Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Water Sci Technol ; 89(11): 2880-2893, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877619

RESUMEN

As a new pollutant treatment technology, microbial fuel cell (MFC) has a broad prospect. In this article, the devices assembled using walnut shells are named biochar-microbial fuel cell (B-MFC), and the devices assembled using graphene are named graphene-microbial fuel cell (G-MFC). Under the condition of an external resistance of 1,000 Ω, the B-MFC with biochar as the electrode plate can generate a voltage of up to 75.26 mV. The maximum power density is 76.61 mW/m2, and the total internal resistance is 3,117.09 Ω. The removal efficiency of B-MFC for ammonia nitrogen (NH3-N), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) was higher than that of G-MFC. The results of microbial analysis showed that there was more operational taxonomic unit (OTU) on the walnut shell biochar electrode plate. The final analysis of the two electrode materials using BET specific surface area testing method (BET) and scanning electron microscope (SEM) showed that the pore size of walnut shell biochar was smaller, the specific surface area was larger, and the pore distribution was smoother. The results show that using walnut shells to make electrode plates is an optional waste recycling method and an electrode plate with excellent development prospects.


Asunto(s)
Fuentes de Energía Bioeléctrica , Carbón Orgánico , Electrodos , Grafito , Juglans , Aguas del Alcantarillado , Juglans/química , Carbón Orgánico/química , Aguas del Alcantarillado/química , Grafito/química , Eliminación de Residuos Líquidos/métodos , Nitrógeno/química , Fósforo/química
2.
Int J Biol Macromol ; 273(Pt 1): 132783, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38825285

RESUMEN

In this study, a brand-new, easy, and environmentally friendly approach for chemically functionalizing 2,2,6,6-tetramethylpiperidinyloxyl radical (TEMPO)-oxidized cellulose nanofiber (TOCNF) to produce modified cellulose nanofiber (octadecylamine-citric acid-CNF) was proposed. Effects of octadecylamine (ODA)/TOCNF mass ratio on the chemical structure, morphology, surface hydrophobicity and oleophobicity were studied. According to Fourier transform infrared spectroscopy (FTIR) analysis, ODA was successfully grafted onto the TOCNF by simple citric acid (CA) esterification and amidation reactions. Scanning electron microscopy (SEM) showed that a new rough structure was formed on the ODA-CA-CNF surface. The water contact angle (WCA) and the castor oil contact angle (OCA) of the ODA-CA-CNF reached 139.6° and 130.6°, respectively. The high-grafting-amount ODA-CA-CNF was sprayed onto paper, and the OCA reached 118.4°, which indicated good oil-resistance performance. The low-grafting-amount ODA-CNF was applied in a pH-responsive indicator film, exhibiting a colour change in response to the pH level, which can be applied in smart food packaging. The ODA-CA-CNF with excellent water/oil-resistance properties and fluorine-free properties can replace petrochemical materials and can be used in the fields of fluorine-free oil-proof paper.

3.
Poult Sci ; 103(8): 103868, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38833743

RESUMEN

Klebsiella pneumoniae is a serious pathogenic bacterium that poses a significant threat to young poultry and the cause of significant chick mortality and economic loss. We investigated the therapeutic efficacy of enrofloxacin in treating K. pneumoniae infections in chicks and employed an in vivo pharmacokinetic/pharmacodynamic (PK/PD) model. In vivo efficacy was evaluated using 6 multiple-dose groups (oral administration once a day for 3 d) and 2 single-dose groups (oral administration once only). The PK and PD parameters of plasma and lung were analyzed using PK/PD fitting analysis. K. pneumoniae administered intratracheally (108 CFU/mL in 0.4 mL saline) was used to establish a model for pulmonary infection. The plasma protein binding of enrofloxacin was 20.18%. Enrofloxacin displayed T1/2ß values of 4.78 ± 0.69 h and 4.78 ± 1.02 h in plasma and lung of infected chicks, respectively. When the dosage in the multiple-dose group was > 10 mg/kg, bactericidal activity was found and complete eradication was not achieved when the dosage was ≤ 40 mg/kg. When TMSW was set at 20%, the calculated dosage and bacterial reduction (E) based on plasma free drug data were 4.03 mg/kg and -1.982 Log10 CFU/mL, respectively. In the calculation of PK/PD parameters for reducing 3 Log10 CFU/mL and using Cmax/MIC, AUC72h/MIC and TMSW of free drug in plasma values at 9.479, 379.691, and 44.395%, respectively, the value of AUC72h/MIC based on the concentration of drug in lung was 530.800. According to the fitting correlation R2, the PK/PD fitting results of free drug in plasma were better. The corresponding enrofloxacin dosage for AUC72h/MIC of the plasma free drug concentration was 14.16 mg/kg. The administration regimen corresponding to these dosages was once daily for 3 d. This dosage regimen (14.16 mg/kg) was relatively high compared to the clinically recommended dosage in China (7.5 mg/kg) when treating infections caused by K. pneumoniae with MIC ≥ 0.125 µg/mL, so careful consideration is needed.

4.
Colloids Surf B Biointerfaces ; 239: 113965, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772084

RESUMEN

Photodynamic therapy (PDT) has become a promising approach and non-invasive modality for cancer treatment, however the therapeutic effect of PDT is limited in tumor metastasis and local recurrence. Herein, a tumor targeted nanomedicine (designated as PCN@HA) is constructed for enhanced PDT against tumors. By modified with hyaluronic acid (HA), which could target the CD44 receptor that expressed on the cancer cells, the targeting ability of PCN@HA has been enhanced. Under light irradiation, PCN@HA can produce cytotoxic singlet oxygen (1O2) and kill cancer cells, then eliminate tumors. Furthermore, PCN@HA exhibits fluorescence (FL)/ photoacoustic (PA) effects for multimodal imaging-guided cancer treatment. And PCN@HA-mediated PDT also can induce immunogenic cell death (ICD) and stimulate adaptive immune responses by releasing of tumor antigens. By combining with anti-PD-L1 checkpoint blockade therapy, it can not only effectively suppress the growth of primary tumor, but also inhibit the metastatic tumor growth.


Asunto(s)
Ácido Hialurónico , Inmunoterapia , Estructuras Metalorgánicas , Fotoquimioterapia , Porfirinas , Fotoquimioterapia/métodos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Inmunoterapia/métodos , Porfirinas/química , Porfirinas/farmacología , Animales , Humanos , Ratones , Ácido Hialurónico/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/química , Ratones Endogámicos BALB C , Oxígeno Singlete/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Tamaño de la Partícula , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/química
5.
Int J Biol Macromol ; 269(Pt 2): 132145, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723819

RESUMEN

Sulfonated lignin-based dye dispersants have intensively attracted attention due to their low cost, renewability and abundant sources. However, their utilization is limited by the low content of sulfonic groups and high content of hydroxyl groups in their complex lignin structure, which results in various problems such as high reducing rate of dye, severe staining of the fibers and uneven dyeing. Here, the multi-site sulfonated lignin-based dispersants were prepared with high sulfonic group content (2.20 mmol/g) and low hydroxyl content (2.43 mmol/g). When using it as the dispersant, the dye uptake rate was improved from 69.23 % to 98.55 %, the reducing rate was decreased from 20.82 % to 2.03 %, the K/S value was reduced from 0.69 to 0.02, and the particle sizes in dye system before and after high temperature treatment were stabilized below 0.5 µm. Besides, the dispersion effect was significantly improved because no obvious separation between dye and water was observed even if without the assistance of grinding process. In short, the multi-site sulfonation method proposed in this work could remarkably improve the performances of the lignin-based dye dispersants, which would facilitate the development of the dye dispersion and the high value utilization of lignin.


Asunto(s)
Colorantes , Lignina , Lignina/química , Colorantes/química , Ácidos Sulfónicos/química , Tamaño de la Partícula , Temperatura
6.
Cell Death Dis ; 15(5): 350, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773070

RESUMEN

Seipin is one key mediator of lipid metabolism that is highly expressed in adipose tissues as well as in the brain. Lack of Seipin gene, Bscl2, leads to not only severe lipid metabolic disorders but also cognitive impairments and motor disabilities. Myelin, composed mainly of lipids, facilitates nerve transmission and is important for motor coordination and learning. Whether Seipin deficiency-leaded defects in learning and motor coordination is underlined by lipid dysregulation and its consequent myelin abnormalities remains to be elucidated. In the present study, we verified the expression of Seipin in oligodendrocytes (OLs) and their precursors, oligodendrocyte precursor cells (OPCs), and demonstrated that Seipin deficiency compromised OPC differentiation, which led to decreased OL numbers, myelin protein, myelinated fiber proportion and thickness of myelin. Deficiency of Seipin resulted in impaired spatial cognition and motor coordination in mice. Mechanistically, Seipin deficiency suppressed sphingolipid metabolism-related genes in OPCs and caused morphological abnormalities in lipid droplets (LDs), which markedly impeded OPC differentiation. Importantly, rosiglitazone, one agonist of PPAR-gamma, substantially restored phenotypes resulting from Seipin deficiency, such as aberrant LDs, reduced sphingolipids, obstructed OPC differentiation, and neurobehavioral defects. Collectively, the present study elucidated how Seipin deficiency-induced lipid dysregulation leads to neurobehavioral deficits via impairing myelination, which may pave the way for developing novel intervention strategy for treating metabolism-involved neurological disorders.


Asunto(s)
Diferenciación Celular , Disfunción Cognitiva , Subunidades gamma de la Proteína de Unión al GTP , Vaina de Mielina , Células Precursoras de Oligodendrocitos , Animales , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Ratones , Células Precursoras de Oligodendrocitos/metabolismo , Vaina de Mielina/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/genética , Metabolismo de los Lípidos , Oligodendroglía/metabolismo , Oligodendroglía/patología , Ratones Endogámicos C57BL , PPAR gamma/metabolismo , PPAR gamma/genética , Ratones Noqueados , Masculino , Rosiglitazona/farmacología
7.
J Magn Reson Imaging ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777575

RESUMEN

BACKGROUND: Neonates with immature auditory function (eg, weak/absent middle ear muscle reflex) could conceivably be vulnerable to noise-induced hearing loss; however, it is unclear if neonates show evidence of hearing loss following MRI acoustic noise exposure. PURPOSE: To explore the auditory effects of MRI acoustic noise in neonates. STUDY TYPE: Prospective. SUBJECTS: Two independent cohorts of neonates (N = 19 and N = 18; mean gestational-age, 38.75 ± 2.18 and 39.01 ± 1.83 weeks). FIELD STRENGTH/SEQUENCE: T1-weighted three-dimensional gradient-echo sequence, T2-weighted fast spin-echo sequence, single-shot echo-planar imaging-based diffusion-tensor imaging, single-shot echo-planar imaging-based diffusion-kurtosis imaging and T2-weighted fluid-attenuated inversion recovery sequence at 3.0 T. ASSESSMENT: All neonates wore ear protection during scan protocols lasted ~40 minutes. Equivalent sound pressure levels (SPLs) were measured for both cohorts. In cohort1, left- and right-ear auditory brainstem response (ABR) was measured before (baseline) and after (follow-up) MRI, included assessment of ABR threshold, wave I, III and V latencies and interpeak interval to determine the functional status of auditory nerve and brainstem. In cohort2, baseline and follow-up left- and right-ear distortion product otoacoustic emission (DPOAE) amplitudes were assessed at 1.2 to 7.0 kHz to determine cochlear function. STATISTICAL TEST: Wilcoxon signed-rank or paired t-tests with Bonferroni's correction were used to compare the differences between baseline and follow-up ABR and DPOAE measures. RESULTS: Equivalent SPLs ranged from 103.5 to 113.6 dBA. No significant differences between baseline and follow-up were detected in left- or right-ear ABR measures (P > 0.999, Bonferroni corrected) in cohort1, or in DPOAE levels at 1.2 to 7.0 kHz in cohort2 (all P > 0.999 Bonferroni corrected except for left-ear levels at 3.5 and 7.0 kHz with corrected P = 0.138 and P = 0.533). DATA CONCLUSION: A single 40-minute 3-T MRI with equivalent SPLs of 103.5-113.6 dBA did not result in significant transient disruption of auditory function, as measured by ABR and DPOAE, in neonates with adequate hearing protection. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 5.

