Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38936977

RESUMEN

Ovarian cancer is the most lethal gynecological malignancy, with a 5-year survival rate of approximately 50%. The dismal prognosis is due in part to metastatic disease and acquired drug resistance to conventional chemotherapies such as taxanes. Colchicine binding site inhibitors (CBSIs) are attractive alternatives to taxanes because they could potentially achieve oral bioavailability and overcome drug resistance associated with the prolonged use of taxanes. VERU-111 is one of the most advanced CBSIs that is orally available, potent, well-tolerated, and has shown good efficacy in several preclinical solid tumor models. Here, we demonstrate for the first time the in vitro potency of VERU-111 as well as its efficacy at inhibiting tumor growth and metastasis in an orthotopic ovarian cancer mouse model. VERU-111 has nanomolar potency against ovarian cancer cell lines and strongly inhibits colony formation, proliferation, invasion, and migration. VERU-111 disrupts microtubule formation to induce mitotic catastrophe and, ultimately, apoptosis in a concentration-dependent manner. The efficacy of VERU-111 was comparable with standard chemotherapy paclitaxel, the current first-line treatment for ovarian cancer, with no observed synergy with combination paclitaxel + VERU-111 treatment. In vivo, VERU-111 markedly suppressed ovarian tumor growth and completely suppressed distant organ metastasis. Together, these results support VERU-111 for its potential as a novel therapy for ovarian cancer, particularly for late-stage metastatic disease. Significance Statement VERU-111 is an investigational new drug and has comparable efficacy as paclitaxel in suppressing tumor cell proliferation, colony formation, and migration in ovarian cancer models in vitro and has potent in vivo anti-tumor and anti-metastatic activity in an orthotopic ovarian cancer mouse model. VERU-111 has low systemic toxicity and, unlike paclitaxel, is orally bioavailable and is not a substrate for the major drug efflux transporters, making it a promising and attractive alternative to taxane-based therapy.

2.
Mol Breed ; 44(6): 38, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38766511

RESUMEN

Cotton fibers are specialized single-cell trichomes derived from epidermal cells, similar to root hairs and trichomes in Arabidopsis. While the MYB-bHLH-WD40 (MBW) complex has been shown to regulate initiation of both root hairs and trichomes in Arabidopsis, the role of their homologous gene in cotton fiber initiation remains unknown. In this study, we identified a R2R3 MYB transcription factor (TF), GhWER, which exhibited a significant increase in expression within the outer integument of ovule at -1.5 DPA (days post anthesis). Its expression peaked at -1 DPA and then gradually decreased. Knockout of GhWER using CRISPR technology inhibited the initiation and early elongation of fiber initials, resulting in the shorter mature fiber length. Additionally, GhWER interacted with two bHLH TF, GhDEL65 and GhbHLH121, suggesting a potential regulatory complex for fiber development. RNA-seq analysis of the outer integument of the ovule at -1.5 DPA revealed that the signal transduction pathways of ethylene, auxin and gibberellin were affected in the GhWER knockout lines. Further examination demonstrated that GhWER directly activated ethylene signaling genes, including ACS1 and ETR2. These findings highlighted the biological function of GhWER in regulating cotton fiber initiation and early elongation, which has practical significance for improving fiber quality and yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01477-6.

3.
Plant Cell ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38447960

RESUMEN

Cotton (Gossypium hirsutum) fibers, vital natural textile materials, are single-cell trichomes that differentiate from the ovule epidermis. These fibers are categorized as lint (longer fibers useful for spinning) or fuzz (shorter, less useful fibers). Currently, developing cotton varieties with high lint yield but without fuzz remains challenging due to our limited knowledge of the molecular mechanisms underlying fiber initiation. This study presents the identification and characterization of a naturally occurring dominant negative mutation GhMYB25-like_AthapT, which results in a reduced lint and fuzzless phenotype. The GhMYB25-like_AthapT protein exerts its dominant negative effect by suppressing the activity of GhMYB25-like during lint and fuzz initiation. Intriguingly, the negative effect of GhMYB25-like_AthapT could be alleviated by high expression levels of GhMYB25-like. We also uncovered the role of GhMYB25-like in regulating the expression of key genes such as GhPDF2 (PROTODERMAL FACTOR 2), CYCD3; 1 (CYCLIN D3; 1) and PLD (Phospholipase D), establishing its significance as a pivotal transcription factor in fiber initiation. We identified other genes within this regulatory network, expanding our understanding of the determinants of fiber cell fate. These findings offer valuable insights for cotton breeding and contribute to our fundamental understanding of fiber development.

4.
Bioorg Med Chem ; 82: 117234, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906964

RESUMEN

Cancer with low survival rates is the second main cause of death among all diseases in the world and consequently, effective antineoplastic agents are urgently needed. Allosecurinine is a plant-derived indolicidine securinega alkaloid shown bioactivity. The object of this study is to investigate synthetic allosecurinine derivatives with considerable anticancer capacity against nine human cancer cell lines as well as mechanism of action. We synthesized twenty-three novel allosecurinine derivatives and evaluated their antitumor activity against nine cancer cell lines for 72 h by MTT and CCK8 assays. FCM was applied to analyze the apoptosis, mitochondrial membrane potential, DNA content, ROS production, CD11b expression. Western blot was selected to analyze the protein expression. Structure-activity relationships were established and potential anticancer lead BA-3 which induced differentiation of leukemia cells towards granulocytosis at low concentration and apoptosis at high concentration was identified. Mechanism studies showed that mitochondrial pathway mediated apoptosis within cancer cells with cell cycle blocking was induced by BA-3. In addition, western blot assays revealed that BA-3 induced expression of the proapoptotic factor Bax, p21 and reduced the levels of antiapoptotic protein such as Bcl-2, XIAP, YAP1, PARP, STAT3, p-STAT3, and c-Myc. Collectively, BA-3 was a lead compound for oncotherapy at least in part, through the STAT3 pathway. These results were an important step in further studies on allosecurinine-based antitumor agent development.


Asunto(s)
Alcaloides , Antineoplásicos , Compuestos Heterocíclicos de Anillo en Puente , Neoplasias , Humanos , Antineoplásicos/farmacología , Azepinas/farmacología , Compuestos Heterocíclicos de Anillo en Puente/farmacología , Lactonas/farmacología , Apoptosis , Alcaloides/farmacología , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral
5.
Indian J Hematol Blood Transfus ; 39(1): 116-122, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36699421

RESUMEN

Deep vein thrombosis (DVT) is a common and fatal disease with a pathology involving endothelial dysfunction. The present research aimed to address the potential clinical significance of miR-125a-5p in DVT and its effect on the dysfunction of Human umbilical vein endothelial cells (HUVECs). Serum miR-125a-5p levels were measured using RT-qPCR in 88 patients with DVT and 76 healthy controls. ROC was plotted to evaluate the diagnostic potential of miR-125a-5p. Spearman's correlation coefficient was performed to calculate the correlation between miR-125a-5p and clinical indicators. CCK-8, Transwell, and ELISA were employed to verify the effects of cell proliferation, migration, and inflammatory and adhesion molecules. Dual-luciferase reporter assay to analyze potential target for miR-125a-5p. Serum miR-125a-5p was reduced in patients with DVT compared with healthy controls (P < 0.001). ROC showed that miR-125a-5p significantly identified patients with DVT from the healthy controls (AUC = 0.834). Furthermore, serum miR-125a-5p was negatively correlated with inflammatory factors and coagulation factors. In in vitro studies, proliferation and migration of HUVECs were inhibited by suppressed miR-125a-5p, whereas inflammation and adhesion factors were considerably promoted (P < 0.05). Moreover, miR-125-5p directly targeted the 3'UTR of angiopoietin 2 (ANGPT2) and was negatively regulated. Finally, serum ANGPT2 was elevated in patients with DVT and was negatively correlated with serum miR-125a-5p. The current research demonstrated that decreased miR-125a-5p was a novel potential diagnostic biomarker for DVT and that it may be involved in DVT progression by targeting ANGPT2 to regulate endothelial dysfunction.

6.
Acta Med Okayama ; 76(6): 723-730, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36549775

RESUMEN

The diagnostic value of microRNA-377 (miR-377) in patients with acute coronary syndrome (ACS) and explored miR-377's potential mechanisms. We performed an qRT-PCR to assess serum miR-377 levels in ACS patients and coronary artery ligation rat models. The diagnostic value of miR-377 was evaluated by determining the ROC curve. An ELISA assay was conducted to detect the model rat endothelial damage markers von Willebrand factor (vWF) and heart-type fatty acid binding protein (H-FABP), and proinflammatory cytokines TNF-α, IL-6, and IL-1ß. The serum miR-377 level was elevated in the ACS patients and significantly increased in the ACS rats. MiR-377 has a high diagnostic value in ACS patients, with a 0.844 ROC, 76.47% specificity, and 87.10% sensitivity. MiR-377 was positively correlated with the expressions of vWF, H-FABP, cTnI, TNF-α, IL-6, and IL-1ß. In ACS rats, reducing the expression of miR-377 significantly inhibited the increases in vWF, H-FABP, TNF-α, IL-6, and IL-1ß. An elevated miR-377 level can be used as a diagnostic marker in patients with ACS. A reduction of miR-377 may alleviate ACS by improving myocardial damage such as endothelial injury and the inflammatory response.


Asunto(s)
Síndrome Coronario Agudo , MicroARNs , Ratas , Animales , Síndrome Coronario Agudo/diagnóstico , Proteína 3 de Unión a Ácidos Grasos , Interleucina-6 , Factor de von Willebrand , Factor de Necrosis Tumoral alfa , Biomarcadores
7.
Front Cell Dev Biol ; 10: 959518, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247016

RESUMEN

Cryptotanshinone (CT), a natural compound derived from Salvia miltiorrhiza Bunge that is also known as the traditional Chinese medicine Danshen, exhibits antitumor activity in various cancers. However, it remains unclear whether CT has a potential therapeutic benefit against ovarian cancers. The aim of this study was to test the efficacy of CT in ovarian cancer cells in vitro and using a xenograft model in NSG mice orthotopically implanted with HEY A8 human ovarian cancer cells and to explore the molecular mechanism(s) underlying CT's antitumor effects. We found that CT inhibited the proliferation, migration, and invasion of OVCAR3 and HEY A8 cells, while sensitizing the cell responses to the chemotherapy drugs paclitaxel and cisplatin. CT also suppressed ovarian tumor growth and metastasis in immunocompromised mice orthotopically inoculated with HEY A8 cells. Mechanistically, CT degraded the protein encoded by the oncogene c-Myc by promoting its ubiquitination and disrupting the interaction with its partner protein Max. CT also attenuated signaling via the nuclear focal adhesion kinase (FAK) pathway and degraded FAK protein in both cell lines. Knockdown of c-Myc using lentiviral CRISPR/Cas9 nickase resulted in reduction of FAK expression, which phenocopies the effects of CT and the c-Myc/Max inhibitor 10058-F4. Taken together, our studies demonstrate that CT inhibits primary ovarian tumor growth and metastasis by degrading c-Myc and FAK and attenuating the FAK signaling pathway.

8.
Plant Biotechnol J ; 20(12): 2372-2388, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36053965

RESUMEN

Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single-cell RNA sequencing (scRNA-seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non-fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA-seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25-like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip-biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield.


Asunto(s)
Fibra de Algodón , Gossypium , Gossypium/genética , RNA-Seq , Tricomas/genética , Óvulo Vegetal/genética
9.
Front Oncol ; 12: 851065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574330

RESUMEN

Focal adhesion kinase (FAK) is highly expressed in a variety of human cancers and is a target for cancer therapy. Since FAK kinase inhibitors only block the kinase activity of FAK, they are not highly effective in clinical trials. FAK also functions as a scaffold protein in a kinase-independent pathway. To effectively target FAK, it is required to block both FAK kinase-dependent and FAK-independent pathways. Thus, we tested a new generation drug FAK PROTAC for ovarian cancer therapy, which blocks both kinase and scaffold activity. We tested the efficacy of FAK PROTAC and its parent kinase inhibitor (VS-6063) in ovarian cancer cell lines in vitro by performing cell functional assays including cell proliferation, migration, invasion. We also tested in vivo activity in orthotopic ovarian cancer mouse models. In addition, we assessed whether FAK PROTAC disrupts kinase-dependent and kinase-independent pathways. We demonstrated that FAK PROTAC is highly effective as compared to its parent FAK kinase inhibitor VS-6063 in inhibiting cell proliferation, survival, migration, and invasion. FAK PROTAC not only inhibits the FAK kinase activity but also FAK scaffold function by disrupting the interaction between FAK and its interaction protein ASAP1. We further showed that FAK PROTAC effectively inhibits ovarian tumor growth and metastasis. Taken together, FAK PROTAC inhibits both FAK kinase activity and its scaffold protein activity by disrupting the interaction between FAK and ASAP1 and is highly effective in inhibiting ovarian tumor growth and metastasis.

10.
Exp Eye Res ; 219: 109070, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35413282

RESUMEN

Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) principally contributes to the pathogenesis of fibrotic cataract. Sprouty (Spry) and Spred proteins are receptor tyrosine kinase (RTK) antagonists that can regulate RTK-mediated signaling pathways, such as the MAPK/ERK1/2-signaling pathway. The present study examines the ability of Spry and Spred to inhibit TGFß-induced EMT in LECs. LECs explanted from postnatal-day-21 Wistar rats were transduced with adenoviral vectors coding for Spry1, Spry2 or Spred2, and subsequently treated with or without TGFß2. Immunofluorescent labeling of explants for the epithelial membrane marker ß-catenin, and the mesenchymal marker alpha-smooth muscle actin (α-sma), were used to characterize the progression of EMT. Western blotting was used to quantify levels of α-sma and ERK1/2-signaling. Overexpression of Spry or Spred in LECs was sufficient to suppress EMT in response to TGFß, including a block to cell elongation, ß-catenin delocalization and α-sma accumulation. Spry and Spred were also shown to significantly block ERK1/2 phosphorylation for up to 18 h of TGFß treatment but did not impair the earlier activation of ERK1/2 at 20 min. These findings suggest that Spry and Spred may not directly impact ERK1/2-signaling activated by the serine/threonine kinase TGFß receptor, but may selectively target later ERK1/2-signaling driven by downstream RTK-mediated signaling. Taken together, our data establish Spry and Spred antagonists as potent negative regulators of TGFß-induced EMT that can regulate ERK1/2-signaling in a temporal manner. A greater understanding of how Spry and Spred regulate the complex signaling interactions that underlie TGFß-induced EMT will be essential to facilitate the development of novel therapeutics for different pathologies driven by EMT, including fibrotic forms of cataract.


Asunto(s)
Catarata , Cristalino , Animales , Catarata/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Cristalino/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , beta Catenina/metabolismo
11.
J Cancer ; 12(18): 5654-5663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34405025

RESUMEN

Epithelial to mesenchymal transition (EMT) is known to contribute to tumor metastasis and chemoresistance. Reversing EMT using small molecule inhibitors to target EMT associated gene expression represents an effective strategy for cancer treatment. The purpose of this study is to test whether a new luminacin D analog HL142 reverses EMT in ovarian cancer (OC) and has the therapeutic potential for OC. We chemically synthesized HL142 and tested its functions in OC cells in vitro and its efficacy in inhibiting ovarian tumor growth and metastasis in vivo using orthotopic OC mouse models. We first demonstrate that ASAP1 is co-amplified and interacts with the focal adhesion kinase (FAK) protein in serous ovarian carcinoma. HL142 inhibits ASAP1 and its interaction protein FAK in highly invasive OVCAR8 and moderately invasive OVCAR3 cells. HL142 inhibits EMT phenotypic switch, accompanied by upregulating epithelial marker E-cadherin and cytokeratin-7 and downregulating mesenchymal markers vimentin, ß-catenin, and snail2 in both cell lines. Functionally, HL142 inhibits proliferation, colony formation, migration, and invasion. HL142 also sensitizes cell responses to chemotherapy drug paclitaxel treatment and inhibits ovarian tumor growth and metastasis in orthotopic OC mouse models. We further show that HL142 attenuates the TGFß and FAK pathways in vitro using OC cells and in vivo using orthotopic mouse models.

12.
Eur J Med Chem ; 224: 113719, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34371464

RESUMEN

The survivin (BIRC5) expression is very low in normal differentiated adult tissues, but it is one of the most widely upregulated genes in tumor cells. The overexpression of survivin in many cancer types has been positively correlated with resistance to chemotherapy, tumor metastasis, and poor patient survival. Survivin is considered to be a cancer specific biomarker and serves as a potential cancer drug target. In this report, we describe the design and syntheses of a series of novel selective survivin inhibitors based on the hydroxyquinoline scaffold from our previously reported lead compound MX-106. The best compound identified in this study is compound 12b. In vitro, 12b inhibited cancer cell proliferation with an average IC50 value of 1.4 µM, using a panel of melanoma, breast, and ovarian cancer cell lines. The metabolic stability of 12b improved over MX-106 by 1.7-fold (88 vs 51 min in human microsomes). Western blot analyses demonstrated that treatments with 12b selectively decreased survivin protein levels, but negligibly affected other closely related members in the IAP family proteins, and strongly induced cancer cell apoptosis. In vivo, compound 12b effectively inhibited melanoma tumor growth when tested using a human A375 melanoma xenograft model. Further evaluation using an aggressive, orthotopic ovarian cancer mouse model showed that 12b was highly efficacious in suppressing both primary tumor growth in ovaries and tumor metastasis to multiple peritoneal organs. Collectively, results in this study strongly suggest that the hydroxyquinoline scaffold, represented by 12b and our earlier lead compound MX-106, has abilities to selectively target survivin and is promising for further preclinical development.


Asunto(s)
Hidroxiquinolinas/química , Survivin/antagonistas & inhibidores , Animales , Proliferación Celular , Humanos , Ratones , Modelos Moleculares , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Mol Biol Evol ; 38(9): 3621-3636, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33973633

RESUMEN

Transposable element (TE) amplification has been recognized as a driving force mediating genome size expansion and evolution, but the consequences for shaping 3D genomic architecture remains largely unknown in plants. Here, we report reference-grade genome assemblies for three species of cotton ranging 3-fold in genome size, namely Gossypium rotundifolium (K2), G. arboreum (A2), and G. raimondii (D5), using Oxford Nanopore Technologies. Comparative genome analyses document the details of lineage-specific TE amplification contributing to the large genome size differences (K2, 2.44 Gb; A2, 1.62 Gb; D5, 750.19 Mb) and indicate relatively conserved gene content and synteny relationships among genomes. We found that approximately 17% of syntenic genes exhibit chromatin status change between active ("A") and inactive ("B") compartments, and TE amplification was associated with the increase of the proportion of A compartment in gene regions (∼7,000 genes) in K2 and A2 relative to D5. Only 42% of topologically associating domain (TAD) boundaries were conserved among the three genomes. Our data implicate recent amplification of TEs following the formation of lineage-specific TAD boundaries. This study sheds light on the role of transposon-mediated genome expansion in the evolution of higher-order chromatin structure in plants.


Asunto(s)
Elementos Transponibles de ADN , Gossypium , Elementos Transponibles de ADN/genética , Genoma de Planta , Genómica , Gossypium/genética , Sintenía
14.
Cell Biosci ; 11(1): 70, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827661

RESUMEN

BACKGROUND: Epithelial to mesenchymal transition (EMT) contributes to tumor metastasis and chemoresistance. Eukaryotic initiation factor 5A2 (EIF5A2) is highly expressed in a variety of human cancers but rarely expressed in normal tissues. While EIF5A2 has oncogenic activity in several cancers and contributes to tumor metastasis, its role in ovarian cancer is unknown. In this study, we investigate whether EIF5A2 contributes to ovarian tumor metastasis by promoting EMT. METHODS: To investigate the role of EIF5A2, we knocked out (KO) EIF5A2 using lentiviral CRISPR/Cas9 nickase in high invasive SKOV3 and OVCAR8 cells and overexpressed EIF5A2 in low invasive OVCAR3 cells using lentiviral vector. Cell proliferation, migration and invasion was examined in vitro ovarian cancer cells and tumor metastasis was evaluated in vivo using orthotopic ovarian cancer mouse models. RESULTS: Here we report that EIF5A2 is highly expressed in ovarian cancers and associated with patient poor survival. Lentiviral CRISPR/Cas9 nickase vector mediated knockout (KO) of EIF5A2 inhibits epithelial to mesenchymal transition (EMT) in SKOV3 and OVCAR8 ovarian cancer cells that express high levels of EIF5A2. In contrast, overexpression of EIF5A2 promotes EMT in OVCAR3 epithelial adenocarcinoma cells that express relatively low EIF5A2 levels. KO of EIF5A2 in SKOV3 and OVCAR8 cells inhibits ovarian cancer cell migration and invasion, while its overexpression promotes cell migration and invasion in OVCAR3 adenocarcinoma cells. We further demonstrate that EIF5A2 promotes EMT by activating the TGFß pathway and KO of EIF5A2 inhibits ovarian tumor growth and metastasis in orthotopic ovarian cancer mouse models. CONCLUSION: Our results indicate that EIF5A2 is an important controller of ovarian tumor growth and metastasis by promoting EMT and activating the TGFß pathway.

15.
Am J Pathol ; 191(3): 418-424, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33345998

RESUMEN

Choroidal neovascularization (CNV) is a prevalent cause of vision loss in patients with age-related macular degeneration. Runt-related transcription factor 1 (RUNX1) has been identified as an important mediator of aberrant retinal angiogenesis in proliferative diabetic retinopathy and its modulation has proven to be effective in curbing pathologic angiogenesis in experimental oxygen-induced retinopathy. However, its role in CNV remains to be elucidated. This study demonstrates RUNX1 expression in critical cell types involved in a laser-induced model of CNV in mice. Furthermore, the preclinical efficacy of Ro5-3335, a small molecule inhibitor of RUNX1, in experimental CNV is reported. RUNX1 inhibitor Ro5-3335, aflibercept-an FDA-approved vascular endothelial growth factor (VEGF) inhibitor, or a combination of both, were administered by intravitreal injection immediately after laser injury. The CNV area of choroidal flatmounts was evaluated by immunostaining with isolectin B4, and vascular permeability was analyzed by fluorescein angiography. A single intravitreal injection of Ro5-3335 significantly decreased the CNV area 7 days after laser injury, and when combined with aflibercept, reduced vascular leakage more effectively than aflibercept alone. These data suggest that RUNX1 inhibition alone or in combination with anti-VEGF drugs may be a new therapy upon further clinical validation for patients with neovascular age-related macular degeneration.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Neovascularización Coroidal/tratamiento farmacológico , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Factores de Crecimiento Endotelial Vascular
16.
Front Oncol ; 11: 756011, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004276

RESUMEN

Adipose-derived stem cells (ADSC) are multipotent mesenchymal stem cells derived from adipose tissues and are capable of differentiating into multiple cell types in the tumor microenvironment (TME). The roles of ADSC in ovarian cancer (OC) metastasis are still not well defined. To understand whether ADSC contributes to ovarian tumor metastasis, we examined epithelial to mesenchymal transition (EMT) markers in OC cells following the treatment of the ADSC-conditioned medium (ADSC-CM). ADSC-CM promotes EMT in OC cells. Functionally, ADSC-CM promotes OC cell proliferation, survival, migration, and invasion. We further demonstrated that ADSC-CM induced EMT via TGF-ß growth factor secretion from ADSC and the ensuing activation of the TGF-ß pathway. ADSC-CM-induced EMT in OC cells was reversible by the TGF-ß inhibitor SB431542 treatment. Using an orthotopic OC mouse model, we also provide the experimental evidence that ADSC contributes to ovarian tumor growth and metastasis by promoting EMT through activating the TGF-ß pathway. Taken together, our data indicate that targeting ADSC using the TGF-ß inhibitor has the therapeutic potential in blocking the EMT and OC metastasis.

17.
Sci Rep ; 10(1): 20554, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257736

RESUMEN

Proliferative vitreoretinopathy (PVR) is the leading cause of retinal detachment surgery failure. Despite significant advances in vitreoretinal surgery, it still remains without an effective prophylactic or therapeutic medical treatment. After ocular injury or retinal detachment, misplaced retinal cells undergo epithelial to mesenchymal transition (EMT) to form contractile membranes within the eye. We identified Runt-related transcription factor 1 (RUNX1) as a gene highly expressed in surgically-removed human PVR specimens. RUNX1 upregulation was a hallmark of EMT in primary cultures derived from human PVR membranes (C-PVR). The inhibition of RUNX1 reduced proliferation of human C-PVR cells in vitro, and curbed growth of freshly isolated human PVR membranes in an explant assay. We formulated Ro5-3335, a lipophilic small molecule RUNX1 inhibitor, into a nanoemulsion that when administered topically curbed the progression of disease in a novel rabbit model of mild PVR developed using C-PVR cells. Mass spectrometry analysis detected 2.67 ng/mL of Ro5-3335 within the vitreous cavity after treatment. This work shows a critical role for RUNX1 in PVR and supports the feasibility of targeting RUNX1 within the eye for the treatment of an EMT-mediated condition using a topical ophthalmic agent.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Vitreorretinopatía Proliferativa , Adulto , Anciano , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/biosíntesis , Modelos Animales de Enfermedad , Emulsiones , Femenino , Humanos , Masculino , Conejos , Vitreorretinopatía Proliferativa/tratamiento farmacológico , Vitreorretinopatía Proliferativa/metabolismo , Vitreorretinopatía Proliferativa/patología
18.
Free Radic Biol Med ; 160: 775-783, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32927017

RESUMEN

BACKGROUND: The trace element zinc plays an indispensable role in human health and diseases including cancer due to its antioxidant properties. While zinc supplements have been used for cancer prevention, zinc is also a risk factor for cancer development. It is still unclear how zinc plays a role in ovarian cancer. METHODS: To understand how zinc contributes to ovarian tumor growth and metastasis, we examined whether zinc contributes to tumor metastasis by regulating epithelial to mesenchymal transition (EMT) using ovarian cancer cells in vitro. Cell migration and invasion were examined using transwell plates and EMT markers were examined using Western blot. Primary ovarian tumor growth and metastasis were assessed using orthotopic ovarian cancer mouse models in vivo. RESULTS: Zinc promoted EMT, while TPEN (N, N, N', N'-tetrakis-(2-pyridylmethyl)-ethylenediamine), a membrane-permeable selective zinc chelator, inhibited EMT in a dose dependent manner in ovarian cancer cells. Moreover, zinc promoted ovarian cancer cell migration and invasion, while TPEN inhibited cell migration and invasion. Zinc activated expression of the metal response transcriptional factor-1 (MTF-1), while TPEN inhibited MTF-1 expression in a dose dependent manner. Knockout of MTF-1 inhibited zinc-induced cell migration, invasion and augmented the inhibitory effect of TPEN on cell migration and invasion. Loss of MTF-1 attenuated zinc-induced ERK1/2 and AKT activation and augmented the effect of TPEN in attenuating the ERK1/2 and AKT pathways. TPEN effectively inhibited primary ovarian tumor growth and metastasis in an orthotopic ovarian cancer mouse model by suppressing EMT. CONCLUSION: zinc contributes to ovarian tumor metastasis by promoting EMT through a MTF-1 dependent pathway. Zinc depletion by TPEN may be a novel approach for ovarian cancer therapy by inhibiting EMT and attenuating the ERK1/2 and AKT pathways.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias Ováricas , Animales , Línea Celular Tumoral , Movimiento Celular , Femenino , Humanos , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Transducción de Señal , Zinc
19.
Pathol Res Pract ; 216(6): 152950, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32307199

RESUMEN

Due to lymph node metastasis and infiltration, surgery for PTC (papillary thyroid carcinoma) is a high-risk treatment strategy. Our work reports for the first time that ASAP1 (ArfGAP with SH3 Domain, Ankyrin Repeat and PH Domain 1) is highly expressed in PTC and that its high expression is related to autophagy. Autophagy and ASAP1 expression in 40 PTC tissues and normal tissues were detected by immunofluorescence. We used the lentiviral CRISPR/Cas9 nickase to generate stable cell lines. The difference in autophagy levels between the ASAP1 KO group and the control group was determined by Western blot and immunofluorescence analyses. We added chloroquine (CQ) to verify that ASAP1 increased the formation of autophagosomes rather than reducing their degradation. The expression of mTOR activity-related proteins (P-P70S6K, P-MTOR) was studied by Western blotting. ASAP1 was upregulated while autophagy was downregulated in PTC tissues compared to normal tissues. Knockout of ASAP1 induced autophagy in both MDA-T32 and MDA-T85 cells. Knockout of ASAP1 attenuated the activation of the mTOR signaling pathway. Our studies demonstrated that ASAP1 is upregulated while autophagy is reduced in PTC tissues. In addition, knockout of ASAP1 induces autophagy in PTC by inhibiting the mTOR signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/fisiología , Técnicas de Inactivación de Genes , Humanos , Transducción de Señal/fisiología , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/metabolismo
20.
Mol Cancer Ther ; 18(12): 2233-2245, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515295

RESUMEN

Survivin, a member of the inhibitor of apoptosis family, is upregulated in multiple cancers including ovarian cancer, but is rarely detectable in normal tissues. We previously reported that survivin promoted epithelial-to-mesenchymal transition (EMT) in ovarian cancer cells, suggesting that survivin may contribute to ovarian tumor metastasis and chemoresistance. In this study, we tested whether knockout or pharmacologic inhibition of survivin overcomes chemoresistance and suppresses tumor metastasis. The genetic loss of survivin suppressed tumor metastasis in an orthotopic ovarian cancer mouse model. To pharmacologically test the role of survivin on ovarian tumor metastasis, we treated chemo-resistant ovarian cancer cells with a selective survivin inhibitor, MX106, and found that MX106 effectively overcame chemoresistance in vitro MX106 inhibited cell migration and invasion by attenuating the TGFß pathway and inhibiting EMT in ovarian cancer cells. To evaluate the efficacy of MX106 in inhibiting ovarian tumor metastasis, we treated an orthotopic ovarian cancer mouse model with MX106, and found that MX106 efficiently inhibited primary tumor growth in ovaries and metastasis in multiple peritoneal organs as compared with vehicle-treated control mice. Our data demonstrate that inhibition of survivin using either genetic knockout or a novel inhibitor MX106 suppresses primary ovarian tumor growth and metastasis, supporting that targeting survivin could be an effective therapeutic approach in ovarian cancer.


Asunto(s)
Neoplasias Ováricas/tratamiento farmacológico , Survivin/uso terapéutico , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Neoplasias Ováricas/complicaciones , Survivin/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...