Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 11(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35054086

RESUMEN

BACKGROUND: Previous studies have demonstrated that long non-coding RNA maternally expressed gene 3 (MEG3) emerged as a key regulator in development and tumorigenesis. This study aims to investigate the function and mechanism of MEG3 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and explores the use of MEG3 in skull defects bone repairing. METHODS: Endogenous expression of MEG3 during BMSCs osteogenic differentiation was detected by quantitative real-time polymerase chain reaction (qPCR). MEG3 was knockdown in BMSCs by lentiviral transduction. The proliferation, osteogenic-related genes and proteins expression of MEG3 knockdown BMSCs were assessed by Cell Counting Kit-8 (CCK-8) assay, qPCR, alizarin red and alkaline phosphatase staining. Western blot was used to detect ß-catenin expression in MEG3 knockdown BMSCs. Dickkopf 1 (DKK1) was used to block wnt/ß-catenin pathway. The osteogenic-related genes and proteins expression of MEG3 knockdown BMSCs after wnt/ß-catenin inhibition were assessed by qPCR, alizarin red and alkaline phosphatase staining. MEG3 knockdown BMSCs scaffold with PHMG were implanted in a critical-sized skull defects of rat model. Micro-computed tomography(micro-CT), hematoxylin and eosin staining and immunohistochemistry were performed to evaluate the bone repairing. RESULTS: Endogenous expression of MEG3 was increased during osteogenic differentiation of BMSCs. Downregulation of MEG3 could promote osteogenic differentiation of BMSCs in vitro. Notably, a further mechanism study revealed that MEG3 knockdown could activate Wnt/ß-catenin signaling pathway in BMSCs. Wnt/ß-catenin inhibition would impair MEG3-induced osteogenic differentiation of BMSCs. By using poly (3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBHHx)-mesoporous bioactive glass (PHMG) scaffold with MEG3 knockdown BMSCs, we found that downregulation of MEG3 in BMSCs could accelerate bone repairing in a critical-sized skull defects rat model. CONCLUSIONS: Our study reveals the important role of MEG3 during osteogenic differentiation and bone regeneration. Thus, MEG3 engineered BMSCs may be effective potential therapeutic targets for skull defects.

2.
Artículo en Inglés | MEDLINE | ID: mdl-26367465

RESUMEN

In the present work, a rapid ionic liquid-based microwave-assisted extraction (ILMAE) method was successfully applied to simultaneous extraction of baicalin, wogonoside, baicalein and wogonin from Scutellaria baicalensis Georgi. A series of 1-alkyl-3-methylirnidazolium ionic liquids with different anions and cations were assessed for extraction efficiency, and 1-octyl-3-methylimidazolium bromide was selected as the optimal solvent. In addition, the parameters of ILMAE procedure for the four flavonoids were optimized, and the optimal ILMAE method was validated in the linearity, stability, precision and recovery. Meanwhile, the microstructures of S. baicalensis powders were observed before and after extraction with the help of a scanning electron microscope (SEM) in order to explore the extraction mechanism, and the activity of the crude enzyme solution from S. baicalensis was determined through the hydrolysis of baicalin. Finally, the extraction yields and extraction time of WaterHRE, WaterMAE, ILHRE and Chp were 5.18% (30min), 8.77% (90s), 16.94% (30min) and 18.58% (3h), respectively. The results indicated that compared with the conventional extraction approaches, ILMAE possessed great advantages in extracting flavonoids, such as the highest extraction yield (22.28%), the shortest extraction time (90s), etc.


Asunto(s)
Flavonoides/aislamiento & purificación , Líquidos Iónicos/química , Microondas , Scutellaria baicalensis/química , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...