Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 532-540, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660863

RESUMEN

OBJECTIVE: To investigate the molecular mechanism of proteolytic cleavage of unusually large von Willebrand Factor(ULVWF) on endothelial cells by ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats-13) in the absence of fluid shear stress, so as to provide a theoretical basis for the pathogenesis of thrombotic thrombocytopenic purpura (TTP) and other thrombotic disorders. METHODS: The ADAMTS13-mediated proteolysis of ULVWF on the surface of endothelial cells in the absence of fluid shear stress was observed through immunofluorescence microscopy. The variation in VWF antigen levels in the conditioned media were determined by ELISA assay. The levels of VWF and the proteolytic fragments released into the conditioned media were determined by ELISA assay and Western blot in the absence and presence of fluid shear stress or FVIII. The effect of ADAMTS13-mediated ULVWF cleavage on the normal distribution of plasma VWF multimers was evaluated by multimer analysis. Histamine stimulated human umbilical vein endothelial cells (HUVECs) were incubated with ADAMTS13 and various N- and C-terminally truncated mutants. Then the ULVWF that maintained binding to the cells were observed through immunofluorescence microscopy and the soluble ULVWF released from endothelial cells was determined by ELISA, so as to demonstrate the domains of ADAMTS13 required for proteolysis of ULVWF on endothelial cells. RESULTS: The ULVWF strings on the endothelial cell surface were rapidly proteolyzed by recombinant and plasma ADAMTS13 in the absence of fluid shear stress. This proteolytic processing of ULVWF depended on incubation time and ADAMTS13 concentration, but not shear stress and FVIII. The distribution of VWF releaseded by ADAMTS13-mediated proteolysis was quite similar to that secreted by endothelial cells under histamine stimulation, suggesting the ULVWF cleavage occured at the cell surface. The proteolysis of the ULVWF on endothelial cells required the Cys-rich(CysR) and spacer domains, but not the TSP1 2-8 and CUB domains of ADAMTS13. CONCLUSION: The ULVWF polymers on endothelial cells are sensitive to ADAMTS13-mediated cleavage even in the absence of fluid shear stress. The findings provide novel insight into the molecular mechanism of ADAMTS13-mediated ULVWF cleavage at the cellular level and may contribute to understanding of the pathogenesis of TTP and other thrombotic disorders.


Asunto(s)
Proteína ADAMTS13 , Células Endoteliales , Estrés Mecánico , Factor de von Willebrand , Humanos , Proteínas ADAM/metabolismo , Proteína ADAMTS13/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Proteolisis , Púrpura Trombocitopénica Trombótica/metabolismo , Factor de von Willebrand/química , Factor de von Willebrand/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA