Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38421617

RESUMEN

Polyploidy, a significant catalyst for speciation and evolutionary processes in both plant and animal kingdoms, has been recognized for a long time. However, the exact molecular mechanism that leads to polyploid formation, especially in vertebrates, is not fully understood. Our study aimed to elucidate this phenomenon using the zebrafish model. We successfully achieved an effective knockout of the cyclin N-terminal domain containing 1 (cntd1) using CRISPR/Cas9 technology. This resulted in impaired formation of meiotic crossovers, leading to cell-cycle arrest during meiotic metaphase and triggering apoptosis of spermatocytes in the testes. Despite these defects, the mutant (cntd1-/-) males were still able to produce a limited amount of sperm with normal ploidy and function. Interestingly, in the mutant females, it was the ploidy not the capacity of egg production that was altered. This resulted in the production of haploid, aneuploid, and unreduced gametes. This alteration enabled us to successfully obtain triploid and tetraploid zebrafish from cntd1-/- and cntd1-/-/- females, respectively. Furthermore, the tetraploid-heterozygous zebrafish produced reduced-diploid gametes and yielded all-triploid or all-tetraploid offspring when crossed with wild-type (WT) or tetraploid zebrafish, respectively. Collectively, our findings provide direct evidence supporting the crucial role of meiotic crossover defects in the process of polyploidization. This is particularly evident in the generation of unreduced eggs in fish and, potentially, other vertebrate species.


Asunto(s)
Triploidía , Pez Cebra , Masculino , Animales , Femenino , Tetraploidía , Semillas , Poliploidía , Ploidias
2.
Front Genet ; 14: 998775, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923790

RESUMEN

Introduction: The correct pairing and separation of homologous chromosomes during meiosis is crucial to ensure both genetic stability and genetic diversity within species. In allodiploid organisms, synapsis often fails, leading to sterility. However, a gynogenetic allodiploid hybrid clone line (GDH), derived by crossing red crucian carp (Carassius auratus ♀) and common carp (Cyprinus carpio ♂), stably produces diploid eggs. Because the GDH line carries 100 chromosomes with 50 chromosomes from the red crucian carp (RCC; ♀, 2n = 2x = 100) and 50 chromosomes from the common carp (CC; C. carpio L., ♂, 2n = 2x = 100), it is interesting to study the mechanisms of homologous chromosome pairing during meiosis in GDH individuals. Methods: By using fluorescence in situ hybridization (FISH) with a probe specific to the red crucian carp to label homologous chromosomes, we identified the synaptonemal complex via immunofluorescence assay of synaptonemal complex protein 3 (SCP3). Results: FISH results indicated that, during early ovarian development, the GDH oogonium had two sets of chromosomes with only one set from Carassius auratus, leading to the failure formation of normal bivalents and the subsequently blocking of meiosis. This inhibition lasted at least 5 months. After this long period of inhibition, pairs of germ cells fused, doubling the chromosomes such that the oocyte contained two sets of chromosomes from each parent. After chromosome doubling at 10 months old, homologous chromosomes and the synaptonemal complex were identified. Discussion: Causally, meiosis proceeded normally and eventually formed diploid germ cells. These results further clarify the mechanisms by which meiosis proceeds in hybrids.

3.
BMC Biol ; 20(1): 200, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100845

RESUMEN

BACKGROUND: Interspecific postzygotic reproduction isolation results from large genetic divergence between the subgenomes of established hybrids. Polyploidization immediately after hybridization may reset patterns of homologous chromosome pairing and ameliorate deleterious genomic incompatibility between the subgenomes of distinct parental species in plants and animals. However, the observation that polyploidy is less common in vertebrates raises the question of which factors restrict its emergence. Here, we perform analyses of the genome, epigenome, and gene expression in the nascent allotetraploid lineage (2.95 Gb) derived from the intergeneric hybridization of female goldfish (Carassius auratus, 1.49 Gb) and male common carp (Cyprinus carpio, 1.42 Gb), to shed light on the changes leading to the stabilization of hybrids. RESULTS: We firstly identify the two subgenomes derived from the parental lineages of goldfish and common carp. We find variable unequal homoeologous recombination in somatic and germ cells of the intergeneric F1 and allotetraploid (F22 and F24) populations, reflecting high plasticity between the subgenomes, and rapidly varying copy numbers between the homoeolog genes. We also find dynamic changes in transposable elements accompanied by genome merger and duplication in the allotetraploid lineage. Finally, we observe the gradual decreases in cis-regulatory effects and increases in trans-regulatory effects along with the allotetraploidization, which contribute to increases in the symmetrical homoeologous expression in different tissues and developmental stages, especially in early embryogenesis. CONCLUSIONS: Our results reveal a series of changes in transposable elements, unequal homoeologous recombination, cis- and trans-regulations (e.g. DNA methylation), and homoeologous expression, suggesting their potential roles in mediating adaptive stabilization of regulatory systems of the nascent allotetraploid lineage. The symmetrical subgenomes and homoeologous expression provide a novel way of balancing genetic incompatibilities, providing a new insight into the early stages of allopolyploidization in vertebrate evolution.


Asunto(s)
Carpas , Cyprinidae , Animales , Cyprinidae/genética , Elementos Transponibles de ADN , Hibridación Genética , Poliploidía
4.
Front Genet ; 13: 880591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35518352

RESUMEN

Hybridization is a traditional and effective strategy to alter the genotypes and phenotypes of the offspring, and distant hybridization is a useful strategy to generate polyploids in fish. In this study, goldfish (Carassius auratus, GF, 2n = 100) and Bleeker's yellow tail (Xenocypris davidi Bleeker, YT, 2n = 48), which belong to different subfamilies, were crossed with each other. The cross of female GF × male YT successfully obtained hybrid offspring (GFYT hybrids), while the cross of female YT × male GF was lethal, and all the fertilized eggs stopped developing before the neurula stage of embryogenesis. All GFYT hybrids possessed 124 chromosomes (3n = 124) with two sets from GF and one set from YT. The measurable and countable traits of GFYT hybrids were identified, and the genetic characteristics of 5S rDNA between GFYT hybrids and their parents were also revealed. There were, respectively, four and three different 5S rDNA types in GF (assigned as GF-Ⅰ∼Ⅳ) and YT (assigned as YT-Ⅰ∼Ⅲ), and GFYT hybrids specifically inherited YT-Ⅰ and YT-Ⅱ 5S rDNA types from YT and GF-Ⅲ and GF-Ⅳ from GF. In addition, there were only testis-like and fat-like gonads been found in GFYT hybrids. Interestingly, there were pyknotic and heteromorphous chromatin and invaginated cell membrane observed in the spermatids of testis-like gonads, but no mature sperm were found. Furthermore, TUNEL assays indicated that, compared with control, apparent apoptotic signals, which were mainly distributed around spermatid regions, were detected in the testis-like gonads, and the expression of apoptosis pathway-related genes including p53, bcl-2, bax, and caspase9 was significantly upregulated. Moreover, the expression of meiosis-related genes including spo11, dmc1, and rad51 showed an abnormally high expression, but mns1 and meig1, two key genes involved in the maturation of spermatid, were extremely downregulated. In brief, this is the first report of allotriploid via distant hybridization between GF and YT that possessing different chromosome numbers in vertebrates. The obtainment of GFYT hybrids not only harbors potential benefits and application in aquaculture but also further extends the understanding of the influence of hybridization and polyploidization on the genomic constitution of the hybrid offspring. Furthermore, they can be used as a model to test the origin and consequences of polyploidization and served as a proper resource to study the underlying mechanisms of spermatogenesis dysfunctions.

5.
Front Genet ; 12: 783014, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868272

RESUMEN

The spermatozoa of triploid gynogenetic crucian carp (Carassius auratus) (3nDTCC) possess a spermatogenesis process with a normal genetic background. However, the genetic materials of these spermatozoa do not completely inherit gynogenetic progeny in general. Understanding the intrinsic mechanism may be helpful for developing breeding strategies of gynogenetic fishes. In this study, the spermatozoa ultrastructure was systematically studied in diploid red crucian carp and 3nDTCC to demonstrate their cytological structural differences. In addition, the artificial breeding tests of 3nDTCC(♀) with different ploidy spermatozoa were performed to verify the contributions of genetic materials from 3nDTCC spermatozoa to the gynogenesis progeny. Furthermore, the mRNA expression of centriole-related genes (i.e., cep57, cetn1, rootletin, and nek2) involved in spermatozoa packaging was also determined by quantitative real-time PCR (qPCR) to illustrate the molecular expression characteristics of the spermatozoa packaging process in 3nDTCC. The results reveal the adaptive features of spermatozoa in 3nDTCC, including the loose midpiece structure, abnormal head structure, and abnormal expression of centriole-related genes, which may influence the motility of spermatozoa and make it not involved normally in the genetic composition of the gynogenesis offspring.

6.
Front Genet ; 12: 717871, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567072

RESUMEN

Polyploidy occurs naturally in fish; however, the appearance of these species is an occasional and gradual process, which makes it difficult to trace the changes in phenotypes, genotypes, and regulation of gene expression. The allotetraploid hybrids (4nAT) of red crucian carp (RCC; ♀) × common carp (CC; ♂) generated from interspecies crossing are a good model to investigate the initial changes after allopolyploidization. In the present study, we focused on the changes in the active sites of the testicular transcriptome of the allotetraploid by localization of RNA Pol II CTD YSPTSPS (phospho S5) using immunofluorescence and RNA-seq data via bioinformatic analysis. The results showed that there was no significant difference in signal counts of the RNA Pol II CTD (S5) between the different types of fish at the same stages, including RCC, CC, 2nF1, and 4nAT, which means that the number of transcriptionally active sites on germ cell chromosomes was not affected by the increase in chromosome number. Similarly, RNA-seq analysis indicated that in the levels of chromosomes and 10-kb regions in the genome, there were no significant changes in the highly active sites in RCC, 2nF1, and 4nAT. These findings suggest that at the beginning of tetraploid origin, the active transcriptome site of 4nAT in the testis was conserved in the regions of the genome compared to that in RCC and 2nF1. In conclusion, 4nAT shared a similar gene expression model in the regions of the genome with RCC and 2nF1 with significantly different expression levels.

7.
Gen Comp Endocrinol ; 312: 113856, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34302847

RESUMEN

Inhibin and Activin, belong to the transforming growth factor ß superfamily (TGF-ß), which associate with the regulation of the reproductive process by the modulation of the hypothalamic-pituitary-gonad (HPG) axis. In this study, we reported the molecular cloning and tissue expression of inhibin α in allotriploid crucian carp and its parent- diploid red crucian carp. The full-length cDNA of inhibin α were respectively 1632 bp and 1642 bp in allotriploids and diploids, which both consisted of a 1044 bp open reading frame (ORF) encoding 347 amino acids. Real-time quantitative PCR (RT-qPCR) showed that allotriploids and diploids had significant expression of inhibin α in testis and ovary, and the expression of inhibin α in the gonads of allotriploids was higher than that of diploids. The immunohistochemistry indicated that the ovarian development of allotriploids was abnormal, and the expression of Inhibin α in the ovary of allotriploids was higher than that of diploids. Results of co-immunoprecitation (co-IP) demonstrated that the Inhibin α and Activin ßA, Inhibin α and Activin ßB can form dimers. These findings suggested that the elevated expression of inhibin α and the competitive binding of Inhibin α subunit with Activin ß subunits in allotriploids may be releted to the sterility of allotriploids. Furthermore, these results will facilitate the investigation of reproduction characteristics in allotriploids and provide theoretical basis for the study of polyploid breeding in the future.


Asunto(s)
Carpas , Infertilidad , Animales , Carpas/genética , Carpas/metabolismo , Femenino , Subunidades beta de Inhibinas/análisis , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , Inhibinas/química , Masculino
8.
Sci China Life Sci ; 64(11): 1917-1928, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33893980

RESUMEN

Meiosis is the key process for producing mature gametes. A natural fertile triploid Carassius auratus population (3nDTCC) and an artificially derived sterile triploid crucian carp (3nCC) have been previously observed, providing suitable model organisms for investigating meiosis characteristics in triploid fish. In the present study, the microstructures and ultrastructures of spermatogenesis were studied in these fishes. TdT-mediated dUTP nick end labeling detection was performed to investigate the apoptosis of spermatocytes. Fluorescence in situ hybridization was employed to trace chromatin pairing. In addition, the mRNA expressions of cell cycle-related genes (i.e., cell division control 2 and cell cycle protein B) were determined by quantitative realtime polymerase chain reaction to illustrate the molecular mechanism of abnormal meiosis in the 3nCC. The results showed that the 3nCC undergoes an irregular prophase I, with the chromosomes distributed in a unipolar radial manner and exhibiting partial pairing, hindered metaphase I, and degenerated cells in the subsequent stages. Meanwhile, the 3nDTCC presented a relatively regular meiotic prophase I with complete conjugate chromosome pairs and chromosomes distributed along the karyotheca, which were presented as a ring structure by slicing. Only the spreads with 130-150 irregular chromosomes can be easily detected in the 3nDTCC, suggesting that it may undergo an abnormal metaphase I. This study provides new insights into the meiosis of fertile and sterile triploid cyprinid fish.


Asunto(s)
Fertilidad/genética , Carpa Dorada/genética , Infertilidad/genética , Meiosis/genética , Espermatogénesis/genética , Triploidía , Animales , Apoptosis/genética , Hibridación Fluorescente in Situ , Masculino
9.
Genomics ; 113(2): 595-605, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33485949

RESUMEN

Triploid crucian carp (TCC) is obtained by hybridization of female diploid red crucian carp (Carassius auratus red var., RCC) and male allotetraploid hybrids. In this study, high-throughput sequencing was used to conduct the transcriptome analysis of the female hypothalamus of diploid RCC, diploid common carp (Cyprinus carpio L., CC) and TCC. The key functional expression genes of the hypothalamus were obtained through functional gene annotation and differential gene expression screening. A total of 71.56 G data and 47,572 genes were obtained through sequencing and genome mapping, respectively. The Fuzzy Analysis Clustering assigned the differentially expressed genes (DEGs) into eight groups, two of which, overdominance expression (6005, 12.62%) and underdominance expression (3849, 8.09%) in TCC were further studied. KEGG enrichment analysis showed that the DEGs in overdominance were mainly enriched in four pathways. The expression of several fertility-related genes was lower levels in TCC, whereas the expression of several growth-related genes and immune-related genes was higher levels in TCC. Besides, 15 DEGs were verified by quantitative real-time PCR (qPCR). The present study can provide a reference for breeding sterility, fast-growth, and disease-resistant varieties by distant hybridization.


Asunto(s)
Cyprinidae/genética , Ploidias , Transcriptoma , Animales , Cyprinidae/metabolismo , Cyprinidae/fisiología , Resistencia a la Enfermedad , Fertilidad , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Hipotálamo/metabolismo , Transducción de Señal
10.
Artículo en Inglés | MEDLINE | ID: mdl-33383192

RESUMEN

Ferritin H can participate in the regulation of teleostean immunity. ORF sequences of RCC/WCC/WR-ferritin H were 609 bp, while WR-ferritin H gene possessed chimeric fragments or offspring-specific mutations. In order to elucidate regulation of immune-related signal transduction, three fibroblast-like cell lines derived from caudal fin of red crucian carp (RCC), white crucian carp (WCC) and their hybrid offspring (WR) were characterized and designated as RCCFCs, WCCFCs and WRFCs. A sharp increase of ferritin H mRNA was observed in RCCFCs, WCCFCs and WRFCs following lipopolysaccharide (LPS) challenge. Overexpression of RCC/WCC/WR-ferritin H can decrease MyD88-IRAK4 signal and antagonize NF-κB, TNFα promoter activity in RCCFCs, WCCFCs and WRFCs, respectively. These results indicated that ferritin H in hybrid offspring harbors highly-conserved domains with a close sequence similarity to those of its parents, playing a regulatory role in inflammatory signals.


Asunto(s)
Apoferritinas/metabolismo , Carpas/genética , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Apoferritinas/genética , Células Cultivadas , Clonación Molecular , Regulación hacia Abajo , Fibroblastos/fisiología , Regulación de la Expresión Génica , Conformación Proteica , Regulación hacia Arriba
11.
BMC Genet ; 21(1): 24, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131722

RESUMEN

BACKGROUND: Hox transcription factors are master regulators of animal development. Although highly conserved, they can contribute to the formation of novel biological characteristics when modified, such as during the generation of hybrid species, thus potentially serving as species-specific molecular markers. Here, we systematically studied the evolution of genomic sequences of Hox loci in an artificial allotetraploid lineage (4nAT, 4n = 200) derived from a red crucian carp (♀, RCC, 2n = 100) × common carp (♂, CC, 2n = 100) cross and its parents (RCC and CC). RESULTS: PCR amplification yielded 23 distinct Hox gene fragments from 160 clones in 4nAT, 22 fragments from 90 clones in RCC, and 19 fragments from 90 clones in CC. Sequence alignment of the HoxA3a and HoxC10a genes indicated both the inheritance and loss of paternal genomic DNA in 4nAT. The HoxA5a gene from 4nAT consisted of two subtypes from RCC and two subtypes from CC, indicating that homologous recombination occurred in the 4nAT hybrid genome. Moreover, 4nAT carried genomic pseudogenization in the HoxA10b and HoxC13a loci. Interestingly, a new type of HoxC9a gene was found in 4nAT as a hybrid sequence of CC and RCC by recombination in the intronic region. CONCLUSION: The results revealed the influence of Hox genes during polyploidization in hybrid fish. The data provided insight into the evolution of vertebrate genomes and might be benefit for artificial breeding programs.


Asunto(s)
Carpas/genética , Genes Homeobox/genética , Carpa Dorada/genética , Hibridación Genética , Animales , Femenino , Variación Genética/genética , Genoma/genética , Genómica , Intrones/genética , Masculino , Alineación de Secuencia , Tetraploidía
12.
Front Genet ; 11: 122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194618

RESUMEN

Distant hybridization leads to obvious changes in genotypes and phenotypes, giving rise to species with novel capabilities. However, the fusion of distinct genomes also polymerizes the DNA or gene variations that occur during the course of evolution. Knowledge of the early stages of post-hybridization evolution is particularly important. Here, we investigated the full-length (FL) transcriptomes and the sequences resulting from the genome resequencing of the red crucian carp-like homodiploid fish (RCC-L) and goldfish-like homodiploid fish (GF-L) derived from the interspecific hybridization of koi carp (KOC) and blunt snout bream (BSB) to provide molecular evidence for the hybrid origin of the goldfish (GF). We compared the orthologous genes in the transcriptomes of RCC-L and GF-L with those of KOC and BSB. We also mapped the orthologous genes to the common carp (CC) and BSB genomes and classified them into eight gene patterns in three categories (chimaera, mutant, and biparental origin genes). The results showed that 48.20% and 46.50% of the genes were chimaera and that 3.70% and 8.30% of the genes were mutations of orthologous genes in RCC-L and GF-L, respectively. In RCC-L and GF-L, 63.70% and 68.20% of the genetic materials were from KOC, and 12.30% and 11.90% of the genetic materials were from BSB. The sequences from the genome resequencing of RCC-L and GF-L were mapped to the genome sequences of CC and BSB, revealing that the similarities of both RCC-L and GF-L to the CC genome (92.52%, 90.18%) were obviously higher than to the BSB genome (50.33%, 49.18%), supporting the suggestion that the genomes of both RCC-L and GF-L were mainly inherited from KOC but had some DNA fragments from BSB. Overall, our results provide molecular biological evidence for the hybrid origin of red crucian carp (RCC) and GF.

13.
Gene ; 737: 144433, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32014563

RESUMEN

The Carassius auratus (crucian carp) complex of the Dongting water system exhibits coexistence of diploid and triploid forms. As reported, triploid C. auratus is autotriploid origin. Ribosomal DNA (rDNA) with evolutionary conservation is widely used to study polyploidization. Here, we investigated genomic and transcribed rDNA sequences (18S and 5S) in diploid (2nCC, 2n = 100) and triploid (3nCC, 3n = 150) C. auratus. The results showed that the genetic traits and expression of 18S and 5S rDNA from 2nCC individuals were identified in 3nCC individuals. Moreover, pseudogenization of rDNA (18S and 5S) sequences were also observed in both 2nCC and 3nCC individuals, but expression of these variants was not detected. Based on the transcribed rDNA consensus sequence between 2nCC and 3nCC individuals, the functional secondary structures of 18S rRNA (expansion segments, ES6S) and 5S rRNA were predicted. These data demonstrated that complex evolutionary dynamics existed in the rDNA family of C. auratus. The evolutionary conservation of rDNA revealed that autotriploidization could not induce the divergence in Carassius taxa of the Dongting water system. These observations will expand our knowledge of the evolutionary dynamics of the rDNA family in vertebrates.


Asunto(s)
ADN Ribosómico/genética , Carpa Dorada/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 5S/genética , Triploidía , Animales , Secuencia de Bases , ADN Ribosómico/química , Evolución Molecular , Carpa Dorada/clasificación , Conformación de Ácido Nucleico , Filogenia , ARN Ribosómico 18S/química , ARN Ribosómico 5S/química , Alineación de Secuencia
14.
J Fish Biol ; 95(6): 1523-1529, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31631336

RESUMEN

activin ßA and ßB from diploid and allotriploid crucian carp were cloned.The differential expression of activin ßA and ßB genes in female allotriploid and diploid red crucian carp Carassius auratus red var. were studied and found to be expressed in all the tested tissues; particularly, the expression of activin ßA and ßB was elevated in the ovaries of allotriploids and differential expression in pituitaries during the non-breeding season and the breeding season period. The immunohistochemistry indicated that the abnormal triploid ovaries were dominated by small oogonium-like cells with dense signals and that the elevated expression of activin ßA and ßB in the ovaries of allotriploids may be related to allotriploid sterility.


Asunto(s)
Diploidia , Proteínas de Peces/genética , Carpa Dorada/genética , Subunidades beta de Inhibinas/genética , Triploidía , Animales , Femenino , Ovario/metabolismo , Hipófisis/metabolismo
15.
Genome Res ; 29(11): 1805-1815, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31649058

RESUMEN

Hybridization drives rapid speciation by shaping novel genotypic and phenotypic profiles. Genomic incompatibility and transcriptome shock have been observed in hybrids, although this is rarer in animals than in plants. Using the newly sequenced genomes of the blunt snout bream (Megalobrama amblycephala [BSB]) and the topmouth culter (Culter alburnus [TC]), we focused on the sequence variation and gene expression changes in the reciprocal intergeneric hybrid lineages (F1-F3) of BSB × TC. A genome-wide transcriptional analysis identified 145-974 expressed recombinant genes in the successive generations of hybrid fish, suggesting the rapid emergence of allelic variation following hybridization. Some gradual changes of gene expression with additive and dominance effects and various cis and trans regulations were observed from F1 to F3 in the two hybrid lineages. These asymmetric patterns of gene expression represent the alternative strategies for counteracting deleterious effects of the subgenomes and improving adaptability of novel hybrids. Furthermore, we identified positive selection and additive expression patterns in transforming growth factor, beta 1b (tgfb1b), which may account for the morphological variations of the pharyngeal jaw in the two hybrid lineages. Our current findings provide insights into the evolution of vertebrate genomes immediately following hybridization.


Asunto(s)
Alelos , Cyprinidae/genética , Hibridación Genética , Animales , Femenino , Masculino , Polimorfismo Genético , Análisis de Secuencia/métodos , Especificidad de la Especie
16.
BMC Genet ; 20(1): 80, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31646976

RESUMEN

BACKGROUND: Bleeker's yellow tail (Xenocypris davidi Bleeker, YT) and topmouth culter (Culter alburnus Basilewsky, TC) are both famous and important economic freshwater fish in China. YT, a kind of omnivorous fish, has strong resistance. TC, a kind of carnivorous fish, has high-quality meat but poor resistance. Distant hybridization can integrate the advantages of both parents. There has been no previous report regarding hybrid fish derived from female YT × male TC. It is expected that hybridization of these two kinds of fish will result in F1 hybrids with improved characteristics, such as faster growth rate, stronger resistance, and high-quality meat, which are of great significance in fish genetic breeding. RESULTS: In this study, we investigated the main biological characteristics of diploid hybrid fish derived from female YT × male TC. The hybrids had an intermediate number of upper lateral line scales between those for YT and TC. The hybrids were diploids with 48 chromosomes and had the same karyotype formula as their parents. The hybrids generated variations in 5S rDNA (designated class IV: 212 bp) and lost specific 5S rDNA derived from the maternal parent (designated class II: 221 bp), which might be related to hybridization. In terms of reproductive traits, all the tested female hybrids exhibited normal gonadal development, and the two-year-old F1 females produced mature eggs. However, all the tested testes of the male hybrids could not produce mature sperm. It is possible that the hybrid lineage will be established by back-crossing the fertile female hybrids and their parents. CONCLUSIONS: Obtaining a fertile female hybrid fish made the creation of a new type of fish possible, which was significant in fish genetic breeding.


Asunto(s)
Cyprinidae/fisiología , Sitios de Carácter Cuantitativo , ARN Ribosómico 5S/genética , Animales , Cyprinidae/genética , Diploidia , Resistencia a la Enfermedad , Femenino , Eliminación de Gen , Hibridación Genética , Masculino
17.
Mar Biotechnol (NY) ; 21(6): 821, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31468211

RESUMEN

The original version of this article unfortunately contained an error in the abstract section. In line 5, the phrase "... O. brevibarba was a diploid with 48 chromosomes" should be presented as "... O. brevibarba was a diploid with 50 chromosomes".

18.
Mar Biotechnol (NY) ; 21(4): 515-525, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31203477

RESUMEN

Onychostoma brevibarba is a new discovered species which is distributed in Xiang Jiang River of the middle Chang Jiang basin in Hunan Province, South China. In this study, the ploidy levels of O. brevibarba were confirmed by counting chromosomal numbers and analyzing karyotype. The complete mitochondrial genome of O. brevibarba was determined and analyzed. Besides, we firstly performed the full-length transcriptome of O. brevibarba derived from 5 different tissues using the PacBio SMRT sequencing. The result shows that O. brevibarba was a diploid with 50 chromosomes [corrected]. The complete mitogenome of O. brevibarba was 16,602 bp in size and very similar (89.1-91.3%) to that of other Onychostoma species but was distinct from all congeners. The full-length transcriptome dataset of O. brevibarba comprised 120,239 unigenes. Among the unigenes, 91,542 were functionally annotated, whereas 26,794 were found to have two or more isoforms. This study could provide many new insights into cytology and molecular characteristics of O. brevibarba; it laid the foundation for further exploration of the genomic signatures of species of Onychostoma.


Asunto(s)
Cromosomas/química , Cyprinidae/genética , Genoma Mitocondrial , Genoma , Transcriptoma , Animales , Cyprinidae/clasificación , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Cariotipo , Mitocondrias/genética , Anotación de Secuencia Molecular , Filogenia , Ploidias , Análisis de Secuencia de ADN
19.
Front Genet ; 10: 377, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105746

RESUMEN

Based on the formation of an autotetraploid fish line (4nAUT, 4n = 200; F2-F11) derived from the distant hybridization of female Carassius auratus red var. (RCC, 2n = 100) × male Megalobrama amblycephala (BSB, 2n = 48), we produced autotriploid hybrids (3nAUT) by crossing females of RCC with males of 4nAUT and allotriploid hybrids (3nALT) by crossing females of Cyprinus carpio (CC, 2n = 100) with males of 4nAUT. The aim of this study was to comparatively investigate the reproductive characteristics of 3nALT and 3nAUT. We investigated morphological traits, chromosomal numbers, DNA content and gonadal development in 3nAUT and 3nALT. The results indicated both 3nAUT and 3nALT possessed 150 chromosomes and were triploid hybrids. The females and males of 3nALT and males of 3nAUT had abnormal gonadal development and could not generate mature eggs or sperm, but the females of 3nAUT had normal gonadal development and generated mature eggs at 2 years old. The females of 3nAUT generated different sizes of eggs, which fertilized with haploid sperm from RCC and formed viable diploid, triploid, and tetraploid offspring. The formation of these two kinds of triploid hybrids provides an ideal model for studying the reproductive traits of triploid hybrids, which is of great value in animal genetics and reproductive biology.

20.
Reprod Fertil Dev ; 31(2): 248-260, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30086823

RESUMEN

Spermatogenesis involves a series of cellular transformations and thousands of regulated genes. Previously, we showed that the triploid fish (3nBY) cannot produce mature spermatozoa. In the present study, evaluation of the testis microstructure revealed that germ cells of 3nBY could develop into round spermatids, but then degenerated, resulting in male infertility. In this study we comparatively analysed the testis transcriptomes from 3nBY and its diploid parent YB and identified a series of differentially expressed genes (DEGs) that were enriched in the Wnt signalling pathway and the apoptotic and ubiquitin-mediated proteolysis processes in 3nBY. Gene ontology functional analyses revealed that some DEGs in 3nBY were directly associated with the process of gamete generation, development and sperm flagellum assembly. In addition, the expression of a number of genes related to meiosis (Inhibitor Of DNA Binding 2 (ID2), Ovo Like Transcriptional Repressor 1 (OVOL1)), mitochondria (ATP1b (ATPase Na+/K+ Transporting Subunit Beta 1), ATP2a (ATPase, Ca++ Transporting, Cardiac Muscle, Slow Twitch 2), ATP5a (ATP Synthase F1 Subunit Alpha), Mitochondrially Encoded Cytochrome C Oxidase I (COX1), NADH Dehydrogenase Subunit 4 (ND4)) and chromatin structure (Histone 1 (H1), Histone 2a (H2A), Histone 2b (H2B), Histone 3 (H3), Histone 4 (H4)) was lower in the testes of 3nBY, whereas the expression of genes encoding ubiquitin (Ubiquitin Conjugating Enzymes (UBEs), Ring Finger Proteins (RNFs)) and apoptosis (CASPs (Caspase 3, Caspase 7,Caspase 8), BCLs (B-Cell Lymphoma 3, B-Cell CLL/Lymphoma 2, B Cell CLL/Lymphoma 10)) proteins involved in spermatid degeneration was higher. These data suggest that the disrupted expression of genes associated with spermatogenesis and the increased expression of mitochondrial ubiquitin, which initiates cell apoptosis, may result in spermatid degeneration in male 3nBY. This study provides information regarding the potential molecular regulatory mechanisms underlying male infertility in polyploid fish.


Asunto(s)
Infertilidad Masculina/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Transcriptoma , Triploidía , Animales , Peces/metabolismo , Infertilidad Masculina/genética , Masculino , Meiosis/genética , Transducción de Señal/genética , Cola del Espermatozoide/metabolismo , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...