Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 21(4): 2012-2024, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497779

RESUMEN

The nonviral delivery systems that combine genes with photosensitizers for multimodal tumor gene/photodynamic therapy (PDT) have attracted much attention. In this study, a series of ROS-sensitive cationic bola-lipids were applied for the gene/photosensitizer codelivery. Zn-DPA was introduced as a cationic headgroup to enhance DNA binding, while the hydrophobic linking chains may facilitate the formation of lipid nanoparticles (LNP) and the encapsulation of photosensitizer Ce6. The length of the hydrophobic chain played an important role in the gene transfection process, and 14-TDZn containing the longest chains showed better DNA condensation, gene transfection, and cellular uptake. 14-TDZn LNPs could well load photosensitizer Ce6 to form 14-TDC without a loss of gene delivery efficiency. 14-TDC was used for codelivery of p53 and Ce6 to achieve enhanced therapeutic effects on the tumor cell proliferation inhibition and apoptosis. Results showed that the codelivery system was more effective in the inhibition of tumor cell proliferation than individual p53 or Ce6 monotherapy. Mechanism studies showed that the production of ROS after Ce6 irradiation could increase the accumulation of p53 protein in tumor cells, thereby promoting caspase-3 activation and inducing apoptosis, indicating some synergistic effect. These results demonstrated that 14-TDC may serve as a promising nanocarrier for gene/PDT combination therapy.


Asunto(s)
Liposomas , Nanopartículas , Fotoquimioterapia , Porfirinas , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Nanopartículas/química , ADN , Porfirinas/química
2.
Mol Pharm ; 20(6): 3210-3222, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37150945

RESUMEN

Intracellular delivery of therapeutic biomacromolecules, including nucleic acids and proteins, attracts extensive attention in biotherapeutics for various diseases. Herein, a strategy is proposed for the construction of poly(disulfide)s for the efficient delivery of both nucleic acids and proteins into cells. A convenient photo-cross-linking polymerization was adopted between disulfide bonds in two modified lipoic acid monomers (Zn coordinated with dipicolylamine analogue (ZnDPA) and guanidine (GUA)). The disulfide-containing main chain of the resulting poly(disulfide)s was responsive to reducing circumstance, facilitating the release of cargos. By screening the feeding ratio of ZnDPA and GUA, the resulting poly(disulfide)s exhibited better performance in the delivery of nucleic acids including plasmid DNA and siRNA than commercially available transfection reagents. Cellular uptake results revealed that the polymer/cargo complexes entered the cells mainly following a thiol-mediated uptake pathway. Meanwhile, the polymer could also efficiently deliver proteins into cells without an obvious loss of protein activity, showing the versatility of the poly(disulfide)s for the delivery of various biomacromolecules. Moreover, the in vivo therapeutic effect of the materials was verified in the E.G7-OVA tumor-bearing mice. Ovalbumin-based nanovaccine induced a strong cellular immune response, especially cytotoxic T lymphocyte cellular immune response, and inhibited tumor growth. These results revealed the promise of the poly(disulfide)s in the application of both gene therapy and immunotherapy.


Asunto(s)
Neoplasias , Ácido Tióctico , Ratones , Animales , Disulfuros/química , Polímeros/química , ADN , Inmunoterapia , Neoplasias/terapia
3.
Acta Biomater ; 147: 287-298, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35489607

RESUMEN

The reduction of reactive oxygen species (ROS) and inflammatory factor levels plays an important role in the treatment of colitis. A series of ROS-responsive lipids (ZnDPA-R) based on the thioketal structure were designed and synthesized. It was expected that the lipidic materials could combine ROS consumption and siRNA delivery capacity to achieve synergistic treatment of colitis. The target liposomes could combine with the phosphate backbone of siRNA to form lipoplexes of size ∼100 nm and could deliver siRNA cargo into the cell. The results of in vitro anti-inflammatory experiments showed that the lipids may effectively consume ROS in the cells. The lipoplexes significantly reduced the expression levels of TNF-α mRNA and related inflammatory factors in macrophages. After PEGylation, the lipoplex was used for treating mouse colitis, and the biodistribution results proved that the lipoplexes effectively aggregated in the intestine. The delivery system could not only respond to the high ROS level in colitis through breaking of thioketal structure, but it could also assist in treating inflammation by ROS consumption. The treatment results revealed that the levels of TNF-α mRNA and related inflammatory factors in the colon lesion were largely reduced, and the inflammatory symptoms were significantly relieved. Hematology test results indicated that the treatment was safe and induced no side effects in mice. The present study may shed light on the synergistic treatment of colitis through anti-inflammatory siRNA delivery and ROS depletion strategies. STATEMENT OF SIGNIFICANCE: Downregulation of inflammatory factors and reactive oxygen species (ROS) levels is critical in treating colitis. In the present study, a series of ROS-responsive lipid molecules based on the Zn-DPA headgroup and thioketal linkage were synthesized for delivering TNF-α siRNA and for treating colitis. In addition to silencing the expression of TNF-α mRNA and the related inflammatory factors, the material also achieved synergistic treatment by simultaneous consumption of ROS in the colon lesion. In vitro cell experiments and in vivo colitis treatment in mice showed that the lipoplex exerted a satisfactory therapeutic effect on colitis, and the symptoms of colitis in mice were significantly alleviated. The present study may shed light on the synergistic treatment for colitis through anti-inflammatory siRNA delivery and ROS depletion strategies.


Asunto(s)
Colitis , Factor de Necrosis Tumoral alfa , Aminas , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colitis/tratamiento farmacológico , Colitis/metabolismo , Lípidos/química , Liposomas , Ratones , Ácidos Picolínicos , ARN Mensajero/metabolismo , ARN Interferente Pequeño/química , Especies Reactivas de Oxígeno/metabolismo , Distribución Tisular , Factor de Necrosis Tumoral alfa/metabolismo , Zinc/uso terapéutico
4.
J Mater Chem B ; 6(18): 2860-2868, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32254239

RESUMEN

In the past few decades, although various reduction-responsive nanocarriers have been designed and explored for gene delivery, it is difficult to directly detect or monitor the reduction capability of these carriers, especially under intracellular conditions. Taking advantage of the generated fluorescence signal in the reduction process of the naphthalimide-sulfonamide (NS) group, we developed a novel liposomal nanocarrier, FNSL, which showed reduction-sensitive property and self-reporting character. As a new reduction-responsive site in a gene delivery system, the NS group in FNSL is capable of responding to glutathione (GSH) and simultaneously emitting green fluorescence at 500 nm in both extra- and intracellular circumstances. Hence, it will be very convenient to assess the reducibility of this carrier and monitor the stimuli-responsive gene release via fluorescence signal. FNSL has high affinity for DNA and can condense it into nanoparticles with a proper nano-size and zeta potential. Compared with the non-reducible FNAL, FNSL showed enhanced gene release capability, higher transfection efficiency (TE), and lower cytotoxicity. Furthermore, treatment of FNSL-mediated transfection with slightly exogenous GSH greatly improved the TE of FNSL in HepG2 cells, and its TE was even higher than that of Lipofectamine 2000. These results demonstrate that FNSL possesses great potential for efficient and low-toxicity gene delivery, and this study on a bioreducible liposome with self-reporting ability would be a guide for further research on the development of biodegradable gene carriers.

5.
Eur J Med Chem ; 136: 585-595, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28550810

RESUMEN

Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application.


Asunto(s)
Técnicas de Transferencia de Gen , Lípidos/química , Cationes/síntesis química , Cationes/química , Cationes/farmacología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Vectores Genéticos/química , Células HeLa , Humanos , Lípidos/síntesis química , Lípidos/farmacología , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...