Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(7): e1012257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959262

RESUMEN

Neuromechanical studies investigate how the nervous system interacts with the musculoskeletal (MSK) system to generate volitional movements. Such studies have been supported by simulation models that provide insights into variables that cannot be measured experimentally and allow a large number of conditions to be tested before the experimental analysis. However, current simulation models of electromyography (EMG), a core physiological signal in neuromechanical analyses, remain either limited in accuracy and conditions or are computationally heavy to apply. Here, we provide a computational platform to enable future work to overcome these limitations by presenting NeuroMotion, an open-source simulator that can modularly test a variety of approaches to the full-spectrum synthesis of EMG signals during voluntary movements. We demonstrate NeuroMotion using three sample modules. The first module is an upper-limb MSK model with OpenSim API to estimate the muscle fibre lengths and muscle activations during movements. The second module is BioMime, a deep neural network-based EMG generator that receives nonstationary physiological parameter inputs, like the afore-estimated muscle fibre lengths, and efficiently outputs motor unit action potentials (MUAPs). The third module is a motor unit pool model that transforms the muscle activations into discharge timings of motor units. The discharge timings are convolved with the output of BioMime to simulate EMG signals during the movement. We first show how MUAP waveforms change during different levels of physiological parameter variations and different movements. We then show that the synthetic EMG signals during two-degree-of-freedom hand and wrist movements can be used to augment experimental data for regressing joint angles. Ridge regressors trained on the synthetic dataset were directly used to predict joint angles from experimental data. In this way, NeuroMotion was able to generate full-spectrum EMG for the first use-case of human forearm electrophysiology during voluntary hand, wrist, and forearm movements. All intermediate variables are available, which allows the user to study cause-effect relationships in the complex neuromechanical system, fast iterate algorithms before collecting experimental data, and validate algorithms that estimate non-measurable parameters in experiments. We expect this modular platform will enable validation of generative EMG models, complement experimental approaches and empower neuromechanical research.


Asunto(s)
Biología Computacional , Electromiografía , Movimiento , Músculo Esquelético , Electromiografía/métodos , Humanos , Movimiento/fisiología , Músculo Esquelético/fisiología , Redes Neurales de la Computación , Fenómenos Biomecánicos/fisiología , Simulación por Computador , Potenciales de Acción/fisiología , Modelos Neurológicos
2.
IEEE Trans Biomed Eng ; PP2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963745

RESUMEN

In vivo muscle architectural parameters can be calculated from the fiber tracts using magnetic resonance (MR) tractography. However, the reconstructed tracts may be unevenly distributed within the muscle volume and there lacks commonly used metric to quantitatively evaluate the validity of the tracts. Our objective is to measure forearm muscle architecture by uniformly sampling fiber tracts from the candidate streamlines in MR tractography and validate the reconstructed fiber tracts qualitatively and quantitatively. We proposed farthest streamline sampling (FSS) to uniformly sample fiber tracts from the candidate streamlines. The method was evaluated on the MR data acquired from 12 healthy subjects for 17 forearm muscles and was compared with two conventional methods through uniform coverage performance. Anatomical correctness was verified by: 1. visually assessing fiber orientation, 2. checking whether architectural parameters were within physiological ranges and 3. classifying architectural types. The proposed FSS yielded optimal uniform coverage performance among the three methods (P<0.05). FSS reduced the sampling of long tracts (10% fiber length reduction, P<0.05), and the estimated architectural parameters were within the physiological ranges (P<0.05). The tractography visually matched cadaveric specimens. The architectural types of 16 muscles were correctly classified except for the palmaris longus, which exhibited a linear arrangement of fiber endpoints (R2 = 0.95±0.02, P<0.001). The proposed FSS method reconstructed uniformly distributed fiber tracts and the anatomical correctness of the reconstructed tracts was verified. The novel methods allow for accurate in vivo muscle architectural measurement, which was demonstrated through the characterization of architectural properties in human forearm muscles.

3.
Chin J Integr Med ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941044

RESUMEN

Liver ischemia-reperfusion injury (LIRI) is a pathological process involving multiple injury factors and cell types, with different stages. Currently, protective drugs targeting a single condition are limited in efficacy, and interventions on immune cells will also be accompanied by a series of side effects. In the current bottleneck research stage, the multi-target and obvious clinical efficacy of Chinese medicine (CM) is expected to become a breakthrough point in the research and development of new drugs. In this review, we summarize the roles of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in various stages of hepatic ischemia-reperfusion and on various types of cells. Combined with the current research progress in reducing ROS/RNS with CM, new therapies and mechanisms for the treatment of hepatic ischemia-reperfusion are discussed.

4.
Anim Reprod Sci ; 266: 107513, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843662

RESUMEN

Escherichia coli (E. coli), a Gram-negative bacterium, is the primary pathogen responsible for endometritis in dairy cattle. The outer membrane components of E. coli, namely lipopolysaccharide (LPS) and bacterial lipoprotein, have the capacity to trigger the host's innate immune response through pattern recognition receptors (PRRs). Tolerance to bacterial cell wall components, including LPS, may play a crucial role as an essential regulatory mechanism during bacterial infection. However, the precise role of Braun lipoprotein (BLP) tolerance in E. coli-induced endometritis in dairy cattle remains unclear. In this study, we aimed to investigate the impact of BLP on the regulation of E. coli infection-induced endometritis in dairy cattle. The presence of BLP was found to diminish the expression and release of proinflammatory cytokines (IL-8 and IL-6), while concurrently promoting the expression and release of the anti-inflammatory cytokine IL-10 in endometrial epithelial cells (EECs). Furthermore, BLP demonstrated the ability to impede the activation of MAPK (ERK and p38) and NF-κB (p65) signaling pathways, while simultaneously enhancing signaling through the STAT3 pathway in EECs. Notably, BLP exhibited a dual role, acting both as an activator of TLR2 and as a regulator of TLR2 activation in LPS- and E. coli-treated EECs. In E. coli-infected endometrial explants, the presence of BLP was noted to decrease the release of proinflammatory cytokines and the expression of HMGB1, while simultaneously enhancing the release of anti-inflammatory cytokines. Collectively, our findings provide evidence that the bacterial component BLP plays a protective role in E. coli-induced endometritis in dairy cattle.


Asunto(s)
Enfermedades de los Bovinos , Endometrio , Infecciones por Escherichia coli , Escherichia coli , Animales , Femenino , Bovinos , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/inmunología , Endometrio/metabolismo , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/metabolismo , Enfermedades de los Bovinos/inmunología , Lipoproteínas/metabolismo , Endometritis/veterinaria , Endometritis/microbiología , Endometritis/metabolismo , Endometritis/inmunología , Citocinas/metabolismo , Citocinas/genética , Tolerancia Inmunológica
5.
Phytomedicine ; 130: 155737, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38772183

RESUMEN

BACKGROUND: Caenorhabditis elegans (C. elegans) has been recognized for being a useful model organism in small-molecule drug screens and drug efficacy investigation. However, there remain bottlenecks in evaluating such processes as drug uptake and distribution due to a lack of appropriate chemical tools. PURPOSE: This study aims to prepare fluorescence-labeled leonurine as an example to monitor drug uptake and distribution of small molecule in C. elegans and living cells. METHODS: FITC-conjugated leonurine (leonurine-P) was synthesized and characterized by LC/MS, NMR, UV absorption and fluorescence intensity. Leonurine-P was used to stain C. elegans and various mammalian cell lines. Different concentrations of leonurine were tested in conjunction with a competing parent molecule to determine whether leonurine-P and leonurine shared the same biological targets. Drug distribution was analyzed by imaging. Fluorometry in microplates and flow cytometry were performed for quantitative measurements of drug uptake. RESULTS: The UV absorption peak of leonurine-P was 490∼495 nm and emission peak was 520 nm. Leonurine-P specifically bound to endogenous protein targets in C. elegans and mammalian cells, which was competitively blocked by leonurine. The highest enrichment levels of leonurine-P were observed around 72 h following exposure in C. elegans. Leonurine-P can be used in a variety of cells to observe drug distribution dynamics. Flow cytometry of stained cells can be facilely carried out to quantitatively detect probe signals. CONCLUSIONS: The strategy of fluorescein-labeled drugs reported herein allows quantification of drug enrichment and visualization of drug distribution, thus illustrates a convenient approach to study phytodrugs in pharmacological contexts.


Asunto(s)
Caenorhabditis elegans , Ácido Gálico , Animales , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacocinética , Ácido Gálico/metabolismo , Humanos , Fluoresceína-5-Isotiocianato/análogos & derivados , Citometría de Flujo , Fluorescencia , Colorantes Fluorescentes
6.
Front Vet Sci ; 11: 1370576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756517

RESUMEN

This study aimed to explore the effects of neonatal vitamin A (VA) supplementation on testis development and spermatogenesis. A total of 32 newborn lambs were intramuscularly injected with corn oil (control group) or corn oil + 2500 IU/kg BW VA (VA group). They were slaughtered and sampled at 3 weeks and 8 months of age to analyze spermatogenesis, cell proliferation, hormone secretion, antioxidant status of the testis, and adult sheep sperm parameters. Compared with the control group, the expression of spermatogonial differentiation-related genes in VA group was up-regulated (P < 0.05). Testis weight, seminiferous tubule diameter, number of spermatogonium and spermatocyte, and sperm density increased significantly in VA group at 8 months of age (P < 0.05). Neonatal VA injection upregulated the expression of the cell proliferation marker PCNA and cell cycle-related genes in the testis (P < 0.05). VA increased the concentrations of testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) in the serum and upregulated steroidogenesis-related genes in the testis (P < 0.05). The antioxidant levels in the VA group were maintained at high levels. The total antioxidant capacity (T-AOC), antioxidant enzyme content and antioxidant-related genes were increased in the testis (P < 0.05). Furthermore, neonatal VA injection activated retinoic acid (RA) signaling to maintain the blood-testosterone barrier (BTB) in the testis of 3-week-old sheep. AMP-activated protein kinase (AMPK) and protein kinase B (AKT) signaling were also modulated in the sheep testis (P < 0.05). Taken together, VA supplementation in newborn rams promotes testis development and spermatogenesis to improve fertility.

7.
Molecules ; 29(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792124

RESUMEN

The insight of the activity phase and reaction mechanism is vital for developing high-performance ammonia synthesis electrocatalysts. In this study, the origin of the electronic-dependent activity for the model Cu2O catalyst toward ammonia electrosynthesis with nitrate was probed. The modulation of the electronic state and oxygen vacancy content of Cu2O was realized by doping with halogen elements (Cl, Br, I). The electrocatalytic experiments showed that the activity of the ammonia production depends strongly on the electronic states in Cu2O. With increased electronic state defects in Cu2O, the ammonia synthesis performance increased first and then decreased. The Cu2O/Br with electronic defects in the middle showed the highest ammonia yield of 11.4 g h-1 g-1 at -1.0 V (vs. RHE), indicating that the pattern of change in optimal ammonia activity is consistent with the phenomenon of volcano curves in reaction chemistry. This work highlights a promising route for designing NO3-RR to NH3 catalysts.

8.
Nanomicro Lett ; 16(1): 170, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592515

RESUMEN

Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration, even attaining tactile perception capabilities surpassing human skin. However, the inherent mechanical mismatch resulting from deficient biomimetic mechanical properties of sensing materials poses a challenge to the application of wearable tactile sensing devices in human-machine interaction. Inspired by the innate biphasic structure of human subcutaneous tissue, this study discloses a skin-compliant wearable iontronic triboelectric gel via phase separation induced by competitive hydrogen bonding. Solvent-nonsolvent interactions are used to construct competitive hydrogen bonding systems to trigger phase separation, and the resulting soft-hard alternating phase-locked structure confers the iontronic triboelectric gel with Young's modulus (6.8-281.9 kPa) and high tensile properties (880%) compatible with human skin. The abundance of reactive hydroxyl groups gives the gel excellent tribopositive and self-adhesive properties (peel strength > 70 N m-1). The self-powered tactile sensing skin based on this gel maintains favorable interface and mechanical stability with the working object, which greatly ensures the high fidelity and reliability of soft tactile sensing signals. This strategy, enabling skin-compliant design and broad dynamic tunability of the mechanical properties of sensing materials, presents a universal platform for broad applications from soft robots to wearable electronics.

9.
Food Funct ; 15(8): 4515-4526, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38567805

RESUMEN

Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1ß, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Dieta Alta en Grasa , Glicina , Glicina/análogos & derivados , Inflamación , Ratones Endogámicos C57BL , Obesidad , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Masculino , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Glicina/farmacología , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Inflamación/tratamiento farmacológico , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Suplementos Dietéticos
10.
Carbohydr Res ; 538: 109080, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513464

RESUMEN

Polysaccharides have attracted immense attention as the largest source of bioactive compounds. Its bioavailability and bioactivity can be improved by utilizing degradation enzymes to reduce their molecular weight and viscosity. In this study, a 654 bp gene encoding xylanase was screened from the genome of Bacillus altitudinis JYY-02 and overexpressed in Escherichia coli Rosetta (DE3). The recombinant xylanase with a molecular weight of 27.98 kDa was purified (11.7-fold) using Ni-NTA affinity chromatography, with a 43.6% final yield. Through molecular docking, Glu, Arg, Tyr, and Trp were found to be the main amino acids involved in the interaction between xylanase and xylobiose. The effects of pH, temperature, metal ions, and substrates on xylanase activity were determined, and the results showed that the highest catalytic activity was displayed at pH 6.5, 50 °C temperature, with Cu2+ as an activator and xylan as the substrate. The Km (substrate concentration that yields a half-maximal velocity) and Vmax (maximum velocity) of recombinant xylanase were 6.876 mg/mL and 10984.183 µmol/mg∙pr/min, respectively. The recombinant xylanase was thermostable, with 85% and 39% of the enzymatic activity retained after 1 h at 60 °C and 1 h at 90 °C, respectively. The recombinant xylanase demonstrated a significant clarifying effect on fruit juices.


Asunto(s)
Bacillus , Endo-1,4-beta Xilanasas , Endo-1,4-beta Xilanasas/metabolismo , Simulación del Acoplamiento Molecular , Polisacáridos , Bacillus/genética , Temperatura , Xilanos/química , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Clonación Molecular , Especificidad por Sustrato
11.
BMC Genomics ; 25(1): 244, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443816

RESUMEN

BACKGROUND: Vitamin A and retinoic acid (RA, a metabolite of vitamin A), are inextricably involved to the development of skeletal muscle in animals. However, the mechanisms regulating skeletal muscle development by vitamin A remain poorly reported. The current study designed to investigate the underlying mechanism of vitamin A affecting myogenic differentiation of lamb myoblasts through transcriptome sequencing (RNA-Seq) and gene function validation experiments. It provides a theoretical basis for elucidating the regulation of vitamin A on skeletal muscle development as well as for improving the economic benefits of the mutton sheep industry. RESULTS: Newborn lambs were injected with 7,500 IU vitamin A, and longissimus dorsi (LD) muscle tissue was surgically sampled for RNA-Seq analysis and primary myoblasts isolation at 3 weeks of age. The results showed that a total of 14 down-regulated and 3 up-regulated genes, were identified between control and vitamin A groups. Among them, BHLHE40 expression was upregulated in vitamin A group lambs. Furthermore, BHLHE40 expression is significantly increased after initiation of differentiation in myoblasts, and RA addition during differentiation greatly promoted BHLHE40 mRNA expression. In vitro, RA inhibited myoblasts proliferation and promoted myoblasts myogenic differentiation through BHLHE40. Moreover, BHLHE40 was proved to inhibit the expression of the DNA binding inhibitor 3 (ID3), and meanwhile, ID3 could effectively promote myoblasts proliferation and inhibit myoblasts myogenic differentiation. CONCLUSIONS: Taken together, our results suggested that vitamin A inhibited myoblasts proliferation and promoted myoblasts myogenic differentiation by inhibiting ID3 expression through BHLHE40.


Asunto(s)
Tretinoina , Vitamina A , Animales , Ovinos , Vitamina A/farmacología , Tretinoina/farmacología , Desarrollo de Músculos , Mioblastos , Músculos Paraespinales
12.
BMC Genomics ; 25(1): 238, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438984

RESUMEN

BACKGROUND: The caffeoyl-CoA-O methyltransferase (CCoAOMT) family plays a crucial role in the oxidative methylation of phenolic substances and is involved in various plant processes, including growth, development, and stress response. However, there is a limited understanding of the interactions among CCoAOMT protein members in tea plants. RESULTS: In this study, we identified 10 members of the CsCCoAOMT family in the genome of Camellia sinensis (cultivar 'HuangDan'), characterized by conserved gene structures and motifs. These CsCCoAOMT members were located on six different chromosomes (1, 2, 3, 4, 6, and 14). Based on phylogenetic analysis, CsCCoAOMT can be divided into two groups: I and II. Notably, the CsCCoAOMT members of group Ia are likely to be candidate genes involved in lignin biosynthesis. Moreover, through the yeast two-hybrid (Y2H) assay, we established protein interaction networks for the CsCCoAOMT family, revealing 9 pairs of members with interaction relationships. CONCLUSIONS: We identified the CCoAOMT gene family in Camellia sinensis and conducted a comprehensive analysis of their classifications, phylogenetic and synteny relationships, gene structures, protein interactions, tissue-specific expression patterns, and responses to various stresses. Our findings shed light on the evolution and composition of CsCCoAOMT. Notably, the observed interaction among CCoAOMT proteins suggests the potential formation of the O-methyltransferase (OMT) complex during the methylation modification process, expanding our understanding of the functional roles of this gene family in diverse biological processes.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Filogenia , Metiltransferasas/genética ,
13.
Chemosphere ; 354: 141633, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442772

RESUMEN

The activated sludge method is widely used for the treatment of phenol-containing wastewater, which gives rise to the problem of toxic residual sludge accumulation. Indole-3-acetic acid (IAA), a typical phytohormone, facilitates the microalgal resistance to toxic inhibition while promoting biomass accumulation. In this study, Chlorococcum humicola (C. humicola) was cultured in toxic sludge extract and different concentrations of IAA were used to regulate its physiological properties and enrichment of high value-added products. Ultimately, proteomics analysis was used to reveal the response mechanism of C. humicola to exogenous IAA. The results showed that the IAA concentration of 5 × 10-6 mol/L (M) was most beneficial for C. humicola to cope with the toxic stress in the sludge extract medium, to promote the activity of rubisco enzyme, to enhance the efficiency of photosynthesis, and, finally, to accumulate protein as a percentage of specific dry weight 1.57 times more than that of the control group. Exogenous IAA altered the relative abundance of various amino acids in C. humicola cells, and proteomic analyses showed that exogenous IAA stimulated the algal cells to produce more indole-3-glycerol phosphate (IGP), indole, and serine by up-regulating the enzymes. These precursors are converted to tryptophan under the regulation of tryptophan synthase (A0A383V983), and tryptophan can be metabolized to endogenous IAA to promote the growth of C. humicola. These findings have important implications for the treatment of toxic residual sludge while enriching for high-value amino acids.


Asunto(s)
Proteómica , Triptófano , Triptófano/metabolismo , Aguas del Alcantarillado , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Extractos Vegetales
14.
Cells ; 13(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38534338

RESUMEN

Stem cell maintenance and differentiation can be regulated via the differential activity of transcription factors within stem cells and their progeny. For these factors to be active, they need to be transported from their site of synthesis in the cytoplasm into the nucleus. A tissue-specific requirement for factors involved in nuclear importation is a potential mechanism to regulate stem cell differentiation. We have undertaken a characterization of male sterile importin alpha 1 (Dα1) null alleles in Drosophila and found that Dα1 is required for maintaining germline stem cells (GSCs) in the testis niche. The loss of GSCs can be rescued by ectopic expression of Dα1 within the germline but the animals are still infertile, indicating a second role for Dα1 in spermatogenesis. Expression of a Dα1 dominant negative transgene in GSCs confirmed a functional requirement for Dα1 in GSC maintenance but expression of the transgene in differentiating spermatogonia did not exhibit a phenotype indicating a specific role for Dα1 within GSCs. Our data indicate that Dα1 is utilized as a regulatory protein within GSCs to facilitate nuclear importation of proteins that maintain the stem cell pool.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Masculino , Drosophila/metabolismo , Testículo/metabolismo , Proteínas de Drosophila/metabolismo , alfa Carioferinas/metabolismo , Transducción de Señal/fisiología , Células Madre , Factores de Transcripción/metabolismo , Espermatogonias/metabolismo
15.
J Gastroenterol ; 59(4): 342-356, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38402297

RESUMEN

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a rapidly progressing chronic liver disease of global significance. However, the underlying mechanisms responsible for NASH remain unknown. Indoleamine 2,3-dioxygenase 1 (IDO1) has been recognized as essential factor in immune response and metabolic regulation. Here we aimed to investigate the functions and mechanisms of the IDO1 in macrophages on hepatic lipid deposition and iron metabolism in NASH. METHODS: The effect of IDO1 in NASH was evaluated by WT and IDO1-/- mice model fed with methionine/choline-deficient (MCD) diet in vivo. Macrophages scavenger clodronate liposomes (CL) and overexpressing of IDO1 in macrophages by virus were employed as well. Lipid deposition was assessed through pathological examination and lipid droplet staining, while iron levels were measured using an iron assay kit and western blotting. Primary hepatocytes and bone marrow-derived macrophages were treated with oleic acid/palmitic acid (OA/PA) to assess IDO1 expression via Oil Red O staining and immunofluorescence staining in vitro. RESULTS: Pathological images demonstrated that the increase of IDO1 exacerbated lipid accumulation in the livers of mice with MCD diet, while reduction of iron accumulation was observed in the liver and the serum of MCD-fed mice. Scavenging of macrophages effectively mitigated both lipid and iron accumulation. In addition, the deficiency of IDO1 in macrophages significantly mitigated lipid accumulation and iron overload in hepatic parenchymal cells. Finally, lentivirus-mediated overexpression of IDO1 in liver macrophages exacerbated hepatic steatosis and iron deposition in NASH. CONCLUSIONS: Our results demonstrated that effective inhibition of IDO1 expression in macrophages in NASH alleviated hepatic parenchymal cell lipid accumulation and iron deposition, which provided new insights for the future treatment of NASH.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Colina , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Hierro/metabolismo , Hierro/farmacología , Metabolismo de los Lípidos , Hígado/patología , Macrófagos/metabolismo , Metionina , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Palmítico/farmacología
16.
J Anim Sci Biotechnol ; 15(1): 18, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38310300

RESUMEN

BACKGROUND: Vitamin A (VA) and its metabolite, retinoic acid (RA), are of great interest for their wide range of physiological functions. However, the regulatory contribution of VA to mitochondrial and muscle fiber composition in sheep has not been reported. METHOD: Lambs were injected with 0 (control) or 7,500 IU VA palmitate into the biceps femoris muscle on d 2 after birth. At the age of 3 and 32 weeks, longissimus dorsi (LD) muscle samples were obtained to explore the effect of VA on myofiber type composition. In vitro, we investigated the effects of RA on myofiber type composition and intrinsic mechanisms. RESULTS: The proportion of type I myofiber was greatly increased in VA-treated sheep in LD muscle at harvest. VA greatly promoted mitochondrial biogenesis and function in LD muscle of sheep. Further exploration revealed that VA elevated PGC-1α mRNA and protein contents, and enhanced the level of p38 MAPK phosphorylation in LD muscle of sheep. In addition, the number of type I myofibers with RA treatment was significantly increased, and type IIx myofibers was significantly decreased in primary myoblasts. Consistent with in vivo experiment, RA significantly improved mitochondrial biogenesis and function in primary myoblasts of sheep. We then used si-PGC-1α to inhibit PGC-1α expression and found that si-PGC-1α significantly abrogated RA-induced the formation of type I myofibers, mitochondrial biogenesis, MitoTracker staining intensity, UQCRC1 and ATP5A1 expression, SDH activity, and enhanced the level of type IIx muscle fibers. These data suggested that RA improved mitochondrial biogenesis and function by promoting PGC-1α expression, and increased type I myofibers. In order to prove that the effect of RA on the level of PGC-1α is caused by p38 MAPK signaling, we inhibited the p38 MAPK signaling using a p38 MAPK inhibitor, which significantly reduced RA-induced PGC-1α and MyHC I levels. CONCLUSION: VA promoted PGC-1α expression through the p38 MAPK signaling pathway, improved mitochondrial biogenesis, and altered the composition of muscle fiber type.

17.
Adv Mater ; 36(16): e2311993, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38183330

RESUMEN

Electronic waste is a growing threat to the global environment and human health, raising particular concerns. Triboelectric devices synthesized from sustainable and degradable materials are a promising electronic alternative, but the mechanical mismatch at the interface between the polymer substrate and the electrodes remains unresolved in practical applications. This study uses the sulfhydryl silanization reaction and the chemical selectivity and site specificity of the thiol-disulfide exchange reaction in dynamic covalent chemistry to prepare a tough monolithic-integrated triboelectric bioplastic. The stress is dissipated by covalent bond adaptation to the interface interaction, which makes the polymer dielectric layer to the conductive layer have a good interface adhesion effect (220.55 kPa). The interfacial interlocking of the polymer substrate with the conductive layer gives the triboelectric bioplastic excellent tensile strength (87.4 MPa) and fracture toughness (33.3 MJ m-3). Even when subjected to a tension force of 10 000 times its weight, it still maintains a stable triboelectric output with no visible cracks. This study provides new insights into the design of reliable and environmentally friendly self-powered devices, which is significant for the development of flexible wearable electronics.

18.
Int Immunopharmacol ; 129: 111526, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38295545

RESUMEN

Staphylococcus aureus (S. aureus) is one of the most infamous and widespread bacterial pathogens, causing a hard-to-estimate number of uncomplicated skin infections and probably hundreds of thousands to millions of more severe, invasive infections globally per year. S. aureus may also be acquired from animals, especially in the livestock industry. The interaction mechanism of host and S. aureus has significance for finding ways to against S. aureus infection and control inflammatory response of host, while the molecular biological activities after S. aureus infection, particular in inflammatory and immune cells are not fully clear. The present study aimed to explore whether pattern recognition receptors (PRRs) mediate prostaglandin D2 (PGD2) synthesis and PGD2 participates in the regulation of inflammatory response in macrophages during S. aureus infection or synthetic bacterial lipopeptide (Pam2CSK4) stimulation. PGD2 secretion level was enhanced by mice peritoneal macrophages infected with the S. aureus. The results indicated that PGD2 secretion was impaired in S. aureus infected-macrophages from toll-like receptors 2 (TLR2)-deficient and NLR pyrin domain-containing 3 (NLRP3)-deficient mice. PGD2 synthetase (hematopoietic PGD synthase, HPGDS) inhibitors could reduce the activation of macrophage mitogen-activated protein kinase (MAPK)/nuclear factor-κ-gene binding (NF-κB) signaling pathways. HPGDS inhibition impaired cytokines (TNF-α, IL-1ß, IL-10 and RANTES) secretion and macrophage phagocytosis during S. aureus infection. In addition, inhibition of endogenous PGD2 synthesis was unable to affect the TLR2 and NLRP3 expression in S. aureus-infected macrophages. Taken together, macrophage PGD2 secretion after S. aureus infection depended on receptors TLR2 and NLRP3, and the induced PGD2 participated in the regulation of inflammatory response in S. aureus-infected macrophages. Interestingly, it was found that exogenous PGD2 down-regulated the cytokines secretion and had no effect on phagocytosis in the S. aureus-infected macrophages.


Asunto(s)
Staphylococcus aureus , Receptor Toll-Like 2 , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos , FN-kappa B/metabolismo , Citocinas/metabolismo
19.
Free Radic Biol Med ; 210: 367-377, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052276

RESUMEN

The pathogenesis of Autoimmune Hepatitis (AIH) is closely associated with perturbations in iron ion metabolism, during which Stimulator of Interferon Genes (STING) plays an important role. However, the precise regulatory mechanism remains elusive. In this study, we investigated the relationship between iron dysregulation and STING activation in Concanavalin A (ConA)-induced AIH liver injury. STING knockout (STING-/-) mice and AAV (Adeno-Associated virus)-Sting1-RNAi-treated mice were involved and subjected in AIH. We observed that increased iron dysregulation was linked with STING activation, but this effect was effectively reversed by the administration of iron chelating agent Desferoxamine (DFO) and the antioxidant Ferrostatin-1 (Fer-1). Notably, the iron transport protein Transferrin (TF) and Transferrin Receptor (TfR) exhibited significant accumulation in AIH along with upregulated expression of ferritin protein. Additionally, the deficiency of STING reduced hepatic iron accumulation, mitigated oxidative stress, and attenuated macrophage activation during ConA treatment. Furthermore, liver-specific knockdown of STING using AAV-Sting1-RNAi significantly ameliorated liver iron dysregulation and oxidative stress response induced by Kupffer cells (KCs). KC-derived STING exacerbates liver damage severity in AIH through promoting disturbances in hepatic iron ion metabolism as well as oxidative stress response. These findings provide valuable insights into the pathogenesis of AIH and may pave the way for potential therapeutic strategies targeting STING and iron metabolism in the future.


Asunto(s)
Hepatitis Autoinmune , Hígado , Animales , Ratones , Concanavalina A/toxicidad , Concanavalina A/metabolismo , Hepatitis Autoinmune/tratamiento farmacológico , Hepatitis Autoinmune/patología , Inflamación/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/patología
20.
Food Chem ; 439: 138133, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064841

RESUMEN

This study was the first to comprehensively investigate the metabolic mechanism of flavonoid glycosides (FGs) and their contribution to flavor evolution during white tea processing using quantitative descriptive analysis, metabolomics, dose-over-threshold factors and pseudo-first-order kinetics. A total of 223 flavonoids were identified. Total FGs decreased from 7.02 mg/g to 4.35 mg/g during processing, compared to fresh leaves. A total of 86 FGs had a significant impact on the flavor evolution and 9 key flavor FGs were identified. The FG biosynthesis pathway was inhibited during withering, while the degradation pathway was enhanced. This promoted the degradation of 9 key flavor FGs following pseudo-first-order kinetics during withering. The degradation of the FGs contributed to increase the taste acceptance of white tea from -4.18 to 1.32. These results demonstrated that water loss stress during withering induces the degradation of key flavor FGs, contributing to the formation of the unique flavor of white tea.


Asunto(s)
Camellia sinensis , Flavonoides , Flavonoides/análisis , Glicósidos/metabolismo , Camellia sinensis/metabolismo , Metabolómica/métodos , Té/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...