Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 25, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253520

RESUMEN

Classical and quantum space-to-ground communications necessitate highly sensitive receivers capable of extracting information from modulated photons to extend the communication distance from near-earth orbits to deep space explorations. To achieve gigabit data rates while mitigating strong background noise photons and beam drift in a highly attenuated free-space channel, a comprehensive design of a multi-functional detector is indispensable. In this study, we present an innovative compact multi-pixel superconducting nanowire single-photon detector array that integrates near-unity detection efficiency (91.6%), high photon counting rate (1.61 Gcps), large dynamic range for resolving different photon numbers (1-24), and four-quadrant position sensing function all within one device. Furthermore, we have constructed a communication testbed to validate the advantages offered by such an architecture. Through 8-PPM (pulse position modulation) format communication experiments, we have achieved an impressive maximum data rate of 1.5 Gbps, demonstrating sensitivities surpassing previous benchmarks at respective speeds. By incorporating photon number information into error correction codes, the receiver can tolerate maximum background noise levels equivalent to 0.8 photons/slot at a data rate of 120 Mbps-showcasing a great potential for daylight operation scenarios. Additionally, preliminary beam tracking tests were conducted through open-loop scanning techniques, which revealed clear quantitative dependence indicating sensitivity variations based on beam location. Based on the device characterizations and communication results, we anticipate that this device architecture, along with its corresponding signal processing and coding techniques, will be applicable in future space-to-ground communication tasks.

2.
Natl Sci Rev ; 11(1): nwad102, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38116087

RESUMEN

Precisely acquiring the timing information of individual X-ray photons is important in both fundamental research and practical applications. The timing precision of commonly used X-ray single-photon detectors remains in the range of one hundred picoseconds to microseconds. In this work, we report on high-timing-precision detection of single X-ray photons through the fast transition to the normal state from the superconductive state of superconducting nanowires. We successfully demonstrate a free-running X-ray single-photon detector with a timing resolution of 20.1 ps made of 100-nm-thick niobium nitride film with an active area of 50 µm by 50 µm. By using a repeated differential timing measurement on two adjacent X-ray single-photon detectors, we demonstrate a precision of 0.87 ps in the arrival-time difference of X-ray photon measurements. Therefore, our work significantly enhances the timing precision in X-ray photon counting, opening a new niche for ultrafast X-ray photonics and many associated applications.

3.
Opt Express ; 31(14): 23579-23588, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475438

RESUMEN

Scaling up superconducting nanowire single-photon detectors (SNSPDs) into a large array for imaging applications is the current pursuit. Although various readout architectures have been proposed, they cannot resolve multiple-photon detections (MPDs) currently, which limits the operation of the SNSPD arrays at high photon flux. In this study, we focused on the readout ambiguity of a superconducting nanowire single-photon imager applying time-of-flight multiplexing readout. The results showed that image distortion depended on both the incident photon flux and the imaging object. By extracting multiple-photon detections on idle pixels, which were virtual because of the incorrect mapping from the ambiguous readout, a correction method was proposed. An improvement factor of 1.3~9.3 at a photon flux of µ = 5 photon/pulse was obtained, which indicated that joint development of the pixel design and restoration algorithm could compensate for the readout ambiguity and increase the dynamic range.

4.
J Orthop Surg (Hong Kong) ; 31(2): 10225536231189782, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37437069

RESUMEN

BACKGROUND: Dexamethasone is a corticosteroid with powerful anti-inflammatory effects. This study aimed to explore whether combining intravenous and topical dexamethasone could improve postoperative pain, swelling, and function recovery after total knee arthroplasty (TKA). METHODS: In this prospective, double-blind, randomized controlled study, 90 patients undergoing primary unilateral TKA were randomized into a dexamethasone group, which received dexamethasone (10 mg) by periarticular infiltration during surgery, as well as intravenous dexamethasone (10 mg) before tourniquet release and at 12 h postoperatively; or a control group, which received equal volumes of isotonic saline instead of dexamethasone. The primary outcome was postoperative pain, as assessed on the visual analogue scale (VAS). Secondary outcomes were postoperative consumption of morphine hydrochloride for rescue analgesia, postoperative swelling ratio of the thigh, knee, and tibia; functional recovery in terms of total range of motion (ROM) of knee and daily ambulation distance; postoperative inflammation biomarkers levels of C-reactive protein and interleukin-6; and postoperative complications. RESULTS: Resting VAS scores at postoperative 6, 12, and 24 h, and VAS scores during motion at postoperative 2, 6, 12, and 24 h were significantly lower in the dexamethasone group. The dexamethasone group also showed significantly less morphine consumption during the first 24 h after surgery and cumulatively during hospitalization, milder limb swelling at 24 and 48 h postoperatively, greater flexion and total ROM on postoperative day 1, and longer ambulation distance on postoperative days 1 and 2, and lower levels of inflammatory biomarkers on postoperative days 1 and 2. The dexamethasone group had significantly lower incidence of postoperative nausea and vomiting. CONCLUSION: Compared with placebo, the combination of intravenous and topical dexamethasone can reduce pain, swelling, and inflammation after TKA, it also can improve functional recovery and reduce the incidence of postoperative nausea and vomiting.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Humanos , Artroplastia de Reemplazo de Rodilla/efectos adversos , Recuperación de la Función , Náusea y Vómito Posoperatorios , Estudios Prospectivos , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Dexametasona , Derivados de la Morfina
5.
Biometrika ; 110(2): 485-498, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37197741

RESUMEN

Many partial identification problems can be characterized by the optimal value of a function over a set where both the function and set need to be estimated by empirical data. Despite some progress for convex problems, statistical inference in this general setting remains to be developed. To address this, we derive an asymptotically valid confidence interval for the optimal value through an appropriate relaxation of the estimated set. We then apply this general result to the problem of selection bias in population-based cohort studies. We show that existing sensitivity analyses, which are often conservative and difficult to implement, can be formulated in our framework and made significantly more informative via auxiliary information on the population. We conduct a simulation study to evaluate the finite sample performance of our inference procedure, and conclude with a substantive motivating example on the causal effect of education on income in the highly selected UK Biobank cohort. We demonstrate that our method can produce informative bounds using plausible population-level auxiliary constraints. We implement this method in the [Formula: see text] package [Formula: see text].

6.
Genetica ; 151(3): 201-213, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37069365

RESUMEN

Adaptation to various altitudes and oxygen levels is a major aspect of vertebrate evolution. Hemoglobin is an erythrocyte protein belonging to the globin superfamily, and the α-, ß-globin genes of jawed vertebrates encode tetrameric ((α2ß2) hemoglobin, which contributes to aerobic metabolism by delivering oxygen from the respiratory exchange surfaces into cells. However, there are various gaps in knowledge regarding hemoglobin gene evolution, including patterns in cartilaginous fish and the roles of gene conversion in various taxa. Hence, we evaluated the evolutionary history of the vertebrate hemoglobin gene family by analyses of 97 species representing all classes of vertebrates. By genome-wide analyses, we extracted 879 hemoglobin sequences. Members of the hemoglobin gene family were conserved in birds and reptiles but variable in mammals, amphibians, and teleosts. Gene motifs, structures, and synteny were relatively well-conserved among vertebrates. Our results revealed that purifying selection contributed substantially to the evolution of all vertebrate hemoglobin genes, with mean dN/dS (ω) values ranging from 0.057 in teleosts to 0.359 in reptiles. In general, after the fish-specific genome duplication, the teleost hemoglobin genes showed variation in rates of evolution, and the ß-globin genes showed relatively high ω values after a gene transposition event in amniotes. We also observed that the frequency of gene conversion was high in amniotes, with fewer hemoglobin genes and higher rates of evolution. Collectively, our findings provide detail insight into complex evolutionary processes shaping the vertebrate hemoglobin gene family, involving gene duplication, gene loss, purifying selection, and gene conversion.


Asunto(s)
Estudio de Asociación del Genoma Completo , Vertebrados , Animales , Vertebrados/genética , Peces/genética , Duplicación de Gen , Reptiles/genética , Hemoglobinas/genética , Evolución Molecular , Globinas beta/genética , Filogenia , Familia de Multigenes , Mamíferos/genética
7.
Opt Express ; 31(2): 2967-2976, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785298

RESUMEN

The characterization and manipulation of polarization state at single photon level are of great importance in research fields such as quantum information processing and quantum key distribution, where photons are normally delivered using single mode optical fibers. To date, the demonstrated polarimetry measurement techniques based on a superconducting nanowire single photon detector (SNSPD) require the SNSPD to be either highly sensitive or highly insensitive to the photon's polarization state, therefore placing an unavoidable challenge on the SNSPD's design and fabrication processes. In this article, we present the development of an alternative polarimetry measurement technique, of which the stringent requirement on the SNSPD's polarization sensitivity is removed. We validate the proposed technique by a rigorous theoretical analysis and comparisons of the experimental results obtained using a fiber-coupled SNSPD with a polarization extinction ratio of ∼2 to that obtained using other well-established known methods. Based on the full Stokes data measured by the proposed technique, we also demonstrate that at the single photon level (∼ -100 dBm), the polarization state of the photon delivered to the superconducting nanowire facet plane can be controlled at will using a further developed algorithm. Note that other than the fiber-coupled SNSPD, the only component involved is a quarter-wave plate (no external polarizer is necessary), which when aligned well has a paid insertion loss less than 0.5 dB.

8.
Life Sci Alliance ; 6(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36759174

RESUMEN

The role of dietary tannin in inflammatory bowel disease (IBD) is still not clear. Therefore, we aim to study the effect of TA in the progression of IBD. Dextran sulphate sodium (DSS)-induced model was used to mimic IBD. Metagenomics and metabolomics were performed to study the alteration of intestinal microbiota and metabolites. NCM460 and THP-1 cells were used for in vitro study. The amount of TA was associated with the outcomes of DSS-induced IBD as evidenced by in vivo and in vitro studies. Metabolomic and metagenomic analyses revealed that TA-induced enrichment of microbial metabolite gallic acid (GA) was responsible for the action of TA. Mechanistically, protective dose of GA promoted colonic mucus secretion to suppress bacterial infection and that it ameliorated DSS-induced epithelial damage by inhibiting p53 signaling, whereas toxic dose of GA directly caused epithelial damage by promoting cell cycle arrest. Therapeutic experiment showed protective dose of GA-promoted recovery of DSS-induced colonic inflammation. The role of tannase-containing bacteria can be transformed under different conditions in IBD progression.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Probióticos , Humanos , Colitis/inducido químicamente , Taninos/efectos adversos , Taninos/metabolismo , Enfermedades Inflamatorias del Intestino/inducido químicamente , Probióticos/farmacología , Bacterias/metabolismo
9.
Nano Lett ; 22(23): 9685-9692, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36441867

RESUMEN

The practical application of Na-superionic conductor structured materials is hindered by limited energy density and structure damage upon activating the third Na+. We propose a bimetal substitution strategy with cheaper Fe and Ni elements for costive vanadium in the polyanion to improve both ionic and electronic conductivities, and a single two-phase reaction during Na+ intercalation/deintercalation and much reduced Na+ diffusion barrier are uncovered by ex-situ X-ray diffraction and density functional theory calculations. Thus, the obtained cathode, Na3Fe0.8VNi0.2(PO4)3, shows excellent electrochemical performances including high specific capacity (102.2 mAh g-1 at 0.1C), excellent rate capability (79.3 mAh g-1 at 20C), cycling stability (84.6% of capacity retention over 1400 cycles at 20C), low-temperature performance (89.7 mAh g-1 at 2C and -10 °C), and structure stability in an extended voltage window for the third Na+ utilization. A competitive energy density of ≈287 Wh kg-1 for full batteries based on cathode and anode materials is also confirmed.

10.
Opt Express ; 30(20): 36456-36463, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258573

RESUMEN

Superconducting nanowire single photon detectors (SNSPDs) have been extensively investigated due to their superior characteristics, including high system detection efficiency, low dark count rate and short recovery time. The polarization sensitivity introduced by the meandering-type superconductor nanowires is an intrinsic property of SNSPD, which is normally measured by sweeping hundreds of points on the Poincaré sphere to overcome the unknown birefringent problem of the SNSPD's delivery fiber. In this paper, we propose an alternative method to characterize the optical absorptance of SNSPDs, without sweeping hundreds of points on the Poincaré sphere. It is shown theoretically that measurements on the system detection efficiencies (SDEs) subject to cases of four specific photon polarization states are sufficient to reveal the two eigen-absorptances of the SNSPD. We validate the proposed method by comparing the measured detection spectra with the spectra attained from sweeping points on the Poincaré sphere and the simulated absorption spectra.

11.
J R Stat Soc Series B Stat Methodol ; 84(2): 382-413, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36147733

RESUMEN

Effect modification occurs when the effect of the treatment on an outcome varies according to the level of other covariates and often has important implications in decision-making. When there are tens or hundreds of covariates, it becomes necessary to use the observed data to select a simpler model for effect modification and then make valid statistical inference. We propose a two-stage procedure to solve this problem. First, we use Robinson's transformation to decouple the nuisance parameters from the treatment effect of interest and use machine learning algorithms to estimate the nuisance parameters. Next, after plugging in the estimates of the nuisance parameters, we use the lasso to choose a low-complexity model for effect modification. Compared to a full model consisting of all the covariates, the selected model is much more interpretable. Compared to the univariate subgroup analyses, the selected model greatly reduces the number of false discoveries. We show that the conditional selective inference for the selected model is asymptotically valid given the rate assumptions in classical semiparametric regression. Extensive simulation studies are conducted to verify the asymptotic results and an epidemiological application is used to demonstrate the method.

12.
Nat Commun ; 13(1): 5429, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114177

RESUMEN

Controlling thermal transport is important for a range of devices and technologies, from phase change memories to next-generation electronics. This is especially true in nano-scale devices where thermal transport is altered by the influence of surfaces and changes in dimensionality. In superconducting nanowire single-photon detectors, the thermal boundary conductance between the nanowire and the substrate it is fabricated on influences all of the performance metrics that make these detectors attractive for applications. This includes the maximum count rate, latency, jitter, and quantum efficiency. Despite its importance, the study of thermal boundary conductance in superconducting nanowire devices has not been done systematically, primarily due to the lack of a straightforward characterization method. Here, we show that simple electrical measurements can be used to estimate the thermal boundary conductance between nanowires and substrates and that these measurements agree with acoustic mismatch theory across a variety of substrates. Numerical simulations allow us to refine our understanding, however, open questions remain. This work should enable thermal engineering in superconducting nanowire electronics and cryogenic detectors for improved device performance.

13.
J Antibiot (Tokyo) ; 75(11): 626-634, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36131028

RESUMEN

Butorphanol, a synthetic opioid, exerts analgesic and anti-inflammatory effects against pathogenic diseases. Butorphanol repressed malignant behaviors of tumor cells. In this study, the role of butorphanol in hepatocellular carcinoma was evaluated. Firstly, hepatocellular carcinoma cells were treated with butorphanol. The results showed that butorphanol decreased cell viability of hepatocellular carcinoma cells. Cell proliferation and metastasis of hepatocellular carcinoma cells were inhibited by butorphanol. Secondly, butorphanol suppressed angiogenesis, and reduced phosphorylation levels of p38 and JNK in hepatocellular carcinoma cells. Thirdly, butorphanol reduced in vivo tumor growth of hepatocellular carcinoma in nude mice. Butorphanol reduced tumor micro-vascular density (MVD) and repressed lung metastasis. In conclusion, butorphanol exerted anti-angiogenic and anti-metastatic effects on hepatocellular carcinoma and induced inactivation of MAPKs signaling.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Animales , Antiinflamatorios/farmacología , Butorfanol/farmacología , Butorfanol/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos , Neovascularización Patológica/tratamiento farmacológico
14.
Mol Ecol ; 31(22): 5831-5845, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36125323

RESUMEN

All cavefishes, living exclusively in caves across the globe, exhibit similar phenotypic traits, including the characteristic loss of eyes. To understand whether such phenotypic convergence shares similar genomic bases, here we investigated genome-wide evolutionary signatures of cavefish phenotypes by comparing whole-genome sequences of three pairs of cavefishes and their surface fish relatives. Notably, we newly sequenced and generated a whole-genome assembly of the Chinese cavefish Triplophysa rosa. Our comparative analyses revealed several shared features of cavefish genome evolution. Cavefishes had lower mutation rates than their surface fish relatives. In contrast, the ratio of nonsynonymous to synonymous substitutions (ω) was significantly elevated in cavefishes compared to in surface fishes, consistent with the relaxation of purifying selection. In addition, cavefish genomes had an increased mutational load, including mutations that alter protein hydrophobicity profiles, which were considered harmful. Interestingly, however, we found no overlap in positively selected genes among different cavefish lineages, indicating that the phenotypic convergence in cavefishes was not caused by positive selection of the same sets of genes. Analyses of previously identified candidate genes associated with cave phenotypes supported this conclusion. Genes belonging to the lipid metabolism functional ontology were under relaxed purifying selection in all cavefish genomes, which may be associated with the nutrient-poor habitat of cavefishes. Our work reveals previously uncharacterized patterns of cavefish genome evolution and provides comparative insights into the evolution of cave-associated phenotypic traits.


Asunto(s)
Cipriniformes , Rosa , Animales , Evolución Biológica , Cipriniformes/genética , Selección Genética , Cuevas , China
15.
ChemSusChem ; 15(21): e202200999, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896517

RESUMEN

Electrochemical energy storage has experienced unprecedented advancements in recent years and extensive discussions and reviews on the progress of multivalent metal-ion batteries have been made mainly from the aspect of electrode materials, but relatively little work comprehensively discusses and provides an outlook on the development of electrolytes in these systems. Under this circumstance, this Review will initially introduce different types of electrolytes in current multivalent metal-ion batteries and explain the basic ion conduction mechanisms, preparation methods, and pros and cons. On this basis, we will discuss in detail the research and development of electrolytes for multivalent metal-ion batteries in recent years, and finally, critical challenges and prospects for the application of electrolytes in multivalent metal-ion batteries will be put forward.


Asunto(s)
Suministros de Energía Eléctrica , Electrólitos , Metales , Electrodos
16.
Opt Lett ; 47(14): 3523-3526, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838719

RESUMEN

A superconducting nanowire single-photon imager (SNSPI) uses a time-multiplexing method to reduce the readout complexity. However, due to the serial connection, the nanowire should be uniform so that a common bias can set all segments of the nanowire to their maximum detection efficiency, which becomes more challenging as the scalability (i.e., the length of the nanowire) increases. Here, we have developed a 64-pixel SNSPI based on amorphous Mo80Si20 film, which yielded a uniform nanowire and slow transmission line. Adjacent detectors were separated by delay lines, giving an imaging field of 270 µm × 240 µm. Benefiting from the high kinetic inductance of Mo80Si20 films, the delay line gave a phase velocity as low as 4.6 µm/ps. The positions of all pixels can be read out with a negligible electrical cross talk of 0.02% by using cryogenic amplifiers. The timing jitter was 100.8 ps. Saturated internal quantum efficiency was observed at a wavelength of 1550 nm. These results demonstrate that amorphous film is a promising material for achieving SNSPIs with large scalability and high efficiency.

17.
Bioengineered ; 13(3): 7209-7220, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245993

RESUMEN

A high concentration of homocysteine (Hcy) has been recently reported to be closely associated with the development of stroke, which is related to the Hcy-induced blood-brain barrier (BBB) dysfunction. Butorphanol tartrate is a promising analgesic agent that targets the opiate receptor and shows promising protective effects on ischemia/reperfusion injury. The present research proposes to investigate the protective effect of butorphanol tartrate on Hcy-induced BBB disruption to explore the potential application of butorphanol tartrate in treating Hcy-induced stroke. Hcy was utilized to establish both an in vivo animal model and in vitro human brain vascular endothelial cells (HBVECs) injury model. We found that the increased diffusion of sodium fluorescein and Evan's blue, declined expression of Claudin-5, and increased production of interleukin- 6 (IL-6) and tumor necrosis factor-α (TNF-α) were observed in Hcy-treated mice, which were all significantly reversed by butorphanol tartrate. In Hcy-stimulated HBVECs, increased endothelial permeability and reduced expression levels of Claudin-5 and Krüppel-like factor 5 (KLF5) were observed, all of which were dramatically rescued by 2 and 5 µM butorphanol tartrate. Lastly, the protective function of butorphanol tartrate in Hcy-stimulated HBVECs was dramatically abolished by the knockdown of KLF5. Collectively, butorphanol tartrate showed protective effects on Hcy-induced BBB disruption by upregulating the KLF5/Claudin-5 axis.


Asunto(s)
Barrera Hematoencefálica , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/patología , Butorfanol/metabolismo , Butorfanol/farmacología , Claudina-5/metabolismo , Claudina-5/farmacología , Células Endoteliales/metabolismo , Homocisteína/metabolismo , Homocisteína/farmacología , Interleucina-6/metabolismo , Ratones , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
18.
Nano Lett ; 22(4): 1587-1594, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35129992

RESUMEN

A spectrum-resolved photon detector is crucial for cutting-edge quantum optics, astronomical observation, and spectroscopic sensing. However, such an ability is rarely obtained because a direct linear conversion from weak single-photon energy to a readable electrical signal above the noise level without causing an avalanche is challenging. Here, we overcame these difficulties by building a probabilistic energy-to-amplitude mapping in a tapered superconducting nanowire single-photon detector and combining a computational reconstruction to obtain equivalent spectral resolving capacity. Distinguished dependence of pulse amplitude distributions on varied input spectra has been observed experimentally. As the energy-to-amplitude mapping is probabilistic, statistical measurements are required. By collecting around a few hundred photons, we have demonstrated wavelength perception over a wide spectral range from 600 to 1700 nm with a resolution of 100 nm. These findings represent a new approach to designing spectrum-sensitive SNSPDs for low-light spectroscopic applications.

19.
Stat Med ; 41(6): 1100-1119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35060160

RESUMEN

Two-sample summary data Mendelian randomization is a popular method for assessing causality in epidemiology, by using genetic variants as instrumental variables. If genes exert pleiotropic effects on the outcome not entirely through the exposure of interest, this can lead to heterogeneous and (potentially) biased estimates of causal effect. We investigate the use of Bayesian model averaging to preferentially search the space of models with the highest posterior likelihood. We develop a Metropolis-Hasting algorithm to perform the search using the recently developed MR-RAPS as the basis for defining a posterior distribution that efficiently accounts for pleiotropic and weak instrument bias. We demonstrate how our general modeling approach can be extended from a standard one-component causal model to a two-component model, which allows a large proportion of SNPs to violate the InSIDE assumption. We use Monte Carlo simulations to illustrate our methods and compare it to several related approaches. We finish by applying our approach to investigate the causal role of cholesterol on the development age-related macular degeneration.


Asunto(s)
Variación Genética , Análisis de la Aleatorización Mendeliana , Teorema de Bayes , Causalidad , Pleiotropía Genética , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Polimorfismo de Nucleótido Simple
20.
Artículo en Inglés | MEDLINE | ID: mdl-37325194

RESUMEN

Mendelian randomization (MR) is a term that applies to the use of genetic variation to address causal questions about how modifiable exposures influence different outcomes. The principles of MR are based on Mendel's laws of inheritance and instrumental variable estimation methods, which enable the inference of causal effects in the presence of unobserved confounding. In this Primer, we outline the principles of MR, the instrumental variable conditions underlying MR estimation and some of the methods used for estimation. We go on to discuss how the assumptions underlying an MR study can be assessed and give methods of estimation that are robust to certain violations of these assumptions. We give examples of a range of studies in which MR has been applied, the limitations of current methods of analysis and the outlook for MR in the future. The difference between the assumptions required for MR analysis and other forms of non-interventional epidemiological studies means that MR can be used as part of a triangulation across multiple sources of evidence for causal inference.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA