Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Commun ; : 100936, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689499

RESUMEN

Cytokinins are a type of mobile phytohormone that regulate plant growth, development, and environmental adaptability. The major cytokinin species include isopentenyl adenine (iP), trans-zeatin (tZ), cis-zeatin (cZ), and dihydrozeatin (DZ). The spatial distributions of different cytokinin species in different organelles, cells, tissues, and organs are primarily shaped by biosynthesis via isopentenyltransferases (IPT), cytochrome P450 monooxygenase, and 5'-ribonucleotide phosphohydrolase, and by conjugation or catabolism via glycosyltransferase or cytokinin oxidase/dehydrogenase (CKX). Cytokinins bind to histidine receptor kinases (HKs) in the endoplasmic reticulum (ER) or plasma membrane (PM) and relay signals to response regulators (RRs) in the nucleus by shuttle proteins known as histidine phosphotransfer proteins (HPs). The movements of cytokinins from sites of biosynthesis to signal perception sites usually require long-distance, intercellular, and intracellular transport. In the past decade, ATP-binding cassette (ABC) transporters, purine permeases (PUP), AZA-GUANINE RESISTANT (AZG) transporters, equilibrative nucleoside transporters (ENT), and Sugars Will Eventually be Exported Transporters (SWEET) have been characterized as involved in cytokinin transport processes. This review begins by introducing the spatial distributions of various cytokinins and the subcellular localizations of the proteins involved in cytokinin metabolism and signaling. Highlights focus on an inventory of the characterized transporters involved in cytokinin compartmentalization, including long-distance, intercellular, and intracellular transport, and the regulation of spatial distributions of cytokinins by environmental cues. Future directions for cytokinin research are also discussed.

2.
Plant Commun ; : 100857, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38433446

RESUMEN

The transition from mitosis to meiosis is a critical event in the reproductive development of all sexually reproducing species. However, the mechanisms that regulate this process in plants remain largely unknown. Here, we find that the rice (Oryza sativa L.) protein RETINOBLASTOMA RELATED 1 (RBR1) is essential to the transition from mitosis to meiosis. Loss of RBR1 function results in hyper-proliferative sporogenous-cell-like cells (SCLs) in the anther locules during early stages of reproductive development. These hyper-proliferative SCLs are unable to initiate meiosis, eventually stagnating and degrading at late developmental stages to form pollen-free anthers. These results suggest that RBR1 acts as a gatekeeper of entry into meiosis. Furthermore, cytokinin content is significantly increased in rbr1 mutants, whereas the expression of type-B response factors, particularly LEPTO1, is significantly reduced. Given the known close association of cytokinins with cell proliferation, these findings imply that hyper-proliferative germ cells in the anther locules may be attributed to elevated cytokinin concentrations and disruptions in the cytokinin pathway. Using a genetic strategy, the association between germ cell hyper-proliferation and disturbed cytokinin signaling in rbr1 has been confirmed. In summary, we reveal a unique role of RBR1 in the initiation of meiosis; our results clearly demonstrate that the RBR1 regulatory module is connected to the cytokinin signaling pathway and switches mitosis to meiosis in rice.

3.
Plant Physiol ; 195(1): 671-684, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38345859

RESUMEN

The phytohormone abscisic acid (ABA) plays a central role in regulating stomatal movements under drought conditions. The root-derived peptide CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 25 (CLE25) moves from the root to shoot for activating ABA biosynthesis under drought conditions. However, the root-to-shoot translocation of root-derived ABA and its regulation of stomatal movements in the shoot remain to be clarified. Here, we reveal that the ABA transporter ATP-binding cassette subfamily G member 25 (AtABCG25) mediates root-to-shoot translocation of ABA and ABA-glucosyl ester (ABA-GE) in Arabidopsis (Arabidopsis thaliana). Isotope-labeled ABA tracer experiments and hormone quantification in xylem sap showed that the root-to-shoot translocation of ABA and ABA-GE was substantially impaired in the atabcg25 mutant under nondrought and drought conditions. However, the contents of ABA and ABA-GE in the leaves were lower in the atabcg25 mutant than in the wild type (WT) under nondrought but similar under drought conditions. Consistently, the stomatal closure was suppressed in the atabcg25 mutant under nondrought but not under drought conditions. The transporter activity assays showed that AtABCG25 directly exported ABA and ABA-GE in planta and in yeast (Saccharomyces cerevisiae) cells. Thus, we proposed a working model in which root-derived ABA transported by AtABCG25 via xylem mediates stomatal movements in the shoot under nondrought conditions but might exhibit little effect on stomatal movements under drought conditions. These findings extend the functions of AtABCG25 and provide insights into the long-distance translocation of ABA and its role in stomatal movements.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Raíces de Plantas , Brotes de la Planta , Estomas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácido Abscísico/metabolismo , Estomas de Plantas/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/metabolismo , Brotes de la Planta/genética , Transporte Biológico , Sequías , Mutación/genética , Transportador de Casetes de Unión a ATP, Subfamilia G/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética
4.
Org Biomol Chem ; 22(10): 2021-2026, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38372990

RESUMEN

cis-Zeatin (cZ), a cytokinin often overlooked compared to trans-zeatin (tZ), can now be controlled in live cells and plants through a new biocompatible reaction. Using flavin photosensitizers, cZ can be isomerized to tZ or degraded, depending on the presence of a reducing reagent. This breakthrough offers a novel approach for regulating plant growth through chemical molecules.


Asunto(s)
Mononucleótido de Flavina , Zeatina , Zeatina/química , Zeatina/metabolismo , Mononucleótido de Flavina/metabolismo , Isomerismo , Citocininas
5.
Plant Commun ; 4(2): 100468, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36307987

RESUMEN

Cytokinins (CKs), primarily trans-zeatin (tZ) and isopentenyladenine (iP) types, play critical roles in plant growth, development, and various stress responses. Long-distance transport of tZ-type CKs meidated by Arabidopsis ATP-binding cassette transporter subfamily G14 (AtABCG14) has been well studied; however, less is known about the biochemical properties of AtABCG14 and its transporter activity toward iP-type CKs. Here we reveal the biochemical properties of AtABCG14 and provide evidence that it is also required for long-distance transport of iP-type CKs. AtABCG14 formed homodimers in human (Homo sapiens) HEK293T, tobacco (Nicotiana tabacum), and Arabidopsis cells. Transporter activity assays of AtABCG14 in Arabidopsis, tobacco, and yeast (Saccharomyces cerevisiae) showed that AtABCG14 may directly transport multiple CKs, including iP- and tZ-type species. AtABCG14 expression was induced by iP in a tZ-type CK-deficient double mutant (cypDM) of CYP735A1 and CYP735A2. The atabcg14 cypDM triple mutant exhibited stronger CK-deficiency phenotypes than cypDM. Hormone profiling, reciprocal grafting, and 2H6-iP isotope tracer experiments showed that root-to-shoot and shoot-to-root long-distance transport of iP-type CKs were suppressed in atabcg14 cypDM and atabcg14. These results suggest that AtABCG14 participates in three steps of the circular long-distance transport of iP-type CKs: xylem loading in the root for shootward transport, phloem unloading in the shoot for shoot distribution, and phloem unloading in the root for root distribution. We found that AtABCG14 displays transporter activity toward multiple CK species and revealed its versatile roles in circular long-distance transport of iP-type CKs. These findings provide new insights into the transport mechanisms of CKs and other plant hormones.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas , Células HEK293 , Proteínas de Transporte de Membrana/metabolismo
6.
Plant Physiol ; 191(1): 56-69, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36031806

RESUMEN

Leaf angle is determined by lamina joint inclination and is an important agronomic trait that determines plant architecture, photosynthetic efficiency, and crop yield. Cytokinins (CKs) are phytohormones involved in shaping rice (Oryza sativa L.) architecture, but their role in leaf angle remains unknown. Here, we report that CK accumulation mediated by rice CK OXIDASE/DEHYDROGENASE3 (OsCKX3) controls lamina joint development and negatively regulates leaf angle. Phenotypic analysis showed that rice osckx3 mutants had smaller leaf angles, while the overexpression lines (OsCKX3-OE) had larger leaf angles. Histological sections indicated that the leaf inclination changes in the osckx3 and OsCKX3-OE lines resulted from asymmetric proliferation of the cells and vascular bundles in the lamina joint. Reverse transcription quantitative PCR, promoter-fused ß-glucuronidase expression, and subcellular localization assays indicated that OsCKX3 was highly expressed in the lamina joint, and OsCKX3-GFP fusion protein localized to the endoplasmic reticulum. The enzyme assays using recombinant protein OsCKX3 revealed that OsCKX3 prefers trans-zeatin (tZ) and isopentenyladenine (iP). Consistently, tZ and iP levels increased in the osckx3 mutants but decreased in the OsCKX3 overexpression lines. Interestingly, agronomic trait analysis of the rice grown in the paddy field indicated that osckx3 displayed a smaller leaf angle and enhanced primary branch number, grain size, 1,000-grain weight, and flag leaf size. Collectively, our results revealed that enhancing CK levels in the lamina joint by disrupting OsCKX3 negatively regulates leaf angle, highlighting that the CK pathway can be engineered to reduce leaf angle in rice and possibly in other cereals.


Asunto(s)
Oryza , Oryza/metabolismo , Citocininas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Plant Cell Environ ; 45(7): 2211-2225, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35394681

RESUMEN

Salicylic acid (SA) is a crucial hormone involved in plant immunity. Rice (Oryza sativa) maintains high SA levels that are not induced by pathogens. However, the roles of SA in rice immunity and yield remain largely unknown. Here, we identified SA 5-hydroxylases 1 (OsS5H1) and 2 (OsS5H2) as the primary enzymes engaged in catalysing SA to 2,5-dihydroxybenzoic acid (2,5-DHBA) in rice. SA levels were significantly increased in the oss5h mutants, while they were dramatically decreased in the OsS5H1 and OsS5H2 overexpression lines. The mutants were resistant, whereas the overexpression lines were susceptible to Pyricularia oryzae and Xanthomonas oryzae pv. Oryzae. Moreover, the pathogen-associated molecular patterns-triggered immunity responses, including reactive oxygen species burst and callose deposition, were enhanced in all the mutants and compromised in the overexpression lines. Quantification of the agronomic traits of the oss5h mutants grown in the paddy fields demonstrated that the grain number per panicle was decreased as the SA levels increased; however, the tiller number and grain size were enhanced, resulting in no significant yield penalty. Collectively, we reveal that mildly increasing SA content in rice can confer broad-spectrum resistance without yield penalty and put new insights into the roles of SA in immunity and growth.


Asunto(s)
Oryza , Xanthomonas , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta , Oryza/metabolismo , Enfermedades de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico
8.
Front Plant Sci ; 12: 660966, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889170

RESUMEN

Phytohormones are a group of small chemical molecules that play vital roles in plant development, metabolism, and stress responses. Phytohormones often have distinct biosynthesis and signaling perception sites, requiring long- or short-distance transportation. Unlike biosynthesis and signal transduction, phytohormone transport across cells and organs is poorly understood. The transporter activity assay is a bottleneck for the functional characterization of novel phytohormone transporters. In the present study, we report a tobacco syringe agroinfiltration and liquid chromatography tandem mass spectrometry (TSAL)-based method for performing a phytohormone transporter activity assay using endogenous hormones present in tobacco (Nicotiana benthamiana) leaves. A transporter activity assay using this method does not require isotope-labeled substrates and can be conveniently performed for screening multiple substrates by using endogenous hormones in tobacco leaves. The transporter activities of three known hormone transporters, namely AtABCG25 for abscisic acid, AtABCG16 for jasmonic acid, and AtPUP14 for cytokinin, were all successfully validated using this method. Using this method, cytokinins were found to be the preferred substrates of an unknown maize (Zea mays) transporter ZmABCG43. ZmABCG43 transporter activities toward cytokinins were confirmed in a cytokinin long-distance transport mutant atabcg14 through gene complementation. Thus, the TSAL method has the potential to be used for basic substrate characterization of novel phytohormone transporters or for the screening of novel transporters for a specific phytohormone on a large scale.

9.
Plant Physiol ; 186(4): 2111-2123, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33905524

RESUMEN

Root-synthesized cytokinins are transported to the shoot and regulate the growth, development, and stress responses of aerial tissues. Previous studies have demonstrated that Arabidopsis (Arabidopsis thaliana) ATP binding cassette (ABC) transporter G family member 14 (AtABCG14) participates in xylem loading of root-synthesized cytokinins. However, the mechanism by which these root-derived cytokinins are distributed in the shoot remains unclear. Here, we revealed that AtABCG14-mediated phloem unloading through the apoplastic pathway is required for the appropriate shoot distribution of root-synthesized cytokinins in Arabidopsis. Wild-type rootstocks grafted to atabcg14 scions successfully restored trans-zeatin xylem loading. However, only low levels of root-synthesized cytokinins and induced shoot signaling were rescued. Reciprocal grafting and tissue-specific genetic complementation demonstrated that AtABCG14 disruption in the shoot considerably increased the retention of root-synthesized cytokinins in the phloem and substantially impaired their distribution in the leaf apoplast. The translocation of root-synthesized cytokinins from the xylem to the phloem and the subsequent unloading from the phloem is required for the shoot distribution and long-distance shootward transport of root-synthesized cytokinins. This study revealed a mechanism by which the phloem regulates systemic signaling of xylem-mediated transport of root-synthesized cytokinins from the root to the shoot.


Asunto(s)
Arabidopsis/fisiología , Citocininas/metabolismo , Floema/fisiología , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Transporte Biológico , Transducción de Señal
11.
Plant Biotechnol J ; 19(2): 335-350, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33448635

RESUMEN

The flag leaf and grain belong to the source and sink, respectively, of cereals, and both have a bearing on final yield. Premature leaf senescence significantly reduces the photosynthetic rate and severely lowers crop yield. Cytokinins play important roles in leaf senescence and determine grain number. Here, we characterized the roles of the rice (Oryza sativa L.) cytokinin oxidase/dehydrogenase OsCKX11 in delaying leaf senescence, increasing grain number, and coordinately regulating source and sink. OsCKX11 was predominantly expressed in the roots, leaves, and panicles and was strongly induced by abscisic acid and leaf senescence. Recombinant OsCKX11 protein catalysed the degradation of various types of cytokinins but showed preference for trans-zeatin and cis-zeatin. Cytokinin levels were significantly increased in the flag leaves of osckx11 mutant compared to those of the wild type (WT). In the osckx11 mutant, the ABA-biosynthesizing genes were down-regulated and the ABA-degrading genes were up-regulated, thereby reducing the ABA levels relative to the WT. Thus, OsCKX11 functions antagonistically between cytokinins and ABA in leaf senescence. Moreover, osckx11 presented with significantly increased branch, tiller, and grain number compared with the WT. Collectively, our findings reveal that OsCKX11 simultaneously regulates photosynthesis and grain number, which may provide new insights into leaf senescence and crop molecular breeding.


Asunto(s)
Oryza , Ácido Abscísico , Grano Comestible , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oxidorreductasas/genética , Hojas de la Planta
12.
Plant Methods ; 16: 134, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042209

RESUMEN

BACKGROUND: Cytokinins are one kind of phytohormones essential for plant growth, development and stress responses. In the past half century, significant progresses have been made in the studies of cytokinin signal transduction and metobolic pathways, but the mechanism of cytokinin translocation is poorly understood. Arabidopsis (Arabidopsis thaliana) response regulator 5 (ARR5) is a type-A response factor in cytokinin signaling which is induced by cytokinins and has been used as a reporter gene for the endogenous cytokinins in Arabidopsis. Here, we report a fluorescence-based high-throughput method to screen cytokinin translocation mutants using an ethyl methyl sulfone (EMS) mutagenesis library generated with ARR5::eGFP transgenic plants. RESULTS: The seedlings with enhanced green fluorescent protein (GFP) signal in roots were screened in a luminescence imaging system (LIS) in large scale to obtain mutants with over-accumulated cytokinins in roots. The selected mutants were confirmed under a fluorescence microscopy and then performed phenotypic analysis. In this way, we obtained twelve mutants with elevated GFP signal in the roots and further found three of them displayed reduced GFP signal in the aerial tissues. Two of the mutants were characterized and proved to be the atabcg14 allelic mutants which are defective in the long-distance translocation of root-synthesized cytokinins. CONCLUSIONS: We provide a strategy for screening mutants defective in cytokinin translocation, distribution or signaling. The strategy can be adapted to establish a system for screening mutants defective in other hormone transporters or signaling components using a fluorescence reporter.

13.
Plant Sci ; 290: 110298, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31779909

RESUMEN

Phospholipase D (PLD) hydrolyzes the phosphodiester bond of glycerophospholipids to yield phosphatidic acid (PA) and a free headgroup. PLDs are important for plant growth, development, and responses to external stresses. However, their roles in triacylglycerol (TAG) synthesis are still unclear. Here, we report that a soybean (Glycine max) PLDγ (GmPLDγ) is involved in glycerolipid turnover and seed oil production. GmPLDγ was targeted to mitochondria and exhibited PLD activity that was activated by oleate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. Overexpression of GmPLDγ (abbreviated GmPLDγ-OE) in Arabidopsis thaliana resulted in enhanced seed weight, elevated levels of TAGs with 18-, 20-, and 22-carbon fatty acids (FAs), and altered oil-body morphology. Furthermore, the levels of membrane lipids in vegetative tissues decreased significantly, whereas no overt changes were found in mature seeds except for a decrease in the digalactosyldiacylglycerol (DGDG) level in the GmPLDγ-OE lines. Additionally, the expression of genes involved in glycerolipid metabolism was significantly upregulated in developing siliques in GmPLDγ-OE lines. Together, our data indicate a regulatory role for GmPLDγ in TAG synthesis and fatty-acid remodeling, highlighting the importance of mitochondria-directed glycerophospholipid homeostasis in seed oil accumulation.


Asunto(s)
Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Fosfolipasa D/genética , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/genética , Fosfolipasa D/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Glycine max/metabolismo
14.
J Exp Bot ; 70(21): 6277-6291, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31504730

RESUMEN

Cytokinins are one of the most important phytohormones and play essential roles in multiple life processes in planta. Root-derived cytokinins are transported to the shoots via long-distance transport. The mechanisms of long-distance transport of root-derived cytokinins remain to be demonstrated. In this study, we report that OsABCG18, a half-size ATP-binding cassette transporter from rice (Oryza sativa L.), is essential for the long-distance transport of root-derived cytokinins. OsABCG18 encodes a plasma membrane protein and is primarily expressed in the vascular tissues of the root, stem, and leaf midribs. Cytokinin profiling, as well as [14C]trans-zeatin tracer, and xylem sap assays, demonstrated that the shootward transport of root-derived cytokinins was significantly suppressed in the osabcg18 mutants. Transport assays in tobacco (Nicotiana benthamiana) indicated that OsABCG18 exhibited efflux transport activities for various substrates of cytokinins. While the mutation reduced root-derived cytokinins in the shoot and grain yield, overexpression of OsABCG18 significantly increased cytokinins in the shoot and improved grain yield. The findings for OsABCG18 as a transporter for long-distance transport of cytokinin provide new insights into the cytokinin transport mechanism and a novel strategy to increase cytokinins in the shoot and promote grain yield.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Citocininas/metabolismo , Grano Comestible/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Transporte Biológico , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Oryza/anatomía & histología , Oryza/genética , Oryza/crecimiento & desarrollo , Fenotipo , Filogenia , Raíces de Plantas/metabolismo
15.
J Plant Physiol ; 242: 153019, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31437808

RESUMEN

Acyl-CoA:diacylglycerol acyltransferase (DGAT) is a key enzyme in the Kennedy pathway of triacylglycerol (TAG) synthesis. It catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to form TAG. DGATs in soybean (Glycine max) have been reported, but their functions are largely unclear. Here we cloned three members of DGAT1 and four members of DGAT2 family from soybean, named GmDGAT1A to GmDGAT1C, and GmDGAT2A to GmDGAT2D, respectively. GmDGAT1A and GmDGAT1C were expressed at a high level in immature seeds, GmDGAT2B in mature seeds, and GmDGAT2C in older leaves. The seven genes were transformed into the H1246 quadruple mutant yeast strain, in which GmDGAT1A, GmDGAT1B, GmDGAT1C, GmDGAT2A, and GmDGAT2B had the ability to produce TAG. Six genes were transformed into Arabidopsis respectively, and constitutive expression of GmDGAT1A and GmDGAT1B resulted in an increase in oil content at the cost of reduced protein content in seeds. Overexpression of GmDGAT1A produced heavier weight of individual seed, but did not affect the weight of total seeds from a plant. Our results reveal the functions of soybean DGATs in seed oil synthesis using transgenic Arabidopsis. The implications for the biotechnological modification of the oil contents in soybeans by altering DGAT expression are discussed.


Asunto(s)
Arabidopsis/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Glycine max/enzimología , Aceites de Plantas/metabolismo , Triglicéridos/biosíntesis , Arabidopsis/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genómica , Filogenia , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética , Semillas/metabolismo , Glycine max/metabolismo , Triglicéridos/metabolismo
16.
Plant Physiol ; 175(3): 1082-1093, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28899963

RESUMEN

The phytohormone salicylic acid (SA) plays essential roles in biotic and abiotic responses, plant development, and leaf senescence. 2,5-Dihydroxybenzoic acid (2,5-DHBA or gentisic acid) is one of the most commonly occurring aromatic acids in green plants and is assumed to be generated from SA, but the enzymes involved in its production remain obscure. DMR6 (Downy Mildew Resistant6; At5g24530) has been proven essential in plant immunity of Arabidopsis (Arabidopsis thaliana), but its biochemical properties are not well understood. Here, we report the discovery and functional characterization of DMR6 as a salicylic acid 5-hydroxylase (S5H) that catalyzes the formation of 2,5-DHBA by hydroxylating SA at the C5 position of its phenyl ring in Arabidopsis. S5H/DMR6 specifically converts SA to 2,5-DHBA in vitro and displays higher catalytic efficiency (Kcat/Km = 4.96 × 104 m-1 s-1) than the previously reported S3H (Kcat/Km = 6.09 × 103 m-1 s-1) for SA. Interestingly, S5H/DMR6 displays a substrate inhibition property that may enable automatic control of its enzyme activities. The s5h mutant and s5hs3h double mutant overaccumulate SA and display phenotypes such as a smaller growth size, early senescence, and a loss of susceptibility to Pseudomonas syringae pv tomato DC3000. S5H/DMR6 is sensitively induced by SA/pathogen treatment and is expressed widely from young seedlings to senescing plants, whereas S3H is more specifically expressed at the mature and senescing stages. Collectively, our results disclose the identity of the enzyme required for 2,5-DHBA formation and reveal a mechanism by which plants fine-tune SA homeostasis by mediating SA 5-hydroxylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Homeostasis , Oxigenasas de Función Mixta/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Gentisatos/química , Gentisatos/metabolismo , Cinética , Metabolómica , Oxigenasas de Función Mixta/genética , Fenotipo , Plantas Modificadas Genéticamente , Pseudomonas syringae/fisiología , Proteínas Recombinantes/metabolismo , Ácido Salicílico/química , Especificidad de la Especie , Factores de Tiempo , Transcripción Genética
17.
Plant Cell Environ ; 38(12): 2766-79, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26046379

RESUMEN

The intracellular potassium (K(+) ) homeostasis, which is crucial for plant survival in saline environments, is modulated by K(+) channels and transporters. Some members of the high-affinity K(+) transporter (HAK) family are believed to function in the regulation of plant salt tolerance, but the physiological mechanisms remain unclear. Here, we report a significant inducement of OsHAK21 expression by high-salinity treatment and provide genetic evidence of the involvement of OsHAK21 in rice salt tolerance. Disruption of OsHAK21 rendered plants sensitive to salt stress. Compared with the wild type, oshak21 accumulated less K(+) and considerably more Na(+) in both shoots and roots, and had a significantly lower K(+) net uptake rate but higher Na(+) uptake rate. Our analyses of subcellular localizations and expression patterns showed that OsHAK21 was localized in the plasma membrane and expressed in xylem parenchyma and individual endodermal cells (putative passage cells). Further functional characterizations of OsHAK21 in K(+) uptake-deficient yeast and Arabidopsis revealed that OsHAK21 possesses K(+) transporter activity. These results demonstrate that OsHAK21 may mediate K(+) absorption by the plasma membrane and play crucial roles in the maintenance of the Na(+) /K(+) homeostasis in rice under salt stress.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Potasio/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Homeostasis , Transporte Iónico , Mutación , Oryza/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Salinidad , Tolerancia a la Sal , Sodio/metabolismo , Cloruro de Sodio/metabolismo , Xilema/genética , Xilema/fisiología
18.
J Plant Res ; 125(4): 569-78, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22161123

RESUMEN

Phospholipase D (PLD) and its product phosphatidic acid play important roles in the regulation of plant growth, development, and stress responses. The genome database analysis has revealed PLD family in Arabidopsis, rice, poplar and grape. In this study, we report a genomic analysis of 18 putative soybean (Glycine max) PLD genes (GmPLDs), which exist in the 14 of 20 chromosomes. GmPLDs were grouped into six types, α(3), ß(4), γ, δ(5), ε(2), and ζ(3), based on gene architectures, protein domains, evolutionary relationship, and sequence identity. These GmPLDs contained two HKD domains, PX/PH domains (for GmPLDζs), and C2 domain (for the other GmPLDs). The expression patterns analyzed by quantitative reverse transcription PCR demonstrated that GmPLDs were expressed differentially in various tissues. GmPLDα1, α2, and ß2 were highly expressed in most tissues, whereas GmPLDδ5 was only expressed in flowers and GmPLDζ1 was predominantly expressed in flowers and early pods. The expression of GmPLDα1 and α2 was increased and that of GmPLDγ was decreased by salt stress. GmPLDα1 protein expressed in E. coli was active under the reaction conditions for both PLDα and PLDδ, hydrolyzing the common membrane phospholipids phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The genomic analysis for soybean PLD family provides valuable data for further identity and characterization of their functions.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/enzimología , Glycine max/genética , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Flores/genética , Frutas/genética , Genes de Plantas , Genómica , Especificidad de Órganos , Filogenia , Hojas de la Planta/genética , Raíces de Plantas/genética , Tallos de la Planta , Salinidad , Semillas/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Cloruro de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA