RESUMEN
Histological analysis with 2,3,5-triphenyltetrazolium chloride (TTC) staining is the most frequently used tool to detect myocardial ischemia/reperfusion injury. However, its practicality is often challenged by poor image quality in gross histology, leading to an equivocal infarct-boundary delineation and potentially compromised measurement accuracy. Here, we introduce several crucial refinements in staining protocol and sample processing, which enable TTC images to be analyzed with light microscopy. The refined protocol involves a two-step TTC staining process (perfusion and immersion) and subsequent Zamboni fixation to differentiate myocardial viability and necrosis, and use of Coomassie brilliant blue to label area-at-risk. After the duo-staining steps were completed, the heart sample was embedded and sliced transversally by a cryostat into a series of thin sections (50 µm) for microscopic analysis. The refined TTC (redTTC) assay yielded remarkably high-quality images with striking color intensity and sharply defined boundaries, permitting unambiguous and reliable delineation of the infarct and area-at-risk. In the same animals, the redTTC assay showed good agreement with the in-vivo gold standard measurements (LGE and MEMRI). Meanwhile, redTTC imaging allows tracking of viable cardiomyocytes at cellular resolution, and with this enhanced capability, we convincingly demonstrated the pro-survival action of stem cells based-therapy. Therefore, the redTTC assay represents a significant technical advance that permits precise detection of the true extent of cardiac injury and cardiomyocyte viability. This approach is cost-effective and may be adapted for use in diverse applications, making it highly appealing to many laboratories performing ischemia/reperfusion injury experiments.
Asunto(s)
Supervivencia Celular , Infarto del Miocardio , Sales de Tetrazolio , Animales , Infarto del Miocardio/patología , Infarto del Miocardio/diagnóstico por imagen , Ratones , Coloración y Etiquetado/métodos , Daño por Reperfusión Miocárdica/patología , Modelos Animales de Enfermedad , Miocardio/patología , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/patologíaRESUMEN
Copper is an important biological trace element, but its overexposure can be harmful to the human body. Herein, we aimed to assess the association between serum copper levels and inflammation. A total of 5231 participants were analyzed from the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2016. Participants with higher serum copper levels had higher values of systemic inflammation indexes. The concentration of high-sensitive C-reactive protein (hs-CRP) increased with serum copper concentration (ß = 2.8, p < 0.001). Participants with high and very high copper levels had higher ORs (odds ratios) of having inflammation (high: OR 2.92 (0.77-11.04), p = 0.074; very high: OR 8.66 (3.18-23.54), p = 0.011), which were further exacerbated in people with diabetes and males. Body mass index (BMI) and body fat percentage are two main mediators in the association between serum copper and hs-CRP, accounting for 12.62% and 19.72%, respectively. The random-effects inverse variance-weighted (IVW) analysis revealed that there was a genetic causal relationship between serum copper and obesity (OR 1.15, p = 0.014). Our results suggest that serum copper is positively associated with inflammation, which may be mainly mediated by obesity.
RESUMEN
Utilizing a single organic light-emitting diode (OLED) architecture for multicolor emissions can significantly simplify manufacturing progress and broaden applications. Here, we report on a carbene-based Pt(II) complex, designated as Pt(pyiOppy), which exhibits an unusual dimeric packing mode solely by hemiligand π···π stacking. This feature is distinct from the well-known Pt···Pt or Pt···ligand interactions. The dimer persists in new types of orbital combinations, along with its triplet transition state, which are evidenced for the first time. Pt(pyiOppy), under various doping concentrations in a solid matrix, demonstrates multicolor emissions ranging from green to red, all exhibiting high photoluminescent quantum efficiencies (48-97%). The devices incorporating Pt(pyiOppy) can emit green, yellow, orange, and red lights, covering a CIE coordinate range of (0.28-0.65, 0.61-0.34). All the devices also achieve appreciable maximum external quantum efficiencies (9.4-17.2%) and impressive lifetimes of hundreds of hours (LT70 at 1000 cd/m2). These findings showcase a new type of Pt(II) aggregate enabling well-controlled, multicolor high-performance phosphorescent OLEDs.
RESUMEN
With the development of science and technology, flexible sensors play an indispensable role in body monitoring. Rapid prototyping of high-performance flexible sensors has become an important method to develop flexible sensors. The purpose of this study was to develop a flexible resin with multi-walled carbon nanotubes (MWCNTs) for the rapid fabrication of flexible sensors using digital light processing additive manufacturing. In this study, MWCNTs were mixed in thermoplastic polyurethane (TPU) photosensitive resin to prepare polymer-matrix composites, and a flexible strain sensor was prepared using self-developed additive equipment. The results showed that the 1.2 wt% MWCNTs/TPU composite flexible sensor had high gauge factor of 9.988 with a linearity up to 45% strain and high mechanical durability (1000 cycles). Furthermore, the sensor could be used for gesture recognition and monitoring and has good performance. This method is expected to provide a new idea for the rapid personalized forming of flexible sensors.
RESUMEN
Reliability learning and interpretable decision-making are crucial for multi-modality medical image segmentation. Although many works have attempted multi-modality medical image segmentation, they rarely explore how much reliability is provided by each modality for segmentation. Moreover, the existing approach of decision-making such as the softmax function lacks the interpretability for multi-modality fusion. In this study, we proposed a novel approach named contextual discounted evidential network (CDE-Net) for reliability learning and interpretable decision-making under multi-modality medical image segmentation. Specifically, the CDE-Net first models the semantic evidence by uncertainty measurement using the proposed evidential decision-making module. Then, it leverages the contextual discounted fusion layer to learn the reliability provided by each modality. Finally, a multi-level loss function is deployed for the optimization of evidence modeling and reliability learning. Moreover, this study elaborates on the framework interpretability by discussing the consistency between pixel attribution maps and the learned reliability coefficients. Extensive experiments are conducted on both multi-modality brain and liver datasets. The CDE-Net gains high performance with an average Dice score of 0.914 for brain tumor segmentation and 0.913 for liver tumor segmentation, which proves CDE-Net has great potential to facilitate the interpretation of artificial intelligence-based multi-modality medical image fusion.
Asunto(s)
Imagen Multimodal , Reproducibilidad de los Resultados , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Hígado/diagnóstico por imagen , Toma de DecisionesRESUMEN
Ulcerative Colitis(UC) is a chronic intestinal inflammation affecting the intestines, yet its underlying causes remain unclear. In recent decades, the global prevalence of UC has been on the rise, leading to an increasing demand for therapeutic drugs with minimal side effects. Huan Kui Le (HKL), a traditional Chinese medicine compound, has demonstrated promising efficacy when combined with Lactobacillus acidophilus (Lac.) for UC intervention. However, the precise therapeutic mechanism of this combination remains unknown. The study focused on understanding the mechanisms of UC by examining the effects of Lac. and HKL (LH) treatment. The outcomes discovered that the disruption of gut microbiota, triggered by the activation of the NLRP3 inflammasome, plays a crucial role in UC development. This disruption exacerbates UC symptoms by causing disturbances in inflammatory cytokines and mucosal permeability. We investigated the dynamic changes following the application of this treatment using 16S rRNA sequencing, HE, WB, IHC, and ELISA. Compared with the UC group, LH treatment reduced colon pathological injury, improved colon length, and decreased IL-1 ß serum levels. Furthermore, it restored the expression of TJs and preserved mucosal barrier integrity. LH treatment also mitigated colon injury by attenuating the expression of pyroptosis-related genes and proteins, such as NLRP3 and Caspase-1. Additionally, LH treatment altered the gut microbiota's microecology, characterized by a reduction in pathogenic bacteria abundance like Escherichia-shigella and an increase in beneficial bacteria abundance like Akkermansia and Erysipelatoclostridium. Overall, our findings indicate that LH therapy may be associated with intestinal barrier repair, inflammasome inhibition, and gut microbiota regulation, suggesting its potential as a UC treatment.
RESUMEN
Background and aims: In recent years, the relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and colorectal cancer (CRC) or colorectal adenoma (CRA) has gained widespread attention. Previous meta-analyses on this subject either incorporated numerous cross-sectional studies, which were susceptible to bias, or concentrated solely on a restricted number of cohort studies. Moreover, with the release of a substantial number of high-quality cohort studies on this subject in the past two years, the findings continue to be debated and contradictory. Therefore, we conducted an updated systematic review and meta-analysis of cohort studies to quantitatively evaluate the magnitude of the association between them. Methods: Comprehensive searches of PubMed, Web of Science, and Embase were conducted without language restrictions from the time of their creation up to December, 2023. The pooled hazard ratios (HRs) with 95% confidence interval (CIs) were calculated by the generic inverse variance based on the random-effects model. Moreover, subgroup and sensitivity analyses were performed. Results: A total of 15 cohort studies were analyzed in this meta-analysis, which included 9,958,412 participants. The meta-analysis of 13 cohort studies showed that MASLD was linked to a higher risk of CRC (HR=1.25, 95% CI: 1.15-1.36, P < 0.00001). Additionally, further subgroup analysis indicated that the combined HR remained consistent regardless of the study location, nomenclature of fatty liver disease (FLD), confirmation methods for FLD, sample size, follow-up time, and study quality. Furthermore, the meta-analysis of four cohort studies demonstrated that MASLD was correlated with an increased risk of CRA (HR=1.38, 95% CI: 1.17-1.64, P = 0.0002). The sensitivity analysis results further validated the robustness of the aboved findings. Conclusion: The results of our meta-analysis indicated that MASLD was associated with an increased risk of incident CRC/CRA. In the future, it is necessary to conduct more prospective cohort studies to thoroughly assess potential confounding factors, particularly in individuals from Europe and North America. Furthermore, related mechanism studies should be conducted to enhance our understanding of the link between MASLD and CRC/CRA. Systematic review registration: Open Science Framework registries (https://osf.io/m3p9k).
RESUMEN
This research analyzed the real-world NOx and particle number (PN) emissions of 21 China VI heavy-duty diesel trucks (HDDTs). On-road emission conformity was first evaluated with portable emission measurement system (PEMS). Only 76.19 %, 71.43 % and 61.90 % of the vehicles passed the NOx test, PN test and both tests, respectively. The impacts of vehicle features including exhaust gas recirculation (EGR) equipment, mileage and tractive tonnage were then assessed. Results demonstrated that EGR helped reducing NOx emission factors (EFs) while increased PN EFs. Larger mileages and tractive tonnages corresponded to higher NOx and PN EFs, respectively. In-depth analyses regarding the influences of operating conditions on emissions were conducted with both numerical comparisons and statistical tests. Results proved that HDDTs generated higher NOx EFs under low speeds or large vehicle specific powers (VSPs), and higher PN EFs under high speeds or small VSPs in general. In addition, unqualified vehicles generated significantly higher NOx EFs than qualified vehicles on freeways or under speed≥40 km/h, while significant higher PN EFs were generated on suburban roads, freeways or under operating modes with positive VSPs by unqualified vehicles. The reliability and accuracy of on-board diagnostic (OBD) NOx data were finally investigated. Results revealed that 43 % of the test vehicles did not report reliable OBD data. Correlation analyses between OBD NOx and PEMS measurements further demonstrated that the consistency of instantaneous concentrations were generally low. However, sliding window averaged concentrations show better correlations, e.g., the Pearson correlation coefficients on 20s-window averaged concentrations exceeded 0.85 for most vehicles. The research results provide valuable insights into emission regulation, e.g., focusing more on medium- to high-speed operations to identify unqualified vehicles, setting higher standards to improve the quality of OBD data, and adopting window averaged OBD NOx concentrations in evaluating vehicle emission performance.
RESUMEN
Cellular therapy holds immense promise to remuscularize the damaged myocardium but is practically hindered by limited allogeneic sources of cardiac-committed cells that engraft stably in the recipient heart after transplantation. Here, we demonstrate that the pericardial tissue harbors myogenic stem cells (pSCs) that are activated in response to inflammatory signaling after myocardial infarction (MI). The pSCs derived from the MI rats (MI-pSCs) show in vivo and in vitro cardiac commitment characterized by cardiac-specific Tnnt2 expression and formation of rhythmic contraction in culture. Bulk RNA-seq analysis reveals significant upregulation of a panel of genes related to cardiac/myogenic differentiation, paracrine factors, and extracellular matrix in the activated pSCs compared to the control pSCs (Sham-pSCs). Notably, we define MyoD as a key factor that governs the process of cardiac commitment, as siRNA-mediated MyoD gene silencing results in a significant reduction of myogenic potential. Injection of the cardiac-committed cells into the infarcted rat heart leads to long-term survival and stable engraftment in the recipient myocardium. Therefore, these findings point to pericardial myogenic progenitors as an attractive candidate for cardiac cell-based therapy to remuscularize the damaged myocardium.
RESUMEN
Choroidal neovascularization (CNV) can be seen in many fundus diseases, and lead to fundus exudation, bleeding, or vision loss. miRNAs are vital regulator in CNV. miR-199a-5p has been proved to be involved in regulating vascular formation of endothelial cells, but its role in CNV remains unclear. This study aims to study the role of miR-199a-5p in CNV. Laser irradiation was used to induce CNV model. The lesion area of CNV was calculated by high-resolution angiography with fluorescein isothiocyanate-dextran. Wnt family member 7b (Wnt7b), ß-catenin, and Wnt pathway proteins was measured by western blot. Immunofluorescence was performed to test Wnt7b, ß-catenin, CD31, and p-p65. miR-199a-5p and Wnt7b mRNA were tested by reverse transcription real-time polymerase chain reaction. Cell count kit-8, wound healing, Transwell, tube formation, and flow cytometry were used to detect the function of miR-199a-5p and Wnt7b on human retinal microvascular endothelial cells (HRMEC). TargetScan database and dual-luciferase reporter assay verified the interaction between miR-199a-5p and Wnt7b. The results revealed that Wnt7b increased in CNV rats. Knocking down Wnt7b repressed cell proliferation, migration, invasion, and angiogenesis, and accelerated cell apoptosis of HRMEC. Dual-luciferase reporter assay verified that miR-199a-5p targeted Wnt7b. Overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC and promoted cell apoptosis by inhibiting Wbt7b. In vivo experiment found that Wnt7b rescued the promotion of miR-199a-5p inhibition on CNV lesion of rats. In addition, Wnt7b positively regulated Wnt/ß-catenin signaling pathway and promoted the angiogenesis of HRMEC. In conclusion, overexpression of miR-199a-5p inhibited the angiogenesis of HRMEC by regulating Wnt7b/Wnt/ß-catenin signaling pathway, which may serve as a promising therapy target of CNV.
Asunto(s)
Neovascularización Coroidal , MicroARNs , Proteínas Wnt , Vía de Señalización Wnt , Animales , Humanos , Masculino , Ratas , Apoptosis/genética , beta Catenina/metabolismo , beta Catenina/genética , Movimiento Celular/genética , Proliferación Celular/genética , Neovascularización Coroidal/genética , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Ratas Sprague-Dawley , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Vía de Señalización Wnt/genéticaRESUMEN
The proper disposal of spent soil washing solution is a great challenge to ethylenediamine tetraacetate (EDTA)-base soil washing technologies, particularly when the solution contains multi-metals. In this paper, we proposed an environmentally friendly disposal of multi-metal spent washing solution, in which the multi-metals were concentrated as hazardous precipitates for further safe disposal, and EDTA was reclaimed and recycled to further wash contaminated soil together with the cleansed process water. The results showed that Cr3+ was poorly removed by sole heavy-metal-capturing agent (HMCA) chelation because of the high solubility of HMCA-Cr, which also yielded a low percentage of EDTA reclamation in the multi-metal spent washing solution. We established a closed-loop process for the disposal of multi-metal spent washing solution by combining coagulation-flocculation-sedimentation and HMCA chelation. The novel recycling process was able to remove 99.67% Cu, 99.62% Pb, 92.48% Cd, 88.19% Sb, 84.38% As, and 82.39% Cr as precipitates from the real spent washing solution, and up to 95.64% of EDTA was reclaimed in the cleansed process water. On the average, the overall efficiency of the reclaimed EDTA solution could reach 65% of the fresh EDTA solution in extracting various HMs from contaminated soil. The recycling method provides an efficient and promising alternative for spent soil washing solution with both EDTA and process water reusage in a closed-loop process.
Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Contaminantes del Suelo , Ácido Edético , Suelo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Quelantes , AguaRESUMEN
In the case of a large bone defect, the human endogenous electrical field is no longer sufficient. Therefore, it is necessary to support structural electrical bone scaffolds. Barium titanate (BT) has received much attention in bone tissue engineering applications due to its biocompatibility and ability to maintain charged surfaces. However, its processability is poor and it does not have the biological activity to promote mineralization, which limits its use in bone repair. In this paper, a composite bone scaffold with excellent piezoelectric properties was prepared by combining 20 wt% calcium silicate. The influence of the light curing process on the properties of the piezoelectric biological scaffold was investigated by comparing it with the traditional piezoelectric ceramic molding method (dry pressing). Despite the structural features of 3D printing (layered structure, pore features), the piezoelectric and mechanical properties of the scaffold are weakened. However, 3D-printed scaffolds can combine structural and piezoelectric properties, which makes the 3D-printed scaffold more effective in terms of degradation and antibacterial performance. In terms of cell activity, piezoelectric properties attract proteins and nutrients into the scaffold, promoting cell growth and differentiation. Besides, it is undeniable that the pore structure of the scaffolds plays an important role in the biological properties. Finally, the 3D printed scaffolds have excellent antimicrobial properties due to the redox reaction under piezoelectric effect as well as structural characterization.
Asunto(s)
Antibacterianos , Artrodesis , Compuestos de Calcio , Silicatos , Humanos , Bario , Impresión TridimensionalRESUMEN
BACKGROUND: Depression is a common mental disorder. Some studies have demonstrated that people with diabetes are more likely to suffer from depression. Statins are an everyday use for diabetes. Trials of statin therapy have had conflicting findings on the potential risk of depression. METHODS: The National Health and Nutrition Examination Survey (NHANES) 2005-2018 was used to collect a representative sample. Weighted multivariate logistic regression models were used to evaluate odds ratios (ORs) and 95 % CIs for having depression symptoms. We performed stratified analyses to compare the effects of statins in subsamples with and without diabetes on depression symptoms. RESULTS: Statin use showed a significant and strong decreasing effect on having depression symptoms in participants with diabetes (aOR (adjusted OR) 0.59, p = 0.014) compared with that in non-diabetics (aOR 0.78, p = 0.128). Diabetic individuals with statin use for >5 years had a lower risk of having depression symptoms (aOR 0.42, p = 0.002) than those with shorter-term statin use (1-5 years, aOR 0.69, p = 0.111; <1 year: aOR 0.83, p = 0.646). Atorvastatin was more effective in decreasing depression symptoms either in diabetes (aOR 0.49, p = 0.018) or in non-diabetes (aOR 0.58, p = 0.033). LIMITATIONS: First, the dosage of statins cannot be obtained from NHANES datasets. Second, after being stratified, the number of participants for several statins was insufficient. Third, recall bias may exist in the survey. CONCLUSIONS: Diabetics with depression symptoms may benefit from long-term statin therapy. Atorvastatin and pravastatin should be recommended for diabetic patients with depression.
Asunto(s)
Diabetes Mellitus , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Atorvastatina/uso terapéutico , Encuestas Nutricionales , Depresión/tratamiento farmacológico , Depresión/epidemiología , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/epidemiologíaRESUMEN
This work aimed to study the effect of NFE2 like bZIP transcription factor 3 (NFE2L3) on clear cell renal cell carcinoma (ccRCC) cells and whether NFE2L3 expression was mediated by DNA methylation. Twenty-one ccRCC patients were collected. The gene methylation and expression data of TCGA-KIRC were accessed from TCGA. Candidate methylation driver genes were identified by "MethylMix" package, and finally, NFE2L3 was selected as the target gene. The methylation of NFE2L3 was assayed by Ms PCR and QMSP. mRNA level of NFE2L3 was analyzed by qRT-PCR. Protein level of NFE2L3 was measured by Western blot. Demethylation was performed with methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR). Proliferative, migratory, and invasive abilities of ccRCC cells were assayed via cell colony formation assay, scratch healing assay, and transwell assay, respectively. Analysis of TCGA database presented that DNA hypomethylation occurred in the NFE2L3 promoter region in ccRCC tissues. NFE2L3 was significantly upregulated in ccRCC tissues and cells. Its expression in cells treated with 5-Aza-CdR was proportional to the concentration of methylation inhibitor. In cell function experiments, overexpressing NFE2L3 or demethylation could stimulate proliferation, migration, and invasion abilities of ccRCC and normal cells. 5-Aza-CdR treatment rescued repressive impact of knockdown NFE2L3 on malignant phenotypes of ccRCC and normal cells. DNA hypomethylation could induce high expression of NFE2L3 and facilitate malignant phenotypes of ccRCC cells. These results may generate insights into ccRCC therapy.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Metilación de ADN , Regulación hacia Arriba , Proliferación Celular/genética , Azacitidina/farmacología , Azacitidina/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , ADN/metabolismo , Línea Celular Tumoral , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/farmacologíaRESUMEN
Tissue damage often induces local inflammation that in turn dictates a series of subsequential responses, such as stem cell activation and growth, to maintain tissue homeostasis. The aim of the study is to testify the possibility of using inflammation-trained stem cells as optimal donor cells to augment the efficacy of cell therapy. The pericardial stem/stromal cells derived from the animals after myocardial infarction (MI-pSC) showed an enhanced myogenic potential and augmented reparative activity after transplantation in the injured hearts, as compared to the Sham-pSC. Bulk RNA-Seq analysis revealed significant upregulation of a panel of myogenic and trophic genes in the MI-pSC and, notably, Sfrp1 as an important anti-apoptotic factor induced robustly in the MI-pSC. Injection of the MI-pSC yielded measurable numbers of surviving cardiomyocytes (Tunel and Casp-3 negative) within the infarct area, but the effects were significantly diminished by siRNA-based silence of Sfrp1 gene in the pSC. Primed Sham-pSC with pericardial fluid from MI rats mimicked the upregulation of Sfrp1 and enhanced myogenic potential and reparative activity of pSC. Taken together, our results illustrated the inflammation-trained pSC favor a reparative activity through upregulation of Sfrp1 gene that confers anti-apoptotic activity in the injured cardiomyocytes. Therefore, the active form of stem cells may be used as a cardiac protective agent to boost therapeutical potential of stem cells.
Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Ratas , Animales , Células Madre , Infarto del Miocardio/terapia , Células del Estroma , Inflamación , Proteínas de la Membrana/genética , Péptidos y Proteínas de Señalización Intercelular/genéticaRESUMEN
BACKGROUND: Venous congestion has been demonstrated to increase the risk of acute kidney injury (AKI) after cardiac surgery. Although many surrogate markers for venous congestion are currently used in clinical settings, there is no consensus on which marker is most effective in predicting AKI. METHODS: We evaluated various markers of venous congestion, including central venous pressure (CVP), inferior vena cava (IVC) diameter, portal pulsatility fraction (PPF), hepatic vein flow pattern (HVF), intra-renal venous flow pattern (IRVF), and venous excess ultrasound grading score (VExUS) in adult patients undergoing cardiac surgery to compare their ability in predicting AKI. RESULTS: Among the 230 patients enrolled in our study, 53 (23.0%) developed AKI, and 11 (4.8%) required continuous renal replacement therapy (CRRT). Our multivariate logistic analysis revealed that IRVF, PPF, HVF, and CVP were significantly associated with AKI, with IRVF being the strongest predictor (odds ratio [OR] 2.27; 95% confidence interval [CI], 1.38-3.73). However, we did not observe any association between these markers and CRRT. CONCLUSION: Venous congestion is associated with AKI after cardiac surgery, but not necessarily with CRRT. Among the markers tested, IRVF exhibits the strongest correlation with AKI.
Asunto(s)
Lesión Renal Aguda , Procedimientos Quirúrgicos Cardíacos , Hiperemia , Adulto , Humanos , Estudios de Cohortes , Lesión Renal Aguda/etiología , Procedimientos Quirúrgicos Cardíacos/efectos adversos , BiomarcadoresRESUMEN
Simulating the mechanical behavior of cellular materials stands as a pivotal step in their practical application. Nonetheless, the substantial multitude of unit cells within these materials necessitates a considerable finite element mesh, thereby leading to elevated computational expenses and requisites for formidable computer configurations. In order to surmount this predicament, a novel and straightforward equivalent calculation method is proposed for the computation of mechanical properties concerning both random and ordered hyper-elastic cellular materials. By amalgamating the classical finite element approach with the distribution attributes of cells, the proposed equivalent calculation method adeptly captures the deformation modes and force-displacement responses exhibited by cell materials under tensile and shear loads, as predicted through direct numerical simulation. This approach reflects the deformation characteristics induced by micro-unit cells, elucidates an equivalent principle bridging cellular materials and equivalent materials, and substantially curtails exhaustive computational burdens. Ultimately, this method furnishes an equivalent computational strategy tailored for the engineering applications of cellular materials.
RESUMEN
Background and aim: With conflicting data from previous observational studies on the relationship between hepatitis B virus (HBV) or hepatitis C virus (HCV) infection and pancreatic cancer (PC), we decided to conduct a systematic review and meta-analysis in order to evaluate any potential association. Design: This is a systematic review and meta-analysis. Methods: We conducted a search of three databases (PubMed, Embase, and Web of Science) from the time of their creation up to June 2023. The summary results, including hazard ratio (HR) with 95% confidence interval (CI), were pooled using a generic inverse variance method and a random-effects model. Furthermore, subgroup and sensitivity analyses were conducted. Results: In this meta-analysis, 22 cohort studies with a total of 10,572,865 participants were analyzed. Meta-analysis from 15 cohort studies revealed that HBV infection was correlated with an increased risk of PC (HR = 1.53, 95% CI: 1.40-1.68, p < 0.00001) with no heterogeneity (I2 = 0%, p = 0.49). Meta-analysis from 14 cohort studies showed that HCV infection was associated with an increased risk of PC (HR = 1.82, 95% CI: 1.51-2.21, p < 0.00001). Most of our subgroup analyses yielded similar results. Meta-analysis from four cohort studies indicated that co-infection with HBV and HCV was linked to an increased risk of PC (HR = 2.32, 95% CI: 1.40-3.85, p = 0.001) with no heterogeneity observed (I2 = 0%, p = 0.60). The results of sensitivity analyses were robust. Conclusion: Our meta-analysis showed that HBV/HCV infection or co-infection with HBV and HCV was associated with an increased risk of PC. Future prospective cohort studies need to take into account various ethnicities and any confounding factors, as well as investigate the potential mechanisms of PC development in those with HBV/HCV. Trial registration: Open Science Framework registries (No: osf.io/n64ua).
RESUMEN
BACKGROUND: Hypospadias is one of the most prevalent urogenital malformations in clinic. However, some hypospadias may have a more complex disorder of sex development. Usually, hypospadias in these patients is severe. Among them, the 46,XX male sex reversal syndrome is a rare disorder of sex development, and this may be the main reason for this type of hypospadias being difficult to repair. CASE PRESENTATION: We present a Han nationality 19-year-old male with failure of repeated repair of hypospadias. No sperm was found on semen analysis. Lingual mucosal graft was carried out for this patient. It still did not succeed after using lingual mucosal graft repair. Karyotype analysis of this patient confirmed 46,XX karyotype. CONCLUSION: Hypospadias with 46,XX male sex reversal syndrome is hard to repair. Chromosome karyotype examination in patients with hypospadias is suggested. Genetic testing is recommended. In the future, further research is needed on the pathogenesis of disease and how to treat and prevent it.