Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Res ; 57(1): 30, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760850

RESUMEN

BACKGROUND: Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), are present in most gliomas. IDH1 mutation is an important prognostic marker in glioma. However, its regulatory mechanism in glioma remains incompletely understood. RESULTS: miR-182-5p expression was increased within IDH1-mutant glioma specimens according to TCGA, CGGA, and online dataset GSE119740, as well as collected clinical samples. (R)-2-hydroxyglutarate ((R)-2HG) treatment up-regulated the expression of miR-182-5p, enhanced glioma cell proliferation, and suppressed apoptosis; miR-182-5p inhibition partially eliminated the oncogenic effects of R-2HG upon glioma cells. By direct binding to Cyclin Dependent Kinase Inhibitor 2 C (CDKN2C) 3'UTR, miR-182-5p inhibited CDKN2C expression. Regarding cellular functions, CDKN2C knockdown promoted R-2HG-treated glioma cell viability, suppressed apoptosis, and relieved cell cycle arrest. Furthermore, CDKN2C knockdown partially attenuated the effects of miR-182-5p inhibition on cell phenotypes. Moreover, CDKN2C knockdown exerted opposite effects on cell cycle check point and apoptosis markers to those of miR-182-5p inhibition; also, CDKN2C knockdown partially attenuated the functions of miR-182-5p inhibition in cell cycle check point and apoptosis markers. The engineered CS-NPs (antagomir-182-5p) effectively encapsulated and delivered antagomir-182-5p, enhancing anti-tumor efficacy in vivo, indicating the therapeutic potential of CS-NPs(antagomir-182-5p) in targeting the miR-182-5p/CDKN2C axis against R-2HG-driven oncogenesis in mice models. CONCLUSIONS: These insights highlight the potential of CS-NPs(antagomir-182-5p) to target the miR-182-5p/CDKN2C axis, offering a promising therapeutic avenue against R-2HG's oncogenic influence to glioma.


Asunto(s)
Ciclo Celular , Glioma , Glutaratos , Isocitrato Deshidrogenasa , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Glioma/genética , Glioma/patología , Glioma/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Línea Celular Tumoral , Ciclo Celular/genética , Glutaratos/metabolismo , Mutación , Apoptosis/genética , Proliferación Celular/genética , Animales , Ratones , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Ratones Desnudos
2.
Infect Genet Evol ; 122: 105608, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38796047

RESUMEN

Several studies have showed that the nucleotide and dinucleotide composition of viruses possibly follows their host species or protein coding region. Nevertheless, the influence of viral segment on viral nucleotide and dinucleotide composition is still unknown. Here, we explored through tomato spotted wilt virus (TSWV), a segmented virus that seriously threatens the production of tomatoes all over the world. Through nucleotide composition analysis, we found the same over-representation of A across all viral segments at the first and second codon position, but it exhibited distinct in segments at the third codon position. Interestingly, the protein coding regions which encoded by the same or different segments exhibit obvious distinct nucleotide preference. Then, we found that the dinucleotides UpG and CpU were overrepresented and the dinucleotides UpA, CpG and GpU were underrepresented, not only in the complete genomic sequences, but also in different segments, protein coding regions and host species. Notably, 100% of the data investigated here were predicted to the correct viral segment and protein coding region, despite the fact that only 67% of the data analyzed here were predicted to the correct viral host species. In conclusion, in case study of TSWV, nucleotide composition and dinucleotide preference of segment viruses are more strongly dependent on segment and protein coding region than on host species. This research provides a novel perspective on the molecular evolutionary mechanisms of TSWV and provides reference for future research on genetic diversity of segmented viruses.


Asunto(s)
Genoma Viral , Nucleótidos , Solanum lycopersicum , Tospovirus , Tospovirus/genética , Solanum lycopersicum/virología , Nucleótidos/genética , Enfermedades de las Plantas/virología , ARN Viral/genética
3.
Cell Mol Neurobiol ; 43(8): 4279-4293, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37864627

RESUMEN

To investigate the molecular mechanism of communication network factor 1 (CCN1) regulating pentylenetetrazol (PTZ)-induced epileptogenesis, deepen the understanding of epilepsy seizure pathogenesis, and provide new drug action targets for its clinical prevention and treatment. Differentially expressed genes (DEGs) on microarrays GSE47516 and GSE88992 were analyzed online using GEO2R. Pathway enrichment and protein-protein interaction network (PPI) analysis of DEGs were carried out using Metascape. Brain tissue samples of severe traumatic brain injury patients (named Healthy group) and refractory epilepsy patients (named Epilepsy group) were obtained and analyzed by qRT-PCR and immunohistochemistry (IHC) staining. A PTZ-induced epilepsy mouse model was established and verified. Morphological changes of neurons in mouse brain tissue were detected using hematoxylin and eosin (HE) staining. qRT-PCR was conducted to detect the mRNA expressions of apoptosis-associated proteins Bax, Caspase-3 and bcl2. TUNEL staining was performed to detect brain neuron apoptosis. The levels of myocardial enzymology, GSH, MDA and ROS in blood of mouse were detected by biochemical assay. CCN1 expression was increased in epilepsy brain tissue samples. CCN1 decreasing effectively prolongs seizure incubation period and decreases seizure duration. Silencing of CCN1 also reduces neuronal damage and apoptosis, decreases mRNA and protein expression of proapoptotic proteins Bax and Caspase-3, increases mRNA expression of antiapoptotic protein Bcl2. Moreover, decrease of CCN1 decreases myocardial enzymatic indexes CK and CK-MB levels, reduces myocardial tissue hemorrhage, and relieves oxidative stress response in hippocampal and myocardial tissue. CCN1 expression is increased in epileptic samples. CCN1 decreasing protects brain tissue by attenuating oxidative stress and inhibiting neuronal apoptosis triggered by PTZ injection, which probably by regulating Nrf2/HO-1 pathway.


Asunto(s)
Epilepsia , Pentilenotetrazol , Humanos , Ratones , Animales , Pentilenotetrazol/efectos adversos , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Epilepsia/inducido químicamente , Epilepsia/genética , Epilepsia/tratamiento farmacológico , Convulsiones/inducido químicamente , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/metabolismo
4.
Genes (Basel) ; 14(9)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37761852

RESUMEN

Prunus necrotic ringspot virus (PNRSV) is a significant virus of ornamental plants and fruit trees. It is essential to study this virus due to its impact on the horticultural industry. Several studies on PNRSV diversity and phytosanitary detection technology were reported, but the content on the codon usage bias (CUB), dinucleotide preference and codon pair bias (CPB) of PNRSV is still uncertain. We performed comprehensive analyses on a dataset consisting of 359 coat protein (CP) gene sequences in PNRSV to examine the characteristics of CUB, dinucleotide composition, and CPB. The CUB analysis of PNRSV CP sequences showed that it was not only affected by natural selection, but also affected by mutations, and natural selection played a more significant role compared to mutations as the driving force. The dinucleotide composition analysis showed an over-expression of the CpC/GpA dinucleotides and an under-expression of the UpA/GpC dinucleotides. The dinucleotide composition of the PNRSV CP gene showed a weak association with the viral lineages and hosts, but a strong association with viral codon positions. Furthermore, the CPB of PNRSV CP gene is low and is related to dinucleotide preference and codon usage patterns. This research provides reference for future research on PNRSV genetic diversity and gene evolution mechanism.


Asunto(s)
Evolución Biológica , Uso de Codones , Uso de Codones/genética , Evolución Molecular , Secuencia de Aminoácidos
5.
Addict Biol ; 28(9): e13326, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37644892

RESUMEN

The persistence of maladaptive heroin-associated memory, which is triggered by drug-related stimuli that remind the individual of the drug's pleasurable and rewarding effects, can impede abstinence efforts. Cyclin-dependent kinase 5 (Cdk5), a neuronal serine/threonine protein kinase that plays a role in multiple neuronal functions, has been demonstrated to be involved in drug addiction and learning and memory. Here, we aimed to investigate the role of cdk5 activity in the basolateral amygdala (BLA) in relapse to heroin seeking, using a self-administration rat model. Male rats underwent 10 days of heroin self-administration training, during which an active nose poke resulted in an intravenous infusion of heroin that was accompanied by a cue. The rats then underwent nose poke extinction for 10 days, followed by subsequent tests of heroin-seeking behaviour. We found that intra-BLA infusion of ß-butyrolactone (100 ng/side), a Cdk5 inhibitor, administered 5 min after reactivation, led to a subsequent decrease in heroin-seeking behaviour. Further experiments demonstrated that the effects of ß-butyrolactone are dependent on reactivated memories, temporal-specific and long-lasting on relapse of heroin-associated memory. Results provide suggestive evidence that the activity of Cdk5 in BLA is critical for heroin-associated memory and that the specific inhibitor, ß-butyrolactone, may hold potential as a substance for the treatment of heroin abuse.


Asunto(s)
Complejo Nuclear Basolateral , Heroína , Masculino , Animales , Ratas , Heroína/farmacología , Quinasa 5 Dependiente de la Ciclina , Recurrencia
6.
Front Neurol ; 14: 1213224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37602268

RESUMEN

Aims: This study aimed to comprehensively explore the cerebellar structural and functional changes in temporal lobe epilepsy (TLE) and its association with clinical information. Methods: The SUIT toolbox was utilized to perform cerebellar volume and diffusion analysis. In addition, we extracted the average diffusion values of cerebellar peduncle tracts to investigate microstructure alterations. Seed-based whole-brain analysis was used to investigate cerebellar-cerebral functional connectivity (FC). Subgroup analyses were performed to identify the cerebellar participation in TLE with/without hippocampal sclerosis (HS)/focal-to-bilateral tonic-clonic seizure (FBTCS) and TLE with different lateralization. Results: TLE showed widespread gray matter atrophy in bilateral crusII, VIIb, VIIIb, left crusI, and left VIIIa. Both voxel and tract analysis observed diffusion abnormalities in cerebellar afferent peduncles. Reduced FC between the right crus II and the left parahippocampal cortex was found in TLE. Additionally, TLE showed increased FCs between left lobules VI-VIII and cortical nodes of the dorsal attention and visual networks. Across all patients, decreased FC was associated with poorer cognitive function, while increased FCs appeared to reflect compensatory effects. The cerebellar structural changes were mainly observed in HS and FBTCS subgroups and were regardless of seizure lateralization, while cerebellar-cerebral FC alterations were similar in all subgroups. Conclusion: TLE exhibited microstructural changes in the cerebellum, mainly related to HS and FBTCS. In addition, altered cerebellar-cerebral functional connectivity is associated with common cognitive alterations in TLE.

7.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1620-1631, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005850

RESUMEN

The study identified the blood-entering components of Sijunzi Decoction after gavage administration in rats by UPLC-Q-TOF-MS/MS, and investigated the mechanism of Sijunzi Decoction in treating Alzheimer's disease by virtue of network pharmacology, molecular docking, and experimental verification. The blood-entering components of Sijunzi Decoction were identified based on the mass spectra and data from literature and databases. The potential targets of the above-mentioned blood-entering components in the treatment of Alzheimer's disease were searched against PharmMapper, OMIM, DisGeNET, GeneCards, and TTD. Next, STRING was employed to establish a protein-protein interaction(PPI) network. DAVID was used to perform the Gene Ontology(GO) annotation and the Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. Cytoscape 3.9.0 was used to carry out visual analysis. AutoDock Vina and PyMOL were used for molecular docking of the blood-entering components with the potential targets. Finally, the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway enriched by the KEGG analysis was selected for validation by animal experiments. The results showed that 17 blood-entering components were detected in the serum samples after administration. Among them, poricoic acid B, liquiritigenin, atractylenolide Ⅱ, atractylenolide Ⅲ, ginsenoside Rb_1, and glycyrrhizic acid were the key components of Sijunzi Decoction in treating Alzheimer's disease. HSP90AA1, PPARA, SRC, AR, and ESR1 were the main targets for Sijunzi Decoction to treat Alzheimer's disease. Molecular docking showed that the components bound well with the targets. Therefore, we hypothesized that the mechanism of Sijunzi Decoction in treating Alzheimer's disease may be associated with the PI3K/Akt, cancer treatment, and mitogen-activated protein kinase(MAPK) signaling pathways. The results of animal experiments showed that Sijunzi Decoction significantly attenuated the neuronal damage in the hippocampal dentate gyrus area, increased the neurons, and raised the ratios of p-Akt/Akt and p-PI3K/PI3K in the hippocampus of mice. In conclusion, Sijunzi Decoction may treat Alzheimer's disease by activating the PI3K/Akt signaling pathway. The findings of this study provide a reference for further studies about the mechanism of action and clinical application of Sijunzi Decoction.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Animales , Ratones , Ratas , Proteínas Proto-Oncogénicas c-akt , Farmacología en Red , Enfermedad de Alzheimer/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/genética , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/farmacología
8.
Front Mol Neurosci ; 15: 994270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407759

RESUMEN

Background: An increasing number of observational studies have revealed an association among the gut microbiota, gut metabolites, and epilepsy. However, this association is easily influenced by confounders such as diet, and the causality of this association remains obscure. Methods: Aiming to explore the causal relationship and ascertain specific gut microbe taxa for epilepsy, we conducted a bi-directional Mendelian randomization (MR) study based on the genome-wide association study (GWAS) data of epilepsy from the International League Against Epilepsy, with the gut microbiota GWAS results from MiBioGen, and summary-level GWAS data of gut microbiota-dependent metabolites trimethylamine N-oxide and its predecessors. Results: Nine phyla, 15 classes, 19 orders, 30 families, and 96 genera were analyzed. A suggestive association of host-genetic-driven increase in family Veillonellaceae with a higher risk of childhood absence epilepsy (odds ratio [OR]: 1.033, confidential interval [CI]: 1.015-1.051, P IVW = 0.0003), class Melainabacteria with a lower risk of generalized epilepsy with tonic-clonic seizures (OR = 0.986, CI = 0.979-0.994, P IVW = 0.0002), class Betaproteobacteria (OR = 0.958, CI = 0.937-0.979, P IVW = 0.0001), and order Burkholderiales (OR = 0.960, CI = 0.937-0.984, P IVW = 0.0010) with a lower risk of juvenile myoclonic epilepsy were identified after multiple-testing correction. Our sensitivity analysis revealed no evidence of pleiotropy, reverse causality, weak instrument bias, or heterogeneity. Conclusion: This is the first MR analysis to explore the potential causal relationship among the gut microbiota, metabolites, and epilepsy. Four gut microbiota features (two class levels, one order level, and one family level) were identified as potential interventional targets for patients with childhood absence epilepsy, generalized epilepsy with tonic-clonic seizures, and juvenile myoclonic epilepsy. Previous associations in numerous observational studies may had been interfered by confounders. More rigorous studies were needed to ascertain the relationship among the gut microbiota, metabolites, and epilepsy.

9.
Acta Neurol Scand ; 146(6): 716-722, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36358030

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) is the major cause of premature death in epilepsy patients, particularly those with refractory epilepsy. Sudden unexpected death in epilepsy is thought to be related to peri-ictal cardiac dysfunction, respiratory depression, and autonomic dysfunction, albeit the exact etiology is unknown. Sudden unexpected death in epilepsy prevention remains a huge challenge. The sole presence and frequency of generalized tonic-clonic seizures (GTCS) are the most important risk factors for SUDEP, and nocturnal monitoring may lower the risk with the use of remote listening devices. In addition, studies in animal models of SUDEP have discovered that multiple neurotransmitters, including serotonin (5-HT) and adenosine, may be involved in the pathophysiological mechanisms of SUDEP and that these neurotransmitters could be the targets of future pharmacological intervention for SUDEP. The latest research findings on the epidemiology, clinical risk factors, and probable causes of SUDEP are presented in this review.


Asunto(s)
Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Animales , Humanos , Muerte Súbita e Inesperada en la Epilepsia/epidemiología , Muerte Súbita/epidemiología , Muerte Súbita/etiología , Muerte Súbita/prevención & control , Epilepsia/tratamiento farmacológico , Convulsiones , Factores de Riesgo , Serotonina/uso terapéutico
10.
iScience ; 25(10): 105228, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36267919

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with epilepsy. However, the underlying mechanism of SUDEP remains elusive. Previous studies showed seizure-induced respiratory arrest (S-IRA) is the main factor in SUDEP, and that enhancement of serotonin (5-HT) function in the dorsal raphe nucleus (DR) can significantly reduce the incidence of S-IRA in the DBA/1 mouse model of SUDEP. The pre-Bötzinger complex (PBC), known for its role in regulating respiratory rhythm, can express the 5-HT2A receptor (5-HT2AR). Here, using the pharmacological and optogenetic methods, respectively, we observed that the serotonergic neural circuit between DR and PBC was involved in S-IRA evoked by either acoustic stimulation or pentylenetetrazole (PTZ) injection in the DBA/1 mice, and found 5-HT2AR located in PBC plays an important role in it. Our findings will further significantly improve our understanding of SUDEP and provide a promising therapeutic target for SUDEP prevention.

11.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(7): 829-838, 2022 Jul 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-36039578

RESUMEN

OBJECTIVES: This study aims to investigate the role of hypoxia-induced long non-coding small nucleolar RNA host gene 14 (lncRNA SNHG14) in glioma temozolomide (TMZ) resistance and underlying mechanisms. METHODS: According to different treatments, the experiment was divided into a normoxia group and a hypoxia group, a control group and a TMZ group. The lncRNA SNHG14 and O6-methylguanine DNA methyltransferase (MGMT) levels in glioma SNB19 and U251 cell line were detected by real-time PCR and Western blotting, respectively, and the association of lncRNA SNHG14 level with hypoxia and TMZ treatment was analyzed. siRNA was used to knockdown the lncRNA SNHG14 expression in glioma cells, and the transfected glioma cells were divided into a negative control group (si-NC group) and a si-SNHG14 group. The interference efficiency was examined by real-time PCR, the key factor MGMT of lncRNA SNHG14 sensitivity regulation was detected by Western blotting, and the cell apoptosis was detected by cytometry. In addition, MTT method was used to detect the cell viability of gliomas in the different groups under the different TMZ concentrations, and the effect of lncRNA SNHG14 on TMZ sensitivity of gliomas was analyzed. Online tools were used to predict miRNAs that could specifically bind to lncRNAs SNHG14 and MGMT. A si-NC group, a si-SNHG14 group, a normoxia group and a hypoxia group were set up, and the changes of miR-143 abundance in different environments were observed by real-time PCR. miR-143 mimics and inhibitor were used to change the level of miR-143 in glioma cells. A NC inhibitor group, a miR-143 inhibitor group, a NC mimics group and a miR-143 mimics group were set up, the interference efficiency was detected by real-time PCR, the expression level of MGMT was detected by Western blotting, and the effect of miR-143 on the level of MGMT were analyzed. The NC inhibitor group, the miR-143 inhibitor group, the NC mimics group and the miR-143 mimics group were treated with different interventions, and the dual luciferase reporter assay was used to observe the changes of lncRNA SNHG14 and MGMT luciferase activities, and to verify the relationship among lncRNA SNHG14, miR-143 and MGMT. Finally, a NC group and a lncRNA SNHG14 overexpression group were set up, and the changes in the abundance of miR-143 and MGMT in each group were detected by RNA-binding protein immunoprecipitation experiments, and the competitive binding relationship among lncRNA SNHG14, miR-143 and MGMT was analyzed. RESULTS: Compared with the normoxia group, the hypoxia group could promote the expression of lncRNA SNHG14 in glioma cells. Compared with the control group, the expression of lncRNA SNHG14 could be significantly inhibited in the TMZ group (P<0.05). Compared with the si-NC group, the expression of lncRNA SNHG14 in the si-SNHG14 group could be effectively inhibited, and the expression level of MGMT was significantly decreased, and the apoptosis rate was significantly increased (all P<0.05). With the increase of TMZ concentrations, the glioma cell viability in the si-SNHG14 group was significantly lower than that in the si-NC group, and the cell viability in the hypoxia group was significantly higher than that in the normoxia group (both P<0.05). Online tool prediction found that miR-143 had binding sites with lncRNA SNHG14 and MGMT. The abundance of miR-143 in the hypoxia group was significantly lower than that in the normoxic group, and the abundance of miR-143 in the si-SNHG14 group was significantly higher than that in the si-NC group (both P<0.05). The miR-143 mimics group or the miR-143 inhibitor group could significantly over-express or under-express miR-143 (both P<0.05). But there was no significant difference between the NC mimics group (or the NC inhibitor group) and the control group (both P>0.05). The level of MGMT protein could significantly up-regulate in the miR-143 inhibitor group, and on the contrary which could significantly down-regulate in the miR-143 mimics group (both P<0.01). The dual luciferase reporter assay showed that there was no significant difference between the NC mimics group (or the NC inhibitor group) and the control group (both P>0.05). The wild-type SNHG14 and MGMT luciferase activities were significantly down-regulated in the miR-143 mimics group, which were significantly up-regulated in the miR-143 inhibitor group (P<0.01 and P<0.05, respectively), but there was no significant change in the luciferase activities of mutant SNHG14 and MGMT (both P>0.05). The results of the RNA-binding protein immunoprecipitation experiment showed that: compared with the NC group, more lncRNA SNHG14 was bound to the precipitated argonaute 2 protein in the cells in the lncRNA SNHG14 overexpression group, but the abundance of MGMT mRNA was decreased significantly, and there were significant differences (both P<0.01). There was a targeting regulatory relationship among lncRNA SNHG14, miR-143 and MGMT. CONCLUSIONS: The up-regulated lncRNA SNHG14 can target miR-143, relieve the inhibition of miR-143 on MGMT, and promote the TMZ resistance in the hypoxia-induced glioma cells.


Asunto(s)
Glioma , MicroARNs , ARN Largo no Codificante , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Glioma/genética , Humanos , Hipoxia , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Nucleolar Pequeño/farmacología , Proteínas de Unión al ARN , Temozolomida/farmacología
12.
Front Oncol ; 11: 690213, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422645

RESUMEN

Gliomas are characterized by high incidence, recurrence and mortality all of which are significant challenges to efficacious clinical treatment. The hypoxic microenvironment in the inner core and intermediate layer of the tumor mass of gliomas is a critical contributor to glioma pathogenesis. In this study, we identified an upregulated lncRNA, OR7E156P, in glioma was identified. The silencing of OR7E156P inhibited cell invasion and DNA synthesis in vitro and tumor growth in vivo. OR7E156P was intricately linked to the HIF1A pathway. Hypoxia could induce OR7E156P expression, whereas OR7E156P silencing decreased HIF1A protein levels under hypoxic conditions. Hypoxia promoted glioma cell invasion and DNA synthesis, and HUVEC tube formation, whereas OR7E156P silencing partially reversed the cellular effects of hypoxia. HIF1A overexpression promoted, whereas OR7E156P silencing inhibited tumor growth; the inhibitory effects of OR7E156P silencing on tumor growth were partially reversed by HIF1A overexpression. miR-143 directly targeted OR7E156P and HIF1A, respectively. miR-143 inhibition increased HIF1A protein levels, promoted glioma cell invasion and DNA synthesis. Moreover, they enhanced HUVEC tube formation, whereas OR7E156P silencing partially reversed the cellular effects of miR-143 inhibition. HIF1A targeted the promoter region of miR-143 and inhibited miR-143 expression. Altogether a regulatory axis consisting of OR7E156P, miR-143, and HIF1A, was identified which is deregulated in glioma, and the process of the OR7E156P/miR-143/HIF1A axis modulating glioma cell invasion through ZEB1 and HUVEC tube formation through VEGF was demonstrated.

13.
Cell Signal ; 74: 109718, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32707073

RESUMEN

BACKGROUND: Aerobic glycolysis is a unique tumor cell phenotype considered as one of the hallmarks of cancer. Aerobic glycolysis can accelerate tumor development by increasing glucose uptake and lactate production. In the present study, lactate dehydrogenase A (LDHA) is significantly increased within glioma tissue samples and cells, further confirming the oncogenic role of LDHA within glioma. METHODS: Hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining were applied for histopathological examination. The protein levels of LDHA, transporter isoform 1 (GLUT1), hexokinase 2 (HK2), phosphofructokinase (PFK) in target cells were detected by Immunoblotting. The predicted miR-9 binding to lncRNA Annexin A2 Pseudogene 2 (ANXA2P2) or the 3' untranslated region (UTR) of LDHA was verified using Luciferase reporter assay. Cell viability or apoptosis were examined by MTT assay or Flow cytometry. Intracellular glucose and Lactate levels were measured using glucose assay kit and lactate colorimetric assay kit. RESULTS: The expression of ANXA2P2 showed to be dramatically upregulated within glioma tissue samples and cells. Knocking down ANXA2P2 within glioma cells significantly inhibited cell proliferation and aerobic glycolysis, as manifested as decreased lactate and increased glucose in culture medium, and downregulated protein levels of glycolysis markers, GLUT1, HK2, PFK, as well as LDHA. miR-9 was predicted to target both lncRNA ANXA2P2 and LDHA. The overexpression of miR-9 suppressed the cell proliferation and aerobic glycolysis of glioma cells. Notably, miR-9 could directly bind to LDHA 3'UTR to inhibit LDHA expression and decrease the protein levels of LDHA. ANXA2P2 competitively targeted miR-9, therefore counteracting miR-9-mediated repression on LDHA. Within tissues, miR-9 exhibited a negative correlation with ANXA2P2 and LDHA, respectively, whereas ANXA2P2 and LDHA exhibited a positive correlation with each other. CONCLUSIONS: In conclusion, ANXA2P2/miR-9/LDHA axis modulates the aerobic glycolysis progression in glioma cells, therefore affecting glioma cell proliferation.


Asunto(s)
Anexina A2/fisiología , Glioblastoma/metabolismo , L-Lactato Deshidrogenasa/fisiología , MicroARNs/fisiología , Adulto , Anciano , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Niño , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Efecto Warburg en Oncología
14.
Epilepsy Behav ; 95: 169-174, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31063933

RESUMEN

Studies suggest that cardiorespiratory dysfunction likely contributes to sudden unexpected death in epilepsy (SUDEP). Seizures result in autonomic and respiratory dysfunction, leading to sympathetic hyperactivity and respiratory distress, including apnea. While the heart is vulnerable to catecholamine surges and hypoxia, it remains unknown if repetitive generalized seizures lead to cardiac damage. DBA/1 mice exhibit seizure-induced respiratory arrest (S-IRA) following generalized audiogenic seizures (AGS), which can be resuscitated using a rodent ventilator. In the current study, we induced different numbers of S-IRA episodes in DBA/1 mice and determined the association of repeated S-IRA induction with cardiac damage using histology. After repetitive induction of 18 S-IRA, calcified lesions, as revealed by calcium (Ca2+)-specific alizarin red staining, were observed in the ventricular myocardium in 61.5% of DBA/1 mice, which was higher compared to mice with 5 S-IRA and 1 S-IRA as well as age-matched untested control mice. The incidence of lesions in mice with 9 S-IRA was only higher than that of control mice. Only 1-2, small lesions were observed in mice with 5 S-IRA and 1 S-IRA and in control mice. Larger lesions (>2500 µm2) were observed in mice with 9 and 18 S-IRA. The incidence of larger lesions was higher in mice with 18 S-IRA (53.8%) as compared to mice with 5 S-IRA and 1 S-IRA as well as with control mice, and the incidence of larger lesions in mice with 9 S-IRA was only higher than that of control mice. Repeated induction of S-IRA in DBA/1 mice can result in calcified necrotic lesions in the ventricles of the heart, and their incidence and size are dependent on the total number of S-IRA.


Asunto(s)
Calcinosis/etiología , Cardiopatías/etiología , Cardiopatías/patología , Convulsiones/complicaciones , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos DBA
15.
Epilepsy Behav ; 86: 85-90, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30017833

RESUMEN

OBJECTIVE: Identifying the factors that are correlated with and predictive of reduced quality of life (QOL) is essential to optimize the treatment of epilepsy and the management of comorbidities. METHODS: We analyzed the independent associations between the Quality of Life in Epilepsy-31 (QOLIE-31) inventory and the demographic, clinical, psychiatric, and cognitive variables of 47 consecutive patients with temporal lobe epilepsy (TLE). Predictors of the correlated variables were analyzed by multiple linear regression analysis. RESULTS: The QOLIE-31 total score was positively correlated with occupational status and Mini-Mental State Examination (MMSE) scores (r = 0.290 and 0.295, respectively; P < 0.05) and negatively correlated with the duration of seizures, adverse effects of antiepileptic drugs (AEDs), and the Pittsburgh Sleep Quality Inventory (PSQI), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS) scores (r = -0.357, 0.321, 0.328, -0.672, and -0.565, respectively; P < 0.05; P < 0.01 for the SAS and SDS). In the final multivariate regression model, anxiety, long durations of seizures, adverse effects of AEDs, and depression explained approximately 60.6% (adjusted R2 = 0.606, R coefficient = 0.800) of the QOLIE-31 overall score variance. CONCLUSION: Anxiety, long durations of seizures, adverse effects of AEDs, and depression were significant predictors of QOL, and these variables had relatively high prediction capacities for the overall QOLIE-31 in the regression model. Comorbid anxiety is the most powerful negative determinant of the QOLIE-31.


Asunto(s)
Epilepsia del Lóbulo Temporal/psicología , Calidad de Vida , Adulto , Anticonvulsivantes/efectos adversos , Ansiedad/etiología , Ansiedad/psicología , Depresión/etiología , Depresión/psicología , Autoevaluación Diagnóstica , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/terapia , Femenino , Humanos , Masculino , Pruebas de Estado Mental y Demencia , Pruebas Neuropsicológicas , Valor Predictivo de las Pruebas , Escalas de Valoración Psiquiátrica , Sueño , Encuestas y Cuestionarios , Adulto Joven
16.
Neurosci Lett ; 672: 96-102, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29458087

RESUMEN

Neurogenesis in the cerebral infarction after an ischemic event is important to the rehabilitation of patients. However, the mechanism of angiogenesis around cerebral ischemia is not clear. Our study designed to test whether the nerve growth factor (NGF)-P-focal adhesion kinase (FAK) signaling pathway for associations with angiogenesis plays a key role in post-acute cerebral ischemia of rats. Firstly, we implanted the Matrigel, a carrier of basement membrane matrix, into the abdominal skin of rats to identify the relevant components of the NGF-P-FAK signaling pathway related to angiogenesis. Secondly, we used a model established by ligation of the middle cerebral artery (MCA) to observe the effect of the same signal pathway on angiogenesis in the subventricular and subgranular zones of the dentate gyrus(SVG and SGZ). The results showed that the tissue scores was significantly increased by NGF. However, the tissue scores was signifcaintly decreased by FAK inhibitor TAE226. Furthermore, CD31 and α-SMA were significantly increased by NGF and were decreased by anti-NGF and TAE226 in Matrigel. The P-FAK protein expression in Matrigel was markedly increased by NGF and decreased by TAE226. In the SVZ and SVG of cerebral ischemia, the numbers of BrdU-positive cells were significantly increased by NGF and decreased by TAE226, respectively. Our findings suggest that the therapy targeting the NGF-P-FAK signaling pathway may be an option for patients suffering from cerebral ischemia.


Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Encéfalo/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Masculino , Morfolinas/farmacología , Neovascularización Fisiológica/fisiología , Factor de Crecimiento Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
17.
Neurobiol Dis ; 110: 47-58, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29141182

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) is a devastating epilepsy complication. Seizure-induced respiratory arrest (S-IRA) occurs in many witnessed SUDEP patients and animal models as an initiating event leading to death. Thus, understanding the mechanisms underlying S-IRA will advance the development of preventive strategies against SUDEP. Serotonin (5-HT) is an important modulator for many vital functions, including respiration and arousal, and a deficiency of 5-HT signaling is strongly implicated in S-IRA in animal models, including the DBA/1 mouse. However, the brain structures that contribute to S-IRA remain elusive. We hypothesized that the dorsal raphe (DR), which sends 5-HT projections to the forebrain, is implicated in S-IRA. The present study used optogenetics in the DBA/1 mouse model of SUDEP to selectively activate 5-HT neurons in the DR. Photostimulation of DR 5-HT neurons significantly and reversibly reduced the incidence of S-IRA evoked by acoustic stimulation. Activation of 5-HT neurons in the DR suppressed tonic seizures in most DBA/1 mice without altering the seizure latency and duration of wild running and clonic seizures evoked by acoustic stimulation. This suppressant effect of photostimulation on S-IRA is independent of seizure models, as optogenetic stimulation of DR also reduced S-IRA induced by pentylenetetrazole, a proconvulsant widely used to model human generalized seizures. The S-IRA-suppressing effect of photostimulation was increased by 5-hydroxytryptophan, a chemical precursor for 5-HT synthesis, and was reversed by ondansetron, a specific 5-HT3 receptor antagonist, indicating that reduction of S-IRA by photostimulation of the DR is specifically mediated by enhanced 5-HT neurotransmission. Our findings suggest that deficits in 5-HT neurotransmission in the DR are implicated in S-IRA in DBA/1 mice, and that targeted intervention in the DR is potentially useful for prevention of SUDEP.


Asunto(s)
Muerte Súbita/etiología , Núcleo Dorsal del Rafe/metabolismo , Estimulación Luminosa , Insuficiencia Respiratoria/etiología , Convulsiones/complicaciones , Neuronas Serotoninérgicas/metabolismo , Animales , Modelos Animales de Enfermedad , Núcleo Dorsal del Rafe/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Optogenética , Estimulación Luminosa/métodos , Insuficiencia Respiratoria/fisiopatología , Convulsiones/fisiopatología , Neuronas Serotoninérgicas/patología , Serotonina/metabolismo
18.
Biosci Rep ; 37(5)2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-28831025

RESUMEN

Temozolomide (TMZ) is the most commonly used alkylating agent in glioma chemotherapy. However, growing resistance to TMZ remains a major challenge for clinicians. Recent evidence emphasizes the key regulatory roles of non-coding RNAs (lncRNAs and miRNAs) in tumor biology, including the chemoresistance of cancers. However, little is known about the role and regulation mechanisms of lncRNA cancer X-inactive specific transcripts (XIST) in glioma tumorigenesis and chemotherapy resistance. In the present study, higher XIST expression was observed in glioma tissues and cell lines, which was related to poorer clinicopathologic features and shorter survival time. XIST knockdown alone was sufficient to inhibit glioma cell proliferation and to amplify TMZ-induced cell proliferation inhibition. Moreover, XIST knockdown can sensitize TMZ-resistant glioma cells to TMZ. XIST can inhibit miR-29c expression by directly targetting TMZ-resistant glioma cells. DNA repair protein O6-methylguanine-DNA methytransferase (MGMT) plays a key role in TMZ resistance; transcription factor specificity protein 1 (SP1), a regulator of DNA mismatch repair (MMR) key protein MSH6, has been reported to be up-regulated in TMZ-resistant glioma cell lines. In the present study, we show that XIST/miR-29c coregulates SP1 and MGMT expression in TMZ-resistant glioma cell lines. Our data suggest that XIST can amplify the chemoresistance of glioma cell lines to TMZ through directly targetting miR-29c via SP1 and MGMT. XIST/miR-29c may be a potential therapeutic target for glioma treatment.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/genética , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos , Glioma/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Adulto , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Dacarbazina/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Glioma/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Temozolomida
19.
Epilepsy Res ; 137: 139-144, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28844345

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) is a significant public health burden. The mechanisms of SUDEP are elusive, although cardiorespiratory dysfunction is a likely contributor. Clinical and animal studies indicate that seizure-induced respiratory arrest (S-IRA) is the primary event leading to death in many SUDEP cases. Our prior studies demonstrated that intraperitoneal (IP) injection of atomoxetine, a norepinephrine reuptake inhibitor (NRI) widely used to treat attention deficit hyperactivity disorder, suppresses S-IRA in DBA/1 mice. In the current study, we injected atomoxetine intracerebroventricularly (ICV) and measured its effect on S-IRA in DBA/1 mice to determine its central effects. Additionally, to test our hypothesis that atomoxetine reduces S-IRA via altering cardiorespiratory function, we examined the effect of atomoxetine on respiratory and cardiac function using non-invasive plethysmography and ECG in anesthetized DBA/1 mice, and on blood pressure and heart rate using a tail-cuff system in conscious DBA/1 mice. ICV administration of atomoxetine at 200-250nmol significantly reduced S-IRA evoked by acoustic stimulation in DBA/1 mice, consistent with a central atomoxetine effect on S-IRA. Peripheral atomoxetine administration at a dosage that reduces S-IRA (15mg/kg, IP) slightly increased basal ventilation and the ventilatory response to 7% CO2, but exerted no effect on heart rate in anesthetized DBA/1 mice. IP injection of atomoxetine produced no effect on the heart rate and blood pressures in conscious mice. These data suggest that atomoxetine suppresses S-IRA through direct effects on the CNS and potentially through enhanced lung ventilation in DBA/1 mice.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Clorhidrato de Atomoxetina/farmacología , Síndrome de Brugada/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Respiración/efectos de los fármacos , Fármacos del Sistema Respiratorio/farmacología , Estimulación Acústica , Inhibidores de Captación Adrenérgica/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Síndrome de Brugada/fisiopatología , Fármacos Cardiovasculares/farmacología , Modelos Animales de Enfermedad , Epilepsia/fisiopatología , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Ratones Endogámicos DBA , Convulsiones/tratamiento farmacológico , Convulsiones/fisiopatología
20.
Epilepsy Behav ; 73: 6-9, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28605634

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) is a devastating epilepsy complication, and no effective preventive strategies are currently available for this fatal disorder. Clinical and animal studies of SUDEP demonstrate that seizure-induced respiratory arrest (S-IRA) is the primary event leading to death after generalized seizures in many cases. Enhancing brain levels of serotonin reduces S-IRA in animal models relevant to SUDEP, including the DBA/1 mouse. Given that serotonin in the brain plays an important role in modulating respiration and arousal, these findings suggest that deficits in respiration and/or arousal may contribute to S-IRA. It is well known that norepinephrine is an important neurotransmitter that modulates respiration and arousal in the brain as well. Therefore, we hypothesized that enhancing noradrenergic neurotransmission suppresses S-IRA. To test this hypothesis, we examined the effect of atomoxetine, a norepinephrine reuptake inhibitor (NRI), on S-IRA evoked by either acoustic stimulation or pentylenetetrazole in DBA/1 mice. We report the original observation that atomoxetine specifically suppresses S-IRA without altering the susceptibility to seizures evoked by acoustic stimulation, and atomoxetine also reduces S-IRA evoked by pentylenetetrazole in DBA/1 mice. Our data suggest that the noradrenergic signaling is importantly involved in S-IRA, and that atomoxetine, a medication widely used to treat attention deficit hyperactivity disorder (ADHD), is potentially useful to prevent SUDEP.


Asunto(s)
Inhibidores de Captación Adrenérgica/farmacología , Clorhidrato de Atomoxetina/farmacología , Muerte Súbita/prevención & control , Norepinefrina/antagonistas & inhibidores , Trastornos Respiratorios/tratamiento farmacológico , Convulsiones/complicaciones , Animales , Muerte Súbita/etiología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos DBA , Trastornos Respiratorios/etiología , Convulsiones/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...