13.
Nat Commun ; 9(1): 4001, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275490

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature B-cells. Prognosis is strongly associated with molecular subgroup, although the driver mutations that distinguish the two main subgroups remain poorly defined. Through an integrative analysis of whole genomes, exomes, and transcriptomes, we have uncovered genes and non-coding loci that are commonly mutated in DLBCL. Our analysis has identified novel cis-regulatory sites, and implicates recurrent mutations in the 3' UTR of NFKBIZ as a novel mechanism of oncogene deregulation and NF-κB pathway activation in the activated B-cell (ABC) subgroup. Small amplifications associated with over-expression of FCGR2B (the Fcγ receptor protein IIB), primarily in the germinal centre B-cell (GCB) subgroup, correlate with poor patient outcomes suggestive of a novel oncogene. These results expand the list of subgroup driver mutations that may facilitate implementation of improved diagnostic assays and could offer new avenues for the development of targeted therapeutics.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes Reguladores/genética , Variación Genética , Genoma Humano/genética , Linfoma de Células B Grandes Difuso/genética , Regiones no Traducidas 3'/genética , Proteínas Adaptadoras Transductoras de Señales , Linfocitos B/metabolismo , Linfocitos B/patología , Línea Celular Tumoral , Exoma/genética , Estudio de Asociación del Genoma Completo , Centro Germinal/metabolismo , Centro Germinal/patología , Humanos , Proteínas I-kappa B/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Mutación , Proteínas Nucleares/genética , Receptores de IgG/genética , Análisis de Secuencia de ADN , Transcriptoma
15.
Artículo en Inglés | MEDLINE | ID: mdl-29092957

RESUMEN

Pancreatic neuroendocrine tumors (PNETs) are a genomically and clinically heterogeneous group of pancreatic neoplasms often diagnosed with distant metastases. Recurrent somatic mutations, chromosomal aberrations, and gene expression signatures in PNETs have been described, but the clinical significance of these molecular changes is still poorly understood, and the clinical outcomes of PNET patients remain highly variable. To help identify the molecular factors that contribute to PNET progression and metastasis, and as part of an ongoing clinical trial at the BC Cancer Agency (clinicaltrials.gov ID: NCT02155621), the genomic and transcriptomic profiles of liver metastases from five patients (four PNETs and one neuroendocrine carcinoma) were analyzed. In four of the five cases, we identified biallelic loss of MEN1 and DAXX as well as recurrent regions with loss of heterozygosity. Several novel findings were observed, including focal amplification of MYCN concomitant with loss of APC and TP53 in one sample with wild-type MEN1 and DAXX Transcriptome analyses revealed up-regulation of MYCN target genes in this sample, confirming a MYCN-driven gene expression signature. We also identified a germline NTHL1 fusion event in one sample that resulted in a striking C>T mutation signature profile not previously reported in PNETs. These varying molecular alterations suggest different cellular pathways may contribute to PNET progression, consistent with the heterogeneous clinical nature of this disease. Furthermore, genomic profiles appeared to correlate well with treatment response, lending support to the role of prospective genotyping efforts to guide therapy in PNETs.


Asunto(s)
Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Transcriptoma/genética , Secuenciación Completa del Genoma , Adulto , Anciano , Resultado Fatal , Femenino , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Resultado del Tratamiento
16.
Clin Cancer Res ; 23(24): 7521-7530, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29246904

RESUMEN

Purpose: Recent studies have identified mutation signatures of homologous recombination deficiency (HRD) in over 20% of breast cancers, as well as pancreatic, ovarian, and gastric cancers. There is an urgent need to understand the clinical implications of HRD signatures. Whereas BRCA1/2 mutations confer sensitivity to platinum-based chemotherapies, it is not yet clear whether mutation signatures can independently predict platinum response.Experimental Design: In this observational study, we sequenced tumor whole genomes (100× depth) and matched normals (60×) of 93 advanced-stage breast cancers (33 platinum-treated). We computed a published metric called HRDetect, independently trained to predict BRCA1/2 status, and assessed its capacity to predict outcomes on platinum-based chemotherapies. Clinical endpoints were overall survival (OS), total duration on platinum-based therapy (TDT), and radiographic evidence of clinical improvement (CI).Results: HRDetect predicted BRCA1/2 status with an area under the curve (AUC) of 0.94 and optimal threshold of 0.7. Elevated HRDetect was also significantly associated with CI on platinum-based therapy (AUC = 0.89; P = 0.006) with the same optimal threshold, even after adjusting for BRCA1/2 mutation status and treatment timing. HRDetect scores over 0.7 were associated with a 3-month extended median TDT (P = 0.0003) and 1.3-year extended median OS (P = 0.04).Conclusions: Our findings not only independently validate HRDetect, but also provide the first evidence of its association with platinum response in advanced breast cancer. We demonstrate that HRD mutation signatures may offer clinically relevant information independently of BRCA1/2 mutation status and hope this work will guide the development of clinical trials. Clin Cancer Res; 23(24); 7521-30. ©2017 AACR.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Recombinación Homóloga/genética , Neoplasias de la Mama Triple Negativas/genética , Supervivencia sin Enfermedad , Femenino , Recombinación Homóloga/efectos de los fármacos , Humanos , Persona de Mediana Edad , Mutación , Estadificación de Neoplasias , Platino (Metal)/administración & dosificación , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Secuenciación Completa del Genoma
17.
Clin Invest Med ; 39(5): E142-E149, 2016 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-27805897

RESUMEN

The 2015 Annual General Meeting of The Canadian Society of Clinician Investigators (CSCI) and Clinician Investigator Trainee Association of Canada/Association des Cliniciens-Chercheurs en Formation du Canada (CITAC/ACCFC) was held in Toronto November 23-25, 2015, in conjunction with The University of Toronto Clinician Investigator Program Research Day. The theme for this year's meeting was "It takes a village" and the focus was the various support systems necessary to train a successful clinician scientist. The meeting featured an opening presentation by Dr. Vincent Dumez and workshops by Dr. Peter Nickerson, Dr. Jane Aubin, Dr. Kelly Warmington and Dr. Norman Rosenblum, and MD/PhD trainees Nardin Samuel, Kevin Wang and Kirill Zaslavsky. The keynote speakers were Dr. David Malkin (Hospital for Sick Children) who received the CSCI-RCPSC Henry Friesen Award, Dr. Brent Richards (McGill University) who received the Joe Doupe Award and Ernesto Shiffrin (Lady Davis Institute) who received the Distinguished Scientist Award. As always, the conference showcased outstanding scientific presentations from clinician investigator trainees from across the country at the Young Investigators' Forum. The research topics, which ranged from basic sciences to clinical medicine and translational work, are summarized in this review. Over 90 abstracts were presented at this year's meeting during two poster sessions, with several of the outstanding abstracts selected for oral presentations.


Asunto(s)
Investigación Biomédica/métodos , Investigadores , Canadá , Cardiología/métodos , Educación Médica , Humanos , Medicina Interna/métodos , Oncología Médica/métodos , Ontario , Investigación Biomédica Traslacional , Universidades
18.
Hum Mutat ; 34(4): 661-6, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23401191

RESUMEN

A forum of the Human Variome Project (HVP) was held as a satellite to the 2012 Annual Meeting of the American Society of Human Genetics in San Francisco, California. The theme of this meeting was "Getting Ready for the Human Phenome Project." Understanding the genetic contribution to both rare single-gene "Mendelian" disorders and more complex common diseases will require integration of research efforts among many fields and better defined phenotypes. The HVP is dedicated to bringing together researchers and research populations throughout the world to provide the resources to investigate the impact of genetic variation on disease. To this end, there needs to be a greater sharing of phenotype and genotype data. For this to occur, many databases that currently exist will need to become interoperable to allow for the combining of cohorts with similar phenotypes to increase statistical power for studies attempting to identify novel disease genes or causative genetic variants. Improved systems and tools that enhance the collection of phenotype data from clinicians are urgently needed. This meeting begins the HVP's effort toward this important goal.


Asunto(s)
Bases de Datos Genéticas , Proyecto Genoma Humano , Fenotipo , Biología Computacional , Humanos
19.
Nature ; 476(7360): 298-303, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21796119

RESUMEN

Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). Here we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case to identify genes with mutations in B-cell NHL. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase, and 11.4% and 13.4% of DLBCL and FL cases, respectively, had mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis.


Asunto(s)
Histonas/metabolismo , Linfoma no Hodgkin/genética , Mutación/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genoma Humano/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Pérdida de Heterocigocidad/genética , Linfoma Folicular/enzimología , Linfoma Folicular/genética , Linfoma de Células B Grandes Difuso/enzimología , Linfoma de Células B Grandes Difuso/genética , Linfoma no Hodgkin/enzimología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción MEF2 , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...