9.
Cell Death Differ ; 31(6): 779-791, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38654072

RESUMEN

Cell plasticity has been found to play a critical role in tumor progression and therapy resistance. However, our understanding of the characteristics and markers of plastic cellular states during cancer cell lineage transition remains limited. In this study, multi-omics analyses show that prostate cancer cells undergo an intermediate state marked by Zeb1 expression with epithelial-mesenchymal transition (EMT), stemness, and neuroendocrine features during the development of neuroendocrine prostate cancer (NEPC). Organoid-formation assays and in vivo lineage tracing experiments demonstrate that Zeb1+ epithelioid cells are putative cells of origin for NEPC. Mechanistically, Zeb1 transcriptionally regulates the expression of several key glycolytic enzymes, thereby predisposing tumor cells to utilize glycolysis for energy metabolism. During this process, lactate accumulation-mediated histone lactylation enhances chromatin accessibility and cellular plasticity including induction of neuro-gene expression, which promotes NEPC development. Collectively, Zeb1-driven metabolic rewiring enables the epigenetic reprogramming of prostate cancer cells to license the adeno-to-neuroendocrine lineage transition.


Asunto(s)
Neoplasias de la Próstata , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Masculino , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Humanos , Animales , Cromatina/metabolismo , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Ratones , Regulación Neoplásica de la Expresión Génica , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/genética , Plasticidad de la Célula , Glucólisis , Ensamble y Desensamble de Cromatina
10.
J Exp Clin Cancer Res ; 43(1): 108, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600610

RESUMEN

Ferroptosis is a newly identified iron-dependent form of death that is becoming increasingly recognized as a promising avenue for cancer therapy. N6-methyladenosine (m6A) is the most abundant reversible methylation modification in mRNA contributing to tumorigenesis. However, the crucial role of m6A modification in regulating ferroptosis during colorectal cancer (CRC) tumorigenesis remains elusive. Herein, we find that m6A modification is increased during ferroptotic cell death and correlates with the decreased m6A demethylase fat mass and obesity-associated protein (FTO) expression. Functionally, we demonstrate that suppressing FTO significantly induces CRC ferroptotic cell death, as well as enhancing CRC cell sensitivity to ferroptosis inducer (Erastin and RSL3) treatment. Mechanistically, high FTO expression increased solute carrier family 7 member 11 (SLC7A11) or glutathione peroxidase 4 (GPX4) expressions in an m6A-YTHDF2 dependent manner, thereby counteracting ferroptotic cell death stress. In addition, we identify Mupirocin as a novel inhibitor of FTO, and Mupirocin induces CRC ferroptosis and inhibits tumor growth. Clinically, the levels of FTO, SLC7A11, and GPX4, are highly correlated expression in CRC tissues. Our findings reveal that FTO protects CRC from ferroptotic cell death in promoting CRC tumorigenesis through triggering SLC7A11/GPX4 expression.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Neoplasias Colorrectales , Mupirocina , Humanos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+ , Carcinogénesis , Muerte Celular , Transformación Celular Neoplásica , Neoplasias Colorrectales/tratamiento farmacológico
11.
Front Pharmacol ; 15: 1285012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515853

RESUMEN

Background: The application of ferric citrate therapy has yielded unexpected benefits in recent years for Chronic kidney disease patients suffering from hyperphosphatemia and iron deficiency -anaemia. Despite this, earlier research on the impact of ferric citrate on NDD-CKD has been contentious. Objective: The goal of the meta-analysis is to evaluate the evidence regarding the advantages and dangers of ferric citrate for the treatment of hyperphosphatemia and iron deficiency anaemia in NDD-CKD patients. Methods: Between the start of the study and June 2022, we searched PubMed, Embase, Cochrane, EBSCO, Scopus, Web of Science, Wan Fang Data, CNKI, and VIP databases for randomised controlled trials of iron citrate for hyperphosphatemia and anaemia in patients with NDD-CKD. For binary categorical data, risk ratios (OR) were employed, and for continuous variables, weighted mean differences The effect sizes for both count and measurement data were expressed using 95% confidence intervals Results: The meta-analysis includes eight trials with a total of 1281 NDD-CKD patients. The phosphorus-lowering effect of ferric citrate was greater compared to the control group (WMD, -0.55, 95% CI, -0.81 to -0.28; I2 = 86%, p < 0.001). Calcium (WMD, 0.092; 95% CI, -0.051 to 0.234; p > 0.05; I2 = 61.9%), PTH (WMD, -0.10; 95% CI, -0.44 to 0.23; I2 = 75%, p > 0.05) and iFGF23 (WMD, -7.62; 95% CI, -21.18 to 5.94; I2 = 20%, p > 0.05) levels were not statistically different after ferric citrate treatment compared to control treatment. Furthermore, ferric citrate increased iron reserves and haemoglobin. The ferric citrate group had considerably greater levels than the controls. Ferric citrate, on the other hand, may raise the risk of constipation, diarrhoea, and nausea. Conclusion: This meta-analysis found that ferric citrate had a beneficial effect in the treatment of NDD-CKD, particularly in reducing blood phosphorus levels when compared to a control intervention. It also shown that ferric citrate has a favourable effect on iron intake and anaemia management. In terms of safety, ferric citrate may increase the likelihood of gastrointestinal side effects.

12.
Int J Biol Macromol ; 264(Pt 2): 130784, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467212

RESUMEN

Along with the developing of flexible electronics, there is a strong interest in high performance flexible energy storage materials. As natural carbohydrate polymer, cellulose fibers have potential applications in the area due to their biodegradability and flexibility. However, their conductive and electrochemical properties are impossible to meet the demands of practical applications. In this study, cellulose fibers were combined with polyaniline to develop novel paper-based supercapacitor electrode material. Cellulose fibers were firstly coordinated to Cu(II) and subsequently involved in polymerization of polyaniline. Not only the mass loading of polyaniline was significantly increased, but also an impressive area specific capacitance (2767 mF/cm2 at 1 mA/cm2) was achieved. The developed strategy is efficient, environmentally friendly, and has implications for the development of cellulosic paper-based advanced functional materials.


Asunto(s)
Celulosa , Cobre , Compuestos de Anilina , Electrodos
13.
Int J Biol Macromol ; 264(Pt 1): 130599, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442834

RESUMEN

Cellulosic paper-based electrode materials have attracted increasing attention in the field of flexible supercapacitor. As a conductive polymer, polyaniline exhibits high theoretical pseudocapacitive capacitance and has been applied in paper-based electrode materials along with cellulose fibers. However, the stacking of polyaniline usually leads to poor performance of electrodes. In this study, metal-organic coordination polymers of zirconium-alizarin red S and zirconium-phytic acid are applied to modulate the polyaniline layer to obtain high-performance cellulosic paper-based electrode materials. Zirconium hydroxide is firstly loaded on cellulose fibers while alizarin red S and phytic acid are introduced to regulate the morphology of polyaniline through doping and coordination processes. The results show that the introduction of dual coordination polymers is effective to regulate the morphology of polyaniline on cellulose fibers. The performances of the paper-based electrode materials, including electrical conductivity and electrochemistry, are apparently improved. It provides a promising strategy for the potential development of economical and green electrode materials in the conventional paper-making process.


Asunto(s)
Compuestos de Anilina , Antraquinonas , Celulosa , Polímeros , Circonio , Ácido Fítico , Electrodos
14.
J Agric Food Chem ; 72(12): 6744-6753, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498411

RESUMEN

Tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) have been widely used as additives in various products; however, their residues damage human health mainly via dietary ingestion. The current detection techniques remain challenging in directly and sensitively identifying TBBPA and TBBPS from food samples. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has great potential as an alternative tool for the analysis of low-mass environmental pollution. Herein, we successfully screened and optimized COOH-MNP-COOH as a novel MALDI matrix to enhance deprotonation for the analysis of TBBPA and TBBPS from animal-derived food samples in negative-ion mode. Notably, COOH-MNP-COOH was synthesized by a facile self-assembly strategy and characterized by TEM, FT-IR, UV-vis, and zeta potential analysis. Compared with conventional and control matrices, the COOH-MNP-COOH matrix exhibited excellent performance of TBBPA and TBBPS with high chemical stability, favorable reproducibility, remarkable salt and protein tolerance, and high sensitivity owing to abundant active groups, stronger UV-vis absorption at 355 nm, and better hydrophilicity and biocompatibility. TBBPA and TBBPS were detected with the assistance of an internal standard with limits of detection (LODs) of 300 and 200 pg/mL, respectively. Moreover, this method was applied to directly identify the residues of TBBPA and TBBPS in milk products, followed by basa catfish and meat. This research may provide a promising approach for the analysis of environmental pollutants in foodstuffs.


Asunto(s)
Melaninas , Nanopartículas , Bifenilos Polibrominados , Animales , Humanos , Reproducibilidad de los Resultados , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Nanopartículas/química
15.
Int J Biol Macromol ; 264(Pt 1): 130474, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428769

RESUMEN

The biocompatible, biodegradable and strong polyvinyl alcohol-based films have been widely investigated and used in the field of active packaging. To endow with diverse function, this paper firstly prepared lignin nanoparticles loaded with potassium sorbate (LNP@PS) as additives to exploit additional antibacterial, UV blocking, oxygen barrier, and water barrier properties. Besides, tannin acid (TA) was incorporated for compensating and further enhancing mechanical properties. Results showed that the PVA-based composite films containing 3 % LNP@PS and 5 % TA could achieve the optimal tensile strength at 74.51 MPa, water vapor permeability at 7.015·10-13·g·cm/cm2·s·Pa and oxygen permeability at 1.93 cm3/m2·24 h MPa, which was an 165 % of increase, 47 % and 112 % of reduction respectively compared to pure PVA films. Additionally, the composite films exhibited apparently superior bacteria and oxygen resistance properties evidenced by microbial infection and free radical scavenging performance. In addition, the slow-release effect of PS assisted the strawberry preservation with an extension of 3 days, which provided a promising novel route to prepare active food packaging material.


Asunto(s)
Lignina , Nanopartículas , Taninos , Alcohol Polivinílico , Ácido Sórbico/farmacología , Oxígeno
16.
Lung Cancer ; 190: 107541, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531154

RESUMEN

OBJECTIVE: Metabolic reprogramming is an important coordinator of tumor development and resistance to therapy, such as the tendency of tumor cells to utilize glycolytic energy rather than oxidative phosphorylation, even under conditions of sufficient oxygen. Therefore, targeting metabolic enzymes is an effective strategy to overcome therapeutic resistance. MATERIALS AND METHODS: We explored the differential expression and growth-promoting function of MDH2 by immunohistochemistry and immunoblotting experiments in lung cancer patients and lung cancer cells. Pentose phosphate pathway-related phenotypes (including ROS levels, NADPH levels, and DNA synthesis) were detected intracellularly, and the interaction of malate and proteinase 6PGD was detected in vitro. In vivo experiments using implanted xenograft mouse models to explore the growth inhibitory effect and pro-chemotherapeutic function of dimethyl malate (DMM) on lung cancer. RESULTS: We found that the expression of malate dehydrogenase (MDH2) in the tricarboxylic acid cycle (TCA cycle) was increased in lung cancer. Biological function enrichment analysis revealed that MDH2 not only promoted oxidative phosphorylation, but also promoted the pentose phosphate pathway (PPP pathway). Mechanistically, it was found that malate, the substrate of MDH2, can bind to the PPP pathway metabolic enzyme 6PGD, inhibit its activity, reduce the generation of NADPH, and block DNA synthesis. More importantly, DMM can improve the sensitivity of lung cancer to the clinical drug cisplatin. CONCLUSION: We have identified malate as a natural inhibitor of 6PGD, which will provide new leads for the development of 6PGD inhibitors. In addition, the metabolic enzyme MDH2 and the metabolite malate may provide a backup option for cells to inhibit their own carcinogenesis, as the accumulated malate targets 6PGD to block the PPP pathway and inhibit cell cycle progression.


Asunto(s)
Neoplasias Pulmonares , Animales , Humanos , Ratones , ADN , Neoplasias Pulmonares/genética , Malatos/farmacología , NADP/metabolismo
17.
Appl Microbiol Biotechnol ; 108(1): 135, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38229306

RESUMEN

Apoptotic-like programmed cell death (PCD) is one of the main strategies for fungi to resist environmental stresses and maintain homeostasis. The apoptosis-inducing factor (AIF) has been shown in different fungi to trigger PCD through upregulating reactive oxygen species (ROS). This study identified a mitochondrial localized AIF homolog, CcAIF1, from Coprinopsis cinerea monokaryon Okayama 7. Heterologous overexpression of CcAIF1 in Saccharomyces cerevisiae caused apoptotic-like PCD of the yeast cells. Ccaif1 was increased in transcription when C. cinerea interacted with Gongronella sp. w5, accompanied by typical apoptotic-like PCD in C. cinerea, including phosphatidylserine externalization and DNA fragmentation. Decreased mycelial ROS levels were observed in Ccaif1 silenced C. cinerea transformants during cocultivation, as well as reduction of the apoptotic levels, mycelial growth, and asexual sporulation. By comparison, Ccaif1 overexpression led to the opposite phenotypes. Moreover, the transcription and expression levels of laccase Lcc9 decreased by Ccaif1 silencing but increased firmly in Ccaif1 overexpression C. cinerea transformants in coculture. Thus, in conjunction with our previous report that intracellular ROS act as signal molecules to stimulate defense responses, we conclude that CcAIF1 is a regulator of ROS to promote apoptotic-like PCD and laccase expression in fungal-fungal interactions. In an axenic culture of C. cinerea, CcAIF1 overexpression and H2O2 stimulation together increased laccase secretion with multiplied production yield. The expression of two other normally silent isozymes, Lcc8 and Lcc13, was unexpectedly triggered along with Lcc9. KEY POINTS: • Mitochondrial CcAIF1 induces PCD during fungal-fungal interactions • CcAIF1 is a regulator of ROS to trigger the expression of Lcc9 for defense • CcAIF1 overexpression and H2O2 stimulation dramatically increase laccase production.


Asunto(s)
Factor Inductor de la Apoptosis , Lacasa , Lacasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Apoptosis , Saccharomyces cerevisiae/metabolismo
18.
Front Nutr ; 10: 1286209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094925

RESUMEN

To investigate the protective effect of blackberry anthocyanins (BA), tea polyphenols (TP), and their binary mixture on the oxidative stability of edible oils during storage, BA, TP, and their binary mixture were added to lard and olive oil. The changes in peroxide value (PV), thiobarbituric acid reactive substances (TBARS), acid value (AV), and scavenging capacity of DPPH and ABTS•+ of oil samples were evaluated during accelerated storage. BA were found to have a remarkable capability to enhance antioxidant properties, delay lipid oxidation, and inhibit the deterioration both of lard and olive oil at high-temperature processes. Furthermore, the antioxidant synergistic effect of BA and TP was found both in lard and olive oil for the first time. All these results suggested that BA and its combination with TP might possess the potential value to protect the quality of edible oils.

19.
Sci Rep ; 13(1): 21738, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066062

RESUMEN

The aim of this study was to examine the parenting characteristics of young patients with bipolar disorder (BD) and explore the sex differences. The parental rearing pattern of young patients with BD was measured and compared with the healthy control of young adults. The EMBU scale was used to assess parental rearing patterns. Patients with BD reported significantly higher scores in the punishment and severity index, as well as of the rejection and denial index, but lower scores in the warmth & affectionate index in the paternal rearing pattern, compared with healthy controls. In addition, patients scored higher on the punishment and severity index and rejection and patterns index in maternal rearing patterns. More importantly, we found significant sex differences in maternal rearing patterns (pBonferroni < 0.05). Specifically, in the maternal rearing patterns, male patients had higher scores on the favoring index than male controls, whereas female patients had lower scores on the warmth & affectionate index than female controls. This study shows significant differences in parental rearing patterns between patients and control subjects. Male patients were overprotective by their mothers and female patients were overlooked by their mothers during upbringing.


Asunto(s)
Trastorno Bipolar , Niño , Humanos , Masculino , Femenino , Adulto Joven , Crianza del Niño , Caracteres Sexuales , Relaciones Padres-Hijo , Padres , Responsabilidad Parental
20.
J Clin Invest ; 133(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099497

RESUMEN

Cell lineage plasticity is one of the major causes for the failure of targeted therapies in various cancers. However, the driver and actionable drug targets in promoting cancer cell lineage plasticity are scarcely identified. Here, we found that a G protein-coupled receptor, ADORA2A, is specifically upregulated during neuroendocrine differentiation, a common form of lineage plasticity in prostate cancer and lung cancer following targeted therapies. Activation of the ADORA2A signaling rewires the proline metabolism via an ERK/MYC/PYCR cascade. Increased proline synthesis promotes deacetylases SIRT6/7-mediated deacetylation of histone H3 at lysine 27 (H3K27), and thereby biases a global transcriptional output toward a neuroendocrine lineage profile. Ablation of Adora2a in genetically engineered mouse models inhibits the development and progression of neuroendocrine prostate and lung cancers, and, intriguingly, prevents the adenocarcinoma-to-neuroendocrine phenotypic transition. Importantly, pharmacological blockade of ADORA2A profoundly represses neuroendocrine prostate and lung cancer growth in vivo. Therefore, we believe that ADORA2A can be used as a promising therapeutic target to govern the epigenetic reprogramming in neuroendocrine malignancies.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Próstata , Sirtuinas , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Epigénesis Genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Prolina/metabolismo , Prolina/uso terapéutico , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Sirtuinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA