Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Rice (N Y) ; 14(1): 26, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33677712

RESUMEN

BACKGROUND: Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice. An increasing number of microRNAs (miRNAs) have been reported to fine-tune rice immunity against M. oryzae and coordinate with growth and development. RESULTS: Here, we showed that rice microRNA159a (Osa-miR159a) played a positive role in rice resistance to M. oryzae. The expression of Osa-miR159a was suppressed in a susceptible accession at 12, 24, and 48 h post-inoculation (hpi); it was upregulated in a resistant accession of M. oryzae at 24 hpi. The transgenic rice lines overexpressing Osa-miR159a were highly resistant to M. oryzae. In contrast, the transgenic lines expressing a short tandem target mimic (STTM) to block Osa-miR159a showed enhanced susceptibility. Knockout mutations of the target genes of Osa-miR159a, including OsGAMYB, OsGAMYBL, and OsZF, led to resistance to M. oryzae. Alteration of the expression of Osa-miR159a impacted yield traits including pollen and grain development. CONCLUSIONS: Our results indicated that Osa-miR159a positively regulated rice immunity against M. oryzae by downregulating its target genes. Proper expression of Osa-miR159a was critical for coordinating rice blast resistance with grain development.

2.
J Integr Plant Biol ; 63(2): 378-392, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33073904

RESUMEN

Study on the regulation of broad-spectrum resistance is an active area in plant biology. RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is one of a few broad-spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1-mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1-mediated resistance in Arabidopsis against powdery mildew. We isolated and characterized Arabidopsis b7-6 mutant. A point mutation in b7-6 at the At5g12380 locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss-of-function or RNA-silencing of AtANN8 led to enhanced expression of RPW8.1, RPW8.1-dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over-expression of AtANN8 compromised RPW8.1-mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1-triggered H2 O2 . In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1-mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.


Asunto(s)
Anexinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Adaptación Fisiológica , Secuencia de Aminoácidos , Anexinas/química , Anexinas/genética , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ascomicetos/fisiología , Muerte Celular , Retículo Endoplásmico/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Peróxido de Hidrógeno/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mutación/genética , Necrosis , Estrés Salino , Estrés Fisiológico
3.
New Phytol ; 229(1): 516-531, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32767839

RESUMEN

The Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) activates confined cell death and defense against different pathogens. However, the underlying regulatory mechanisms still remain elusive. Here, we show that RPW8.1 activates ethylene signaling that, in turn, negatively regulates RPW8.1 expression. RPW8.1 binds and stabilizes 1-aminocyclopropane-1-carboxylate oxidase 4 (ACO4), which may in part explain increased ethylene production and signaling in RPW8.1-expressing plants. In return, ACO4 and other key components of ethylene signaling negatively regulate RPW8.1-mediated cell death and disease resistance via suppressing RPW8.1 expression. Loss of function in ACO4, EIN2, EIN3 EIL1, ERF6, ERF016 or ORA59 increases RPW8.1-mediated cell death and defense response. By contrast, overexpression of EIN3 abolishes or significantly compromises RPW8.1-mediated cell death and disease resistance. Furthermore, ERF6, ERF016 and ORA59 appear to act as trans-repressors of RPW8.1, with OAR59 being able to directly bind to the RPW8.1 promoter. Taken together, our results have revealed a feedback regulatory circuit connecting RPW8.1 and the ethylene-signaling pathway, in which RPW8.1 enhances ethylene signaling, and the latter, in return, negatively regulates RPW8.1-mediated cell death and defense response via suppressing RPW8.1 expression to attenuate its defense activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos/metabolismo , Muerte Celular , Resistencia a la Enfermedad , Etilenos , Retroalimentación , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal
4.
Rice (N Y) ; 13(1): 38, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32524307

RESUMEN

MicroRNAs (miRNAs) play essential roles in rice immunity against Magnaporthe oryzae, the causative agent of rice blast disease. Here we demonstrate that Osa-miR162a fine-tunes rice immunity against M. oryzae and yield traits. Overexpression of Osa-miR162a enhances rice resistance to M. oryzae accompanying enhanced induction of defense-related genes and accumulation of hydrogen peroxide (H2O2). In contrast, blocking Osa-miR162 by overexpressing a target mimic of Osa-miR162a enhances susceptibility to blast fungus associating with compromised induction of defense-related gene expression and H2O2 accumulation. Moreover, the transgenic lines overexpressing Osa-miR162a display decreased seed setting rate resulting in slight reduced yield per plant, whereas the transgenic lines blocking Osa-miR162 show an increased number of grains per panicle, resulting in increased yield per plant. Altered accumulation of Osa-miR162 had a limited impact on the expression of rice Dicer-like 1 (OsDCL1) in these transgenic lines showing normal gross morphology, and silencing of OsDCL1 led to enhanced resistance to blast fungus similar to that caused by overexpression of Osa-miR162a, suggesting the involvement of OsDCL1 in Osa-miR162a-regulated resistance. Together, our results indicate that Osa-miR162a is involved in rice immunity against M. oryzae and fine-tunes resistance and yield.

5.
Front Genet ; 11: 327, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391053

RESUMEN

MicroRNAs (miRNAs) play essential roles in the regulation of plant growth and defense responses. More and more, miRNA-3ps are reported to act in plant development and immunity. miR156 is a conserved miRNA, and most previous studies focus on its roles in plant growth, development, and yield determinacy. Here, we show that expressing a target mimic of miR156fhl-3p led to enhanced rice blast disease resistance without a yield penalty. miR156fhl-3p was differentially responsive to Magnaporthe oryzae in susceptible and resistant accessions. Transgenic lines expressing a target mimic of miR156fhl-3p (MIM156-3p) exhibited enhanced rice blast disease resistance and increased expression of defense-related genes. MIM156-3p also enhanced the mRNA abundance of SPL14 and WRKY45 by down-regulating miR156-5p and pre-miR156. Moreover, MIM156-3p lines displayed a decreased number of second rachis branches per panicle but enlarged grains, leading to unchanged yield per plant. Consistently, overexpressing miR156h (OX156) led to enhanced susceptibility to M. oryzae and decreased the expression of SPL14 and WRKY45. Our results indicate that miR156fhl-3p mounts a regulatory role on miR156-5p, which subsequently regulates the expression of SPL14 and WRKY45 to improve rice blast disease resistance.

6.
J Integr Plant Biol ; 62(5): 702-715, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31001874

RESUMEN

MicroRNAs (miRNAs) play important roles in rice response to Magnaporthe oryzae, the causative agent of rice blast disease. Studying the roles of rice miRNAs is of great significance for the disease control. Osa-miR167d belongs to a conserved miRNA family targeting auxin responsive factor (ARF) genes that act in developmental and stress-induced responses. Here, we show that Osa-miR167d plays a negative role in rice immunity against M. oryzae by suppressing its target gene. The expression of Osa-miR167d was significantly suppressed in a resistant accession at and after 24 h post inoculation (hpi), however, its expression was significantly increased at 24 hpi in the susceptible accession upon M. oryzae infection. Transgenic rice lines over-expressing Osa-miR167d were highly susceptible to multiple blast fungal strains. By contrast, transgenic lines expressing a target mimicry to block Osa-miR167d enhanced resistance to rice blast disease. In addition, knocking out the target gene ARF12 led to hyper-susceptibility to multiple blast fungal strains. Taken together, our results indicate that Osa-miR167d negatively regulate rice immunity to facilitate the infection of M. oryzae by downregulating ARF12. Thus, Osa-miR167d-ARF12 regulatory module could be valuable in improvement of blast-disease resistance.


Asunto(s)
MicroARNs/metabolismo , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Oryza/genética , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/genética
7.
Plant Physiol ; 182(1): 272-286, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31628150

RESUMEN

Circular RNAs (circRNAs) play roles in various biological processes, but their functions in the rice (Oryza sativa) response to Magnaporthe oryzae remain elusive. Here, we demonstrate that circRNAs are involved in the rice-M. oryzae interaction using comparative circRNA-sequencing and transgenic approaches. We identified 2932 high-confidence circRNAs from young leaves of the blast-resistant accession International Rice Blast Line Pyricularia-Kanto51-m-Tsuyuake (IR25) and the blast-susceptible accession Lijiangxin Tuan Heigu (LTH) under M oryzae-infected or uninfected conditions; 636 were detected specifically upon M oryzae infection. The circRNAs in IR25 were significantly more diverse than those in LTH, especially under M. oryzae infection. Particularly, the number of circRNAs generated per parent gene was much higher in IR25 than in LTH and increased in IR25 but decreased in LTH upon M. oryzae infection. The higher diversity of circRNAs in IR25 was further associated with more frequent 3' and 5' alternative back-splicing and usage of complex splice sites. Moreover, a subset of circRNAs was differentially responsive to M oryzae in IR25 and LTH. We further confirmed that circR5g05160 promotes rice immunity against M oryzae Therefore, our data indicate that circRNA diversity is associated with different responses to M oryzae infection in rice and provide a starting point to investigate a new layer of regulation in the rice-M oryzae interaction.


Asunto(s)
Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , ARN Circular/genética , Regulación de la Expresión Génica de las Plantas/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética
8.
J Integr Plant Biol ; 62(8): 1213-1226, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31863525

RESUMEN

MicroRNAs (miRNAs) are known to fine-tune growth, development, and stress-induced responses. Osa-miR1873 is a rice-specific miRNA targeting LOC_Os05g01790. Here, we show that Osa-miR1873 fine-tunes rice immunity against Magnaporthe oryzae and yield traits via LOC_Os05g01790. Osa-miR1873 was significantly upregulated in a susceptible accession but downregulated in a resistance accession at 24 h post-inoculation (hpi) of M. oryzae. Overexpressing Osa-miR1873 enhanced susceptibility to M. oryzae and compromised induction of defense responses. In contrast, blocking Osa-miR1873 through target mimicry compromised susceptibility to M. oryzae and enhanced induction of defense responses. Altered expression of Osa-miR1873 also resulted in some defects in yield traits, including grain numbers and seed setting rate. Moreover, overexpression of the target gene LOC_Os05g01790 increased rice blast disease resistance but severely penalized growth and yield. Taken together, we demonstrate that Osa-miR1873 fine-tunes the rice immunity-growth trade-off via LOC_Os05g01790, and blocking Osa-miR1873 could improve blast disease resistance without significant yield penalty. Thus, the Osa-miR1873-LOC_Os05g01790 regulatory module is valuable in balancing yield traits and blast resistance.


Asunto(s)
Magnaporthe/fisiología , MicroARNs/metabolismo , Oryza/genética , Oryza/microbiología , Inmunidad de la Planta , Resistencia a la Enfermedad/genética , Susceptibilidad a Enfermedades , Ecotipo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Oryza/crecimiento & desarrollo , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Carácter Cuantitativo Heredable
9.
Environ Microbiol ; 22(2): 646-659, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31797523

RESUMEN

Rice false smut has emerged as a serious grain disease in rice production worldwide. The disease is characterized by the transformation of individual rice florets into false smut balls, which is caused by the fungal pathogen Ustilaginoidea virens. To date, little is known about the host factors required for false smut ball formation by U. virens. In this study, we identified histological determinants for the formation of false smut balls by inoculating U. virens into rice floral mutants defective with respect to individual floral parts. The results showed that U. virens could form mature false smut balls in rice floral mutants with defective pistils, but failed to develop false smut balls in the superwoman mutant lacking stamens, identifying that U. virens requires rice stamens to complete its infection cycle. Comparative transcriptome analysis indicated a list of candidate host genes that may facilitate nutrient acquisition by U. virens from the rice stamens, such as SWEET11, SWEET14 and SUT5, and genes involved in the biosynthesis of trehalose and raffinose family sugars. These data pinpoint rice stamens as the key target organ of U. virens infection and provide a valuable starting point for dissecting the molecular mechanism of false smut ball formation.


Asunto(s)
Flores/microbiología , Hypocreales/crecimiento & desarrollo , Oryza/microbiología , Hypocreales/genética , Hypocreales/metabolismo , Proteínas de Transporte de Membrana/genética , Enfermedades de las Plantas/microbiología , Rafinosa/biosíntesis , Transcriptoma/genética , Trehalosa/biosíntesis
10.
Front Plant Sci ; 10: 433, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024598

RESUMEN

Rice blast caused by Magnaporthe oryzae (M. oryzae) is a major threat to global rice production. In recent years, small interference RNAs (siRNAs) and host-induced gene silencing (HIGS) has been shown to be new strategies for the development of transgenic plants to control fungal diseases and proved a useful tool to study gene function in pathogens. We here tested whether in vitro feeding artificial siRNAs (asiRNAs) could compromise M. oryzae virulence and in vivo HIGS technique could improve rice blast resistance. Our data revealed that silencing of M. oryzae MoAP1 by feeding asiRNAs targeting MoAP1 (i.e., asiR1245, asiR1362, and asiR1115) resulted in inhibited fungal growth, abnormal spores, and decreased pathogenicity. Among the asiRNAs, asiR1115 was the most inhibitory toward the rice blast fungus. Conversely, the asiRNAs targeting three other genes (i.e., MoSSADH, MoACT, and MoSOM1) had no effect on fungal growth. Transgenic rice plants expressing RNA hairpins targeting MoAP1 exhibited improved resistance to 11 tested M. oryzae strains. Confocal microscopy also revealed profoundly restricted appressoria and mycelia in rice blast-infected transgenic rice plants. Our results demonstrate that in vitro asiRNA and in vivo HIGS were useful protection approaches that may be valuable to enhance rice blast resistance.

11.
New Phytol ; 222(3): 1507-1522, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30632163

RESUMEN

miRNAs contribute to plant resistance against pathogens. Previously, we found that the function of miR398b in immunity in rice differs from that in Arabidopsis. However, the underlying mechanisms are unclear. In this study, we characterized the mutants of miR398b target genes and demonstrated that multiple superoxide dismutase genes contribute to miR398b-regulated rice immunity against the blast fungus Magnaporthe oryzae. Out of the four target genes of miR398b, mutations in Cu/Zn-Superoxidase Dismutase1 (CSD1), CSD2 and Os11g09780 (Superoxide DismutaseX, SODX) led to enhanced resistance to M. oryzae and increased hydrogen peroxide (H2 O2 ) accumulation. By contrast, mutations in Copper Chaperone for Superoxide Dismutase (CCSD) resulted in enhanced susceptibility. Biochemical studies revealed that csd1, csd2 and sodx displayed altered expression of CSDs and other superoxide dismutase (SOD) family members, leading to increased total SOD enzyme activity that positively contributed to higher H2 O2 production. By contrast, the ccsd mutant showed CSD protein deletion, resulting in decreased CSD and total SOD enzyme activity. Our results demonstrate the roles of different SODs in miR398b-regulated resistance to rice blast disease, and uncover an integrative regulatory network in which miR398b boosts total SOD activity to upregulate H2 O2 concentration and thereby improve disease resistance.


Asunto(s)
Resistencia a la Enfermedad , Peróxido de Hidrógeno/metabolismo , MicroARNs/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Superóxido Dismutasa/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Magnaporthe , MicroARNs/genética , Modelos Biológicos , Mutación/genética , Oryza/genética , Oryza/microbiología , Especies Reactivas de Oxígeno/metabolismo
12.
Plant J ; 98(1): 55-70, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30552775

RESUMEN

The extrahaustorial membrane (EHM) is a host-derived interfacial membrane encasing the haustorium of powdery mildew fungi. Arabidopsis thaliana RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically targeted to the EHM via two EHM-targeting signals. Here, we demonstrate that proper coordination between the trafficking forces engaged via the EHM-targeting signals and the nuclear localization signals (NLSs), as well as the nuclear export signals (NESs), in RPW8.2 is critical for the activation of cell death and defense. We show that in the absence of pathogens, RPW8.2 is partitioned between the cytoplasm and the nucleus, and turned over via both the 26S proteasome- and the vacuole-dependent pathways. Enhanced cytoplasmic localization of RPW8.2 by tagging it with a NES led to lethal cell death. By contrast, enhanced nuclear localization of RPW8.2 by adding an NLS to it resulted in resistance to powdery mildew. Whereas expression of the NES-containing C-terminal domain of RPW8.2 in the cytoplasm is sufficient to trigger cell death, no such cell death-inducing activity is found with RPW8.2 variants that contain the two EHM-targeting signals along with the NES-containing C-terminal domain. In addition, we present evidence for the involvement of a leaf senescence pathway in RPW8.2-mediated cell death and defense. Taken together, our data suggest that RPW8.2 is subject to adjustment by distinct and perhaps coordinated mechanisms for its localization and function via interaction with the multiple intramolecular trafficking signals, which should provide further insights into RPW8.2-activated, EHM-focused resistance against powdery mildew.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ascomicetos/fisiología , Resistencia a la Enfermedad , Enfermedades de las Plantas/inmunología , Arabidopsis/inmunología , Arabidopsis/microbiología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Muerte Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Genes Reporteros , Interacciones Huésped-Patógeno , Modelos Biológicos , Mutación , Señales de Exportación Nuclear , Señales de Localización Nuclear , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Transporte de Proteínas
13.
Front Plant Sci ; 9: 1999, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30693011

RESUMEN

Fitness cost is a common phenomenon in rice blast disease-resistance breeding. MiR396 is a highly conserved microRNA (miRNA) family targeting Growth Regulating Factor (OsGRF) genes. Mutation at the target site of miR396 in certain OsGRF gene or blocking miR396 expression leads to increased grain yield. Here we demonstrated that fitness cost can be trade-off in miR396-OsGRFs module via balancing growth and immunity against the blast fungus. The accumulation of miR396 isoforms was significantly increased in a susceptible accession, but fluctuated in a resistant accession upon infection of Magnaporthe oryzae. The transgenic lines over-expressing different miR396 isoforms were highly susceptible to M. oryzae. In contrast, overexpressing target mimicry of miR396 to block its function led to enhanced resistance to M. oryzae in addition to improved yield traits. Moreover, transgenic plants overexpressing OsGRF6, OsGRF7, OsGRF8, and OsGRF9 exhibited enhanced resistance to M. oryzae, but showed different alteration of growth. While overexpression of OsGRF7 led to defects in growth, overexpression of OsGRF6, OsGRF8, and OsGRF9 resulted in better or no significant change of yield traits. Collectively, our results indicate that miR396 negatively regulates rice blast disease- resistance via suppressing multiple OsGRFs, which in turn differentially control growth and yield. Therefore, miR396-OsGRFs could be a potential module to demolish fitness cost in rice blast disease-resistance breeding.

14.
Plant Cell Physiol ; 55(8): 1484-96, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24899552

RESUMEN

Broad-spectrum disease resistance is a highly valuable trait in plant breeding and attracts special attention in research. The Arabidopsis gene locus RESISTANCE TO POWDERY MILDEW 8 (RPW8) contains two adjacent homologous genes, RPW8.1 and RPW8.2, and confers broad-spectrum resistance to powdery mildew. Remarkably, the RPW8.2 protein is specifically localized to the extrahaustorial membrane (EHM) encasing the feeding structure of powdery mildew whereby RPW8.2 activates haustorium-targeted defenses. Here, we show that ectopic expression of the yellow fluorescent protein (YFP)-tagged RPW8.1 from the native promoter leads to unique cell death lesions and enhances resistance to virulent fungal and oomycete pathogens that cause powdery mildew and downy mildew diseases, respectively. In powdery mildew-infected plants, RPW8.1-YFP accumulates at higher levels in the mesophyll cells underneath the infected epidermal cells where RPW8.2-YFP is mainly expressed. This cell type-preferential protein accumulation pattern largely correlates with that of H(2)O(2) accumulation, suggesting that RPW8.1 may spatially collaborate with RPW8.2 in activation of resistance to powdery mildew. Interestingly, when ectopically expressed from the RPW8.2 promoter, RPW8.1-YFP is also targeted to the EHM of powdery mildew and the transgenic plants display resistance to both powdery mildew and downy mildew. Using YFP as a reporter, we further reveal that the RPW8.1 promoter is constitutively active but induced to higher levels in cells at the infection site, whereas the RPW8.2 promoter is activated specifically in cells at the infection site. Taken together, our results suggest that RPW8.1 (and its promoter) is functionally distinct from RPW8.2 and may have a higher potential in engineering broad-spectrum resistance in plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/inmunología , Ascomicetos/fisiología , Resistencia a la Enfermedad , Oomicetos/fisiología , Enfermedades de las Plantas/inmunología , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Expresión Génica , Genes Reporteros , Interacciones Huésped-Patógeno , Células del Mesófilo , Fenotipo , Enfermedades de las Plantas/microbiología , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/inmunología , Epidermis de la Planta/microbiología , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión , Transducción de Señal
15.
Planta ; 239(2): 455-68, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24218059

RESUMEN

Nuclear localization signals (NLSs) and nuclear export signals (NESs) are important intramolecular regulatory elements for protein nucleocytoplasmic trafficking. This regulation confers spatial specificity to signal initiation and transduction in eukaryotic cells and thus is fundamental to the viability of all eukaryotic organisms. Here, we developed a simple and rapid method in which activity of putative NLSs or NESs was reported by subcellular localization of two tandem fluorescent proteins in fusion with the respective NLSs or NESs after agroinfiltration-mediated transient expression in leaves of Nicotiana benthamiana (Nb). We further demonstrated that the predicted NES from amino acid residue (aa) 9 to 22 and the NLS from aa91 to 101 in the broad-spectrum disease resistance protein RPW8.2 possess nuclear export and import activity, respectively. Additionally, by testing overlapping fragments covering the full length of RPW8.2, we identified another NLS from aa65 to 74 with strong nuclear import activity and two tandem non-canonical NESs in the C-terminus with strong nuclear export activity. Taken together, our results demonstrated the utility of a simple method to evaluate potential NLSs and NESs in plant cells and suggested that RPW8.2 may be subject to opposing nucleocytoplasmic trafficking forces for its subcellular localization and functional execution.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Nicotiana/metabolismo , Señales de Exportación Nuclear , Señales de Localización Nuclear , Transducción de Señal , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Genes Reporteros , Datos de Secuencia Molecular , Mutación , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas , Proteínas Recombinantes de Fusión , Análisis de Secuencia de ADN , Nicotiana/citología , Nicotiana/genética
16.
Plant Physiol ; 164(2): 1077-92, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24335508

RESUMEN

MicroRNAs (miRNAs) are indispensable regulators for development and defense in eukaryotes. However, the miRNA species have not been explored for rice (Oryza sativa) immunity against the blast fungus Magnaporthe oryzae, the most devastating fungal pathogen in rice production worldwide. Here, by deep sequencing small RNA libraries from susceptible and resistant lines in normal conditions and upon M. oryzae infection, we identified a group of known rice miRNAs that were differentially expressed upon M. oryzae infection. They were further classified into three classes based on their expression patterns in the susceptible japonica line Lijiangxin Tuan Hegu and in the resistant line International Rice Blast Line Pyricularia-Kanto51-m-Tsuyuake that contains a single resistance gene locus, Pyricularia-Kanto 51-m (Pikm), within the Lijiangxin Tuan Hegu background. RNA-blot assay of nine of them confirmed sequencing results. Real-time reverse transcription-polymerase chain reaction assay showed that the expression of some target genes was negatively correlated with the expression of miRNAs. Moreover, transgenic rice plants overexpressing miR160a and miR398b displayed enhanced resistance to M. oryzae, as demonstrated by decreased fungal growth, increased hydrogen peroxide accumulation at the infection site, and up-regulated expression of defense-related genes. Taken together, our data indicate that miRNAs are involved in rice immunity against M. oryzae and that overexpression of miR160a or miR398b can enhance rice resistance to the disease.


Asunto(s)
Magnaporthe/fisiología , MicroARNs/metabolismo , Oryza/inmunología , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , MicroARNs/genética , Oryza/citología , Oryza/genética , Enfermedades de las Plantas/inmunología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , ARN de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA