Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8(1): 732, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963468

RESUMEN

Leucyl-tRNA synthetase (LRS) is known to function as leucine sensor in the mammalian target of rapamycin complex 1 (mTORC1) pathway. However, the pathophysiological significance of its activity is not well understood. Here, we demonstrate that the leucine sensor function for mTORC1 activation of LRS can be decoupled from its catalytic activity. We identified compounds that inhibit the leucine-dependent mTORC1 pathway by specifically inhibiting the GTPase activating function of LRS, while not affecting the catalytic activity. For further analysis, we selected one compound, BC-LI-0186, which binds to the RagD interacting site of LRS, thereby inhibiting lysosomal localization of LRS and mTORC1 activity. It also effectively suppressed the activity of cancer-associated MTOR mutants and the growth of rapamycin-resistant cancer cells. These findings suggest new strategies for controlling tumor growth that avoid the resistance to existing mTOR inhibitors resulting from cancer-associated MTOR mutations.Leucyl-tRNA synthetase (LRS) is a leucine sensor of the mTORC1 pathway. Here, the authors identify inhibitors of the GTPase activating function of LRS, not affecting its catalytic activity, and demonstrate that the leucine sensor function of LRS can be a new target for mTORC1 inhibition.


Asunto(s)
Leucina-ARNt Ligasa/metabolismo , Leucina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Neoplasias/enzimología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Leucina-ARNt Ligasa/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Unión al GTP Monoméricas/genética , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
2.
Methods ; 113: 120-126, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27887986

RESUMEN

Aminoacyl-tRNA synthetases (AARSs) comprise an enzyme family that generates and maintains pools of aminoacylated tRNAs, which serve as essential substrates for protein synthesis. Many protein synthesis factors, including tRNA and AARSs also have non-canonical functions. Particularly in mammalian cells, alternate functions of AARSs have been associated with re-distribution in the cell to sites that are removed from translation. Sub-fractionation methods for E. coli were designed and optimized to carefully investigate re-localization of bacterial AARSs and tRNA that might aid in conferring alternate activities. Cell fractionation included isolation of the cytoplasm, periplasm, membrane, outer membrane vesicles, and extracellular media. Specific endogenous proteins and RNAs were probed respectively within each fraction via Western blots using antibodies and by Northern blots with primers to unique regions of the nucleic acid.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Fraccionamiento Celular/métodos , Membrana Celular/enzimología , Citoplasma/enzimología , Periplasma/enzimología , Biosíntesis de Proteínas , Aminoacil-ARNt Sintetasas/clasificación , Aminoacil-ARNt Sintetasas/genética , Northern Blotting/métodos , Western Blotting/métodos , Compartimento Celular , Membrana Celular/química , Citoplasma/química , Escherichia coli/enzimología , Escherichia coli/genética , Vesículas Extracelulares/química , Vesículas Extracelulares/enzimología , Expresión Génica , Periplasma/química , Transporte de Proteínas , Sondas ARN/síntesis química , Sondas ARN/química , ARN de Transferencia/genética , ARN de Transferencia/aislamiento & purificación , ARN de Transferencia/metabolismo
3.
ACS Chem Biol ; 10(10): 2277-85, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26172575

RESUMEN

A new class of antimicrobial benzoxaborole compounds was identified as a potent inhibitor of leucyl-tRNA synthetase (LeuRS) and therefore of protein synthesis. In a novel mechanism, AN2690 (5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole) blocks fungal cytoplasmic LeuRS by covalently trapping tRNA(Leu) in the editing site of the enzyme's CP1 domain. However, some resistant mutation sites are located outside of the CP1 hydrolytic editing active site. Thus, their mode of action that undermines drug inhibition was not understood. A combination of X-ray crystallography, molecular dynamics, metadynamics, biochemical experiments, and mutational analysis of a distal benzoxaborole-resistant mutant uncovered a eukaryote-specific tyrosine "switch" that is critical to tRNA-dependent post-transfer editing. The tyrosine "switch" has three states that shift between interactions with a lysine and the 3'-hydroxyl of the tRNA terminus, to inhibit or promote post-transfer editing. The oxaborole's mechanism of action capitalizes upon one of these editing active site states. This tunable editing mechanism in eukaryotic and archaeal LeuRSs is proposed to facilitate precise quality control of aminoacylation fidelity. These mechanistic distinctions could also be capitalized upon for development of the benzoxaboroles as a broad spectrum antibacterial.


Asunto(s)
Compuestos de Boro/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Farmacorresistencia Bacteriana/fisiología , Leucina-ARNt Ligasa/metabolismo , Antibacterianos/farmacología , Candida albicans/enzimología , Simulación por Computador , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Proteínas Fúngicas/metabolismo , Leucina-ARNt Ligasa/antagonistas & inhibidores , Leucina-ARNt Ligasa/genética , Modelos Moleculares , Termodinámica
4.
FASEB J ; 25(5): 1577-84, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21282208

RESUMEN

Isoprenoid precursors, which are a large group of natural products and play key roles in many biological pathways, can only be biosynthesized by the 2-C-methyl-d-erythritol 4-phosphate pathway in Mycobacterium tuberculosis. The 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase (IspE), which is an essential enzyme in the isoprenoid precursor biosynthesis pathway, catalyzes ATP-dependent phosphorylation of 4-diphosphocytidyl-2-C-methyl-d-erythritol (CDP-ME) to 4-diphosphocytidyl-2C-methyl-d-erythritol-2-phosphate and plays a crucial role in M. tuberculosis survival. Therefore, IspE is characterized as an attractive and potential target for antimicrobial drug discovery. However, no experimental structure of M. tuberculosis IspE has been reported, which has hindered our understanding of its structural details and mechanism of action. Here, we report the expression and purification of fully active full-length M. tuberculosis IspE and solve the high-resolution crystal structures of IspE alone and in complex with either the substrate CDP-ME or nonhydrolyzable ATP analog or ADP. The structures present a characteristic galactose/homoserine/mevalonate/phosphomevalonate kinase superfamily α/ß-fold with a catalytic center located in a cleft between 2 domains and display clear substrate and ATP binding pockets. Our results also indicate distinct differences in ligand binding of M. tuberculosis IspE with other reported IspEs. Combined with the results of mutagenesis and enzymatic studies, our results provide useful information on the structural basis of IspE for future anti-M. tuberculosis drug discovery targeting this kinase.


Asunto(s)
Proteínas Bacterianas/química , Cristalografía por Rayos X/métodos , Mycobacterium tuberculosis/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Datos de Secuencia Molecular , Mycobacterium tuberculosis/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...