Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125643

RESUMEN

Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a neurodegenerative disorder caused by the ATXN3 CAG repeat expansion. Preimplantation genetic testing for monogenic disorders (PGT-M) of SCA3/MJD should include reliable repeat expansion detection coupled with high-risk allele determination using informative linked markers. One couple underwent SCA3/MJD PGT-M combining ATXN3 (CAG)n triplet-primed PCR (TP-PCR) with customized linkage-based risk allele genotyping on whole-genome-amplified trophectoderm cells. Microsatellites closely linked to ATXN3 were identified and 16 markers were genotyped on 187 anonymous DNAs to verify their polymorphic information content. In the SCA3/MJD PGT-M case, the ATXN3 (CAG)n TP-PCR and linked marker analysis results concurred completely. Among the three unaffected embryos, a single embryo was transferred and successfully resulted in an unaffected live birth. A total of 139 microsatellites within 1 Mb upstream and downstream of the ATXN3 CAG repeat were identified and 8 polymorphic markers from each side were successfully co-amplified in a single-tube reaction. A PGT-M assay involving ATXN3 (CAG)n TP-PCR and linkage-based risk allele identification has been developed for SCA3/MJD. A hexadecaplex panel of highly polymorphic microsatellites tightly linked to ATXN3 has been developed for the rapid identification of informative markers in at-risk couples for use in the PGT-M of SCA3/MJD.


Asunto(s)
Ataxina-3 , Enfermedad de Machado-Joseph , Repeticiones de Microsatélite , Diagnóstico Preimplantación , Expansión de Repetición de Trinucleótido , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/diagnóstico , Humanos , Ataxina-3/genética , Expansión de Repetición de Trinucleótido/genética , Femenino , Repeticiones de Microsatélite/genética , Diagnóstico Preimplantación/métodos , Pruebas Genéticas/métodos , Alelos , Genotipo , Embarazo , Masculino , Proteínas Represoras
2.
Bio Protoc ; 13(12): e4704, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37397792

RESUMEN

There are more than 40 types of spinocerebellar ataxia (SCA), most of which are caused by abnormal expansion of short tandem repeats at various gene loci. These phenotypically similar disorders require molecular testing at multiple loci by fluorescent PCR and capillary electrophoresis to identify the causative repeat expansion. We describe a simple strategy to screen for the more common SCA1, SCA2, and SCA3 by rapidly detecting the abnormal CAG repeat expansion at the ATXN1, ATXN2, and ATXN3 loci using melting curve analysis of triplet-primed PCR products. Each of the three separate assays employs a plasmid DNA carrying a known repeat size to generate a threshold melt peak temperature, which effectively distinguishes expansion-positive samples from those without a repeat expansion. Samples that are screened positive based on their melt peak profiles are subjected to capillary electrophoresis for repeat sizing and genotype confirmation. These screening assays are robust and provide accurate detection of the repeat expansion while eliminating the need for fluorescent PCR and capillary electrophoresis for every sample.

3.
J Mol Diagn ; 23(5): 565-576, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33618058

RESUMEN

The autosomal dominantly inherited spinocerebellar ataxias (SCAs) can be caused by dynamic mutations of short tandem repeats within various genes. Because of the significant clinical overlap among the various SCA types, molecular screening of multiple genetic loci by fluorescent PCR and capillary electrophoresis is necessary to identify the causative repeat expansion. We describe a simple, rapid, and inexpensive strategy to screen for CAG repeat expansion mutations at the ATXN1, ATXN2, and ATXN3 loci using melting curve analysis of triplet-primed PCR products. Plasmid DNAs of known repeat sizes were used to generate threshold melt peak temperatures, which rapidly and effectively distinguish samples carrying an expanded allele from those carrying nonexpanded alleles. Melting curve analysis-positive samples were confirmed by capillary electrophoresis sizing of the triplet-primed PCR products. All three assays achieved 100% sensitivity, with 95% CIs of 67.86% to 100% (SCA1), 74.65% to 100% (SCA2), and 91.58% to 100% (SCA3). The SCA1 assay also achieved 100% specificity (95% CI, 97.52%-100%), whereas the SCA2 and SCA3 assays achieved specificity of 99.46% (95% CI, 96.56%-99.97%) and 99.32% (95% CI, 95.70%-99.96%), respectively. These screening assays provide robust and highly accurate detection of expanded alleles and are amenable to large-scale screening while minimizing the need for capillary electrophoresis sizing for every sample.


Asunto(s)
Enfermedad de Machado-Joseph/diagnóstico , Mutación , Reacción en Cadena de la Polimerasa/métodos , Ataxias Espinocerebelosas/diagnóstico , Expansión de Repetición de Trinucleótido , Ataxina-1/genética , Ataxina-2/genética , Ataxina-3/genética , Frecuencia de los Genes , Humanos , Enfermedad de Machado-Joseph/genética , Proteínas Represoras/genética , Ataxias Espinocerebelosas/genética , Temperatura de Transición
4.
Sci Rep ; 9(1): 16481, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712634

RESUMEN

Huntington disease (HD) is a lethal neurodegenerative disorder caused by expansion of a CAG repeat within the huntingtin (HTT) gene. Disease prevention can be facilitated by preimplantation genetic testing for this monogenic disorder (PGT-M). We developed a strategy for HD PGT-M, involving whole genome amplification (WGA) followed by combined triplet-primed PCR (TP-PCR) for HTT CAG repeat expansion detection and multi-microsatellite marker genotyping for disease haplotype phasing. The strategy was validated and tested pre-clinically in a simulated PGT-M case before clinical application in five cycles of a PGT-M case. The assay reliably and correctly diagnosed all embryos, even where allele dropout (ADO) occurred at the HTT CAG repeat locus or at one or more linked markers. Ten of the 27 embryos analyzed were diagnosed as unaffected. Four embryo transfers were performed, two of which involved fresh cycle double embryo transfers and two were frozen-thawed single embryo transfers. Pregnancies were achieved from each of the frozen-thawed single embryo transfers and confirmed to be unaffected by amniocentesis, culminating in live births at term. This strategy enhances diagnostic confidence for PGT-M of HD and can also be employed in situations where disease haplotype phase cannot be established prior to the start of PGT-M.


Asunto(s)
Pruebas Genéticas , Proteína Huntingtina/genética , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/genética , Tipificación de Secuencias Multilocus , Reacción en Cadena de la Polimerasa Multiplex , Diagnóstico Preimplantación , Expansión de Repetición de Trinucleótido , Alelos , Fertilización In Vitro , Pruebas Genéticas/métodos , Haplotipos , Humanos , Repeticiones de Microsatélite , Linaje , Diagnóstico Preimplantación/métodos , Análisis de la Célula Individual/métodos
5.
Front Genet ; 10: 1105, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781167

RESUMEN

Preimplantation genetic testing for the monogenic disorder (PGT-M) spinal muscular atrophy (SMA) is significantly improved by supplementation of SMN1 deletion detection with marker-based linkage analysis. To expand the availability of informative markers for PGT-M of SMA, we identified novel non-duplicated and highly polymorphic microsatellite markers closely flanking the SMN1 and SMN2 duplicated region. Six of the novel markers within 0.5 Mb of the 1.7 Mb duplicated region containing SMN1 and SMN2 (SMA6863, SMA6873, SMA6877, SMA7093, SMA7115, and SMA7120) and seven established markers (D5S1417, D5S1413, D5S1370, D5S1408, D5S610, D5S1999, and D5S637), all with predicted high heterozygosity values, were selected and optimized in a tridecaplex PCR panel, and their polymorphism indices were determined in two populations. Observed marker heterozygosities in the Chinese and Caucasian populations ranged from 0.54 to 0.86, and 98.4% of genotyped individuals (185 of 188) were heterozygous for ≥2 markers on either side of SMN1. The marker panel was evaluated for disease haplotype phasing using single cells from two parent-child trios after whole-genome amplification, and applied to a clinical IVF (in vitro fertilization) PGT-M cycle in an at-risk couple, in parallel with SMN1 deletion detection. Both direct and indirect test methods determined that none of five tested embryos were at risk for SMA, with haplotype analysis further identifying one embryo as unaffected and four as carriers. Fresh transfer of the unaffected embryo did not lead to implantation, but subsequent frozen-thaw transfer of a carrier embryo produced a pregnancy, with fetal genotype confirmed by amniocentesis, and a live birth at term.

6.
PLoS One ; 12(7): e0180984, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28700716

RESUMEN

Molecular diagnosis of Huntington disease (HD) is currently performed by fluorescent repeat-flanking or triplet-primed PCR (TP-PCR) with capillary electrophoresis (CE). However, CE requires multiple post-PCR steps and may result in high cost in high-throughput settings. We previously described a cost-effective single-step molecular screening strategy employing the use of melting curve analysis (MCA). However, because it relies on repeat-flanking PCR, its efficiency in detecting expansion mutations decreases with increasing size of the repeat, which could lead to false-negative results. To address this pitfall, we have developed an improved screening assay coupling TP-PCR, which has been shown in CE-based assays to detect all expanded alleles regardless of size, with MCA in a rapid one-step assay. A companion protocol for rapid size confirmation of expansion-positive samples is also described. The assay was optimized on 30 genotype-known DNAs, and two plasmids pHTT(CAG)26 and pHTT(CAG)33 were used to establish the threshold temperatures (TTs) distinguishing normal from expansion-positive samples. In contrast to repeat-flanking PCR MCA, TP-PCR MCA displayed much higher sensitivity for detecting large expansions. All 30 DNAs generated distinct melt peak Tms which correlated well with each sample's larger allele. Normal samples were clearly distinguished from affected samples. The companion sizing protocol accurately sized even the largest expanded allele of ~180 CAGs. Blinded analysis of 69 clinical samples enriched for HD demonstrated 100% assay sensitivity and specificity in sample segregation. The assay targets the HTT CAG repeat specifically, tolerates a wide range of input DNA, and works well using DNA from saliva and buccal swab in addition to blood. Therefore, rapid, accurate, reliable, and high-throughput detection/exclusion of HD can be achieved using this one-step screening assay, at less than half the cost of fluorescent PCR with CE.


Asunto(s)
Enfermedad de Huntington/genética , Plásmidos/genética , Reacción en Cadena de la Polimerasa/métodos , Expansión de Repetición de Trinucleótido/genética , Alelos , Electroforesis Capilar , Genotipo
7.
Clin Chem ; 63(6): 1127-1140, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28428361

RESUMEN

BACKGROUND: Preimplantation genetic diagnosis (PGD) of myotonic dystrophy type 1 (DM1) currently uses conventional PCR to detect nonexpanded dystrophia myotonica protein kinase (DMPK) alleles or triplet-primed PCR to detect the CTG-expanded alleles, coupled with analysis of linked microsatellite markers to increase diagnostic accuracy. We aimed to simplify the process of identification and selection of informative linked markers for application to DM1 PGD. METHODS: An in silico search was performed to identify all markers within 1-1.5 Mb flanking the DMPK gene. Five previously known (D19S559, APOC2, D19S543, D19S112, and BV209569) and 7 novel (DM45050, DM45178, DM45209, DM45958, DM46513, DM46892, and DM47004.1) markers with potentially high heterozygosity values and polymorphism information content were selected and optimized in a single-tube multiplex PCR panel. RESULTS: Analysis of 184 DNA samples of Chinese and Caucasian individuals (91 from unrelated, anonymized cord blood of Chinese babies born at the National University Hospital, Singapore, and 93 Caucasian DNA samples from the Human Variation Panel HD100CAU) confirmed the high polymorphism indices of all markers (polymorphism information content >0.5), with observed heterozygosity values ranging from 0.62-0.93. All individuals were heterozygous for at least 6 markers, with 99.5% of individuals heterozygous for at least 2 markers on either side of the DMPK CTG repeat. The dodecaplex marker assay was successfully validated on 42 single cells and 12 whole genome amplified single cells. CONCLUSIONS: The DM1 multiplex PCR panel is suitable for use in DM1 PGD either as a standalone linkage-based assay or as a complement to DMPK CTG repeat expansion-mutation detection.


Asunto(s)
Expansión de las Repeticiones de ADN/genética , Repeticiones de Microsatélite/genética , Distrofia Miotónica/diagnóstico , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Reacción en Cadena de la Polimerasa , Biomarcadores , Línea Celular , Humanos , Polimorfismo Genético/genética
8.
Clin Chem ; 62(8): 1096-105, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27335079

RESUMEN

BACKGROUND: Preimplantation genetic diagnosis (PGD) of Huntington disease (HD) generally employs linkage analysis of flanking microsatellite markers to complement direct mutation testing, as well as for exclusion testing. Thus far, only 10 linked markers have been developed for use in HD PGD, with a maximum of 3 markers coamplified successfully. We aimed to develop a single-tube multiplex PCR panel of highly polymorphic markers to simplify HD PGD. METHODS: An in silico search was performed to identify all markers within 1 Mb flanking the huntingtin (HTT) gene. Selected markers were optimized in a single-tube PCR panel, and their polymorphism indices were determined in 2 populations. The panel was tested on 63 single cells to validate its utility in PGD. RESULTS: We identified 102 markers in silico, of which 56 satisfied the selection criteria. After initial testing, 12 markers with potentially high heterozygosity were optimized into a single-tube PCR panel together with a 13th more distally located marker. Analysis of DNA from 183 Chinese and Caucasian individuals revealed high polymorphism indices for all markers (polymorphism information content >0.5), with observed heterozygosities ranging from 0.5-0.92. All individuals were heterozygous for at least 5 markers, with 99.5% of individuals heterozygous for at least 2 markers upstream and downstream of the HTT CAG repeat. CONCLUSIONS: The tridecaplex marker assay amplified reliably from single cells either directly or after whole genome amplification, thus validating its standalone use in HD exclusion PGD or as a complement to HTT CAG repeat expansion-mutation detection.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/genética , Repeticiones de Microsatélite/genética , Reacción en Cadena de la Polimerasa , Diagnóstico Preimplantación , Humanos
9.
Neurodegener Dis ; 16(5-6): 348-51, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27207688

RESUMEN

BACKGROUND: Accurate determination of the CAG repeat number is crucial for diagnostic and predictive testing for Huntington disease (HD). Current PCR-based assays can accurately size up to ∼110 HTT CAG repeats. OBJECTIVE: To develop an improved assay capable of detecting larger CAG repeat expansions. METHODS: A triplet-primed PCR (TP-PCR) assay was optimized and validated on 14 HD reference DNAs, including a sample carrying a large expansion of ∼180 CAG repeats. RESULTS: All 14 HD reference samples showed 100% concordance with the previously verified allele sizes. For alleles under 45 CAGs, identical repeat sizes were obtained, while alleles larger than 46 CAGs were sized to within ±1 CAG. The improved TP-PCR assay successfully detected the ∼180 CAG repeat allele in an affected sample. CONCLUSION: This method extends the detection limit of large expanded alleles to at least ∼175-180 CAG repeats, thus reducing the likelihood of requiring Southern blot analysis for any HD-affected sample.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/genética , Reacción en Cadena de la Polimerasa/métodos , Expansión de Repetición de Trinucleótido , Alelos , Electroforesis Capilar/métodos , Humanos , Sensibilidad y Especificidad
10.
Genet Med ; 18(9): 869-75, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26741412

RESUMEN

PURPOSE: To develop a single-tube polymerase chain reaction (PCR) panel of highly polymorphic markers for preimplantation genetic diagnosis (PGD) of fragile X syndrome (FXS). METHODS: An in silico search was performed to identify all markers within 1 Mb flanking the FMR1 gene. Selected markers were optimized into a single-tube PCR panel and their polymorphism indices were determined from 272 female samples from three populations. The single-tube assay was also validated on 30 single cells to evaluate its applicability to FXS PGD. RESULTS: Thirteen markers with potentially high polymorphism information content (PIC) and heterozygosity values were selected and optimized into a single-tube PCR panel together with AMELX/Y for gender determination. Analysis of 272 female samples confirmed the high polymorphism (PIC > 0.5) of most markers, with expected and observed heterozygosities ranging from 0.31 to 0.87. More than 99% of individuals were heterozygous for at least three markers, with 95.8% of individuals heterozygous for at least two markers on either side of the FMR1 CGG repeat. CONCLUSION: The tetradecaplex marker assay can be performed directly on single cells or after whole-genome amplification, thus supporting its use in FXS PGD either as a standalone linkage-based assay or as a complement to FMR1 mutation detection.Genet Med 18 9, 869-875.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Reacción en Cadena de la Polimerasa Multiplex/métodos , Diagnóstico Preimplantación , Alelos , Femenino , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Heterocigoto , Humanos , Repeticiones de Microsatélite/genética , Polimorfismo Genético , Embarazo , Repeticiones de Trinucleótidos/genética
11.
PLoS One ; 9(11): e111694, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25372392

RESUMEN

5-Fluorouracil (5-FU) and its pro-drug Capecitabine have been widely used in treating colorectal cancer. However, not all patients will respond to the drug, hence there is a need to develop reliable early predictive biomarkers for 5-FU response. Here, we report a novel potentially functional Single Nucleotide Polymorphism (pfSNP) approach to identify SNPs that may serve as predictive biomarkers of response to 5-FU in Chinese metastatic colorectal cancer (CRC) patients. 1547 pfSNPs and one variable number tandem repeat (VNTR) in 139 genes in 5-FU drug (both PK and PD pathway) and colorectal cancer disease pathways were examined in 2 groups of CRC patients. Shrinkage of liver metastasis measured by RECIST criteria was used as the clinical end point. Four non-responder-specific pfSNPs were found to account for 37.5% of all non-responders (P<0.0003). Five additional pfSNPs were identified from a multivariate model (AUC under ROC = 0.875) that was applied for all other pfSNPs, excluding the non-responder-specific pfSNPs. These pfSNPs, which can differentiate the other non-responders from responders, mainly reside in tumor suppressor genes or genes implicated in colorectal cancer risk. Hence, a total of 9 novel SNPs with potential functional significance may be able to distinguish non-responders from responders to 5-FU. These pfSNPs may be useful biomarkers for predicting response to 5-FU.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Fluorouracilo/uso terapéutico , Farmacogenética , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Repeticiones de Minisatélite/genética , Metástasis de la Neoplasia , Pronóstico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...