Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros












Intervalo de año de publicación
1.
Immunobiology ; 229(5): 152831, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944891

RESUMEN

The pro-tumorigenic or anti-tumorigenic role of tumor infiltrating mast cells (TIMs) in tumors depends not only on the type of cancer and the degree of tumor progression, but also on their location in the tumor bulk. In our investigation, we employed immunohistochemistry to reveal that the mast cells (MCs) in the tumor stroma are positively correlated with metastasis of ovarian cancer (OC), but not in the tumor parenchyma. To delve deeper into the influence of different culture matrix stiffness on MCs' biological functions within the tumor parenchymal and stromal regions, we conducted a transcriptome analysis of the mouse MC line (P815) cultured in two-dimensional (2D) or three-dimensional (3D) culture system. Further research has found that the softer 3D extracellular matrix stiffness could improve the mitochondrial activity of MCs to promote proliferation by increasing the expression levels of mitochondrial activity-related genes, namely Pet100, atp5md, and Cox7a2. Furthermore, employing LASSO regression analysis, we identified that Pet100 and Cox7a2 were closely associated with the prognosis of OC patients. These two genes were subsequently employed to construct a risk score model, which revealed that the high-risk group model as one of the prognostic factors for OC patients. Additionally, the XCell algorithm analysis showed that the high-risk group displayed a broader spectrum of immune cell infiltrations. Our research revealed that TIMs in the tumor stroma could promote the metastasis of OC, and mitochondrial activity-related proteins Pet100/Cox7a2 can serve as biomarkers for prognostic evaluation of OC.

2.
Mol Biotechnol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456963

RESUMEN

Precise quantification of human cells in preclinical animal models by a sensitive and specific approach is warranted. The probe-based quantitative PCR (qPCR) assay as a sensitive and swift approach is suitable for the quantification of human cells by targeting human-specific DNA sequences. In this study, we developed an efficient qPCR assay targeting human-specific DNA in ST6GALNAC3 (termed ST6GAL-qPCR) for the quantification of human cells in preclinical animal models. ST6GAL-qPCR probe was synthesized with FAM and non-fluorescent quencher-minor groove binder conjugated to the 5' and 3' end of the probe, respectively. Genomic DNA from human, rhesus monkeys, cynomolgus monkeys, New Zealand White rabbits, SD rats, C57BL/6, and BALB/c mice were utilized for analyzing the specificity and sensitivity of the ST6GAL-qPCR assay. The ST6GAL-qPCR assay targeted human-specific DNA was cloned to pUCM-T vector and released by EcoR I/Hind III digestion for generating a calibration curve. Cell mixing experiment was performed to validate the ST6GAL-qPCR assay by analysis of 0.1%, 0.01%, and 0.001% of human leukocytes mixed with murine thymocytes. The ST6GAL-qPCR assay detected human DNA rather than DNA from the tested animal species. The amplification efficiency of the ST6GAL-qPCR assay was 93% and the linearity of calibration curve was R2 = 0.999. The ST6GAL-qPCR assay detected as low as 5 copies of human-specific DNA and is efficient to specially amplify as low as 30-pg human DNA in the presence of 1 µg of DNA from the tested species, respectively. The ST6GAL-qPCR assay was able to quantify as low as 0.01% of human leukocytes within murine thymocytes. This ST6GAL-qPCR assay can be used as an efficient approach for the quantification of human cells in preclinical animal models.

3.
Mater Today Bio ; 25: 101012, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38464495

RESUMEN

Urethral stricture (US) is a common disease in urology, lacking effective treatment options. Although injecting a stem cells suspension into the affected area has shown therapeutic benefits, challenges such as low retention rate and limited efficacy hinder the clinical application of stem cells. This study evaluates the therapeutic impact and the mechanism of adipose-derived vascular fraction (SVF) combined with cell sheet engineering technique on urethral fibrosis in a rat model of US. The results showed that SVF-cell sheets exhibit positive expression of α-SMA, CD31, CD34, Stro-1, and eNOS. In vivo study showed less collagen deposition, low urethral fibrosis, and minimal tissue alteration in the group receiving cell sheet transplantation. Furthermore, the formation of a three-dimensional (3D) tissue-like structure by the cell sheets enhances the paracrine effect of SVF, facilitates the infiltration of M2 macrophages, and suppresses the TGF-ß/Smad2 pathway through HGF secretion, thereby exerting antifibrotic effects. Small animal in vivo imaging demonstrates improved retention of SVF cells at the damaged urethra site with cell sheet application. Our results suggest that SVF combined with cell sheet technology more efficiently inhibits the early stages of urethral fibrosis.

4.
Food Res Int ; 178: 113906, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309900

RESUMEN

Surface profiles are important evaluation indices for oil absorption behavior of fried foods. This research established two intelligent models of partial least-squares regression (PLSR) and back propagation artificial neural network (BP-ANN) for monitoring the oil absorption behavior of French fries based on the surface characteristics. Surface morphology and texture of French fries by rapeseed oil (RO) and high-oleic peanut oil (HOPO) at different temperatures were investigated. Results showed that oil content of samples increased with frying temperature, accounting for 37.7% and 41.4% of samples fried by RO and HOPO respectively. The increase of crust ratio, roughness and texture parameters (Fm, Nwr, fwr, Wc) and the decrease of uniformity were observed with the frying temperature. Coefficients of prediction set of PLSR and BP-ANN models were more than 0.93, which indicated that surface features combined with chemometrics were rapid and precise methods for determining the oil content of French fries.


Asunto(s)
Culinaria , Solanum tuberosum , Culinaria/métodos , Aceite de Brassica napus , Aceite de Cacahuete , Calor
5.
Cancer Sci ; 115(4): 1224-1240, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403332

RESUMEN

The transcription factor forkhead box protein O1 (FoxO1) is closely related to the occurrence and development of ovarian cancer (OC), however its role and molecular mechanisms remain unclear. Herein, we found that FoxO1 was highly expressed in clinical samples of OC patients and was significantly correlated with poor prognosis. FoxO1 knockdown inhibited the proliferation of OC cells in vitro and in vivo. ChIP-seq combined with GEPIA2 and Kaplan-Meier database analysis showed that structural maintenance of chromosome 4 (SMC4) is a downstream target of FoxO1, and FoxO1 promotes SMC4 transcription by binding to its -1400/-1390 bp promoter. The high expression of SMC4 significantly blocked the tumor inhibition effect of FoxO1 knockdown. Furtherly, FoxO1 increased SMC4 mRNA abundance by transcriptionally activating methyltransferase-like 14 (METTL14) and increasing SMC4 m6A methylation on its coding sequence region. The Cancer Genome Atlas dataset analysis confirmed a significant positive correlation between FoxO1, SMC4, and METTL14 expression in OC. In summary, this study revealed the molecular mechanisms of FoxO1 regulating SMC4 and established a clinical link between the expression of FoxO1/METTL14/SMC4 in the occurrence of OC, thus providing a potential diagnostic target and therapeutic strategy.


Asunto(s)
Cromosomas Humanos Par 4 , Neoplasias Ováricas , Femenino , Humanos , Adenosina Trifosfatasas/genética , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Cromosomas Humanos Par 4/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Estimación de Kaplan-Meier , Metiltransferasas/genética , Neoplasias Ováricas/patología
6.
Am J Cancer Res ; 14(1): 1-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38323271

RESUMEN

Mast cells (MCs) have emerged as pivotal contributors to both the defensive immune response and immunomodulation. They also exhibit regulatory functions in modulating pathological processes across various allergic diseases. The impact of MC presence within tumor tissues has garnered considerable attention, yielding conflicting findings. While some studies propose that MCs within tumor tissues promote tumor initiation and progression, others advocate an opposing perspective. Notably, evidence emphasizes the dual role of MCs in cancer, both as promoters and suppressors, is crucial for optimizing cancer treatment strategies. These conflicting viewpoints have generated substantial controversy, underscoring the need for a comprehensive understanding of MC's role in tumor immune responses.

7.
Cell Death Dis ; 15(2): 107, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302412

RESUMEN

Programmed cell death 1 ligand 1 (PDL1)/programmed cell death 1 (PD1) blockade immunotherapy provides a prospective strategy for the treatment of colorectal cancer (CRC), but various constraints on the effectiveness of the treatment are still remaining. As reported in previous studies, follistatin-like 3 (FSTL3) could mediate inflammatory response in macrophages by induction lipid accumulation. Herein, we revealed that FSTL3 were overexpressed in malignant cells in the CRC microenvironment, notably, the expression level of FSTL3 was related to tumor immune evasion and the clinical efficacy of anti-PD1 therapy. Further studies determined that hypoxic tumor microenvironment induced the FSTL3 expression via HIF1α in CRC cells, FSTL3 could bind to the transcription factor c-Myc (354-406 amino acids) to suppress the latter's ubiquitination and increase its stability, thereby to up-regulated the expression of PDL1 and indoleamine 2,3-dioxygenase 1 (IDO1). The results in the immunocompetent tumor models verified that FSLT3 knockout in tumor cells increased the proportion of CD8+ T cells in the tumor microenvironment, reduced the proportion of regulatory T cells (CD25+ Foxp3+) and exhausted T cells (PD1+ CD8+), and synergistically improved the anti-PD1 therapy efficacy. To sum up, FSTL3 enhanced c-Myc-mediated transcriptional regulation to promote immune evasion and attenuates response to anti-PD1 therapy in CRC, suggesting the potential of FSTL3 as a biomarker of immunotherapeutic efficacy as well as a novel immunotherapeutic target in CRC.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Humanos , Escape del Tumor , Inmunoterapia/métodos , Linfocitos T Reguladores , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Microambiente Tumoral
8.
J Transl Med ; 22(1): 58, 2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38221609

RESUMEN

BACKGROUND: Chimeric antigen receptor CAR-T cell therapies have ushered in a new era of treatment for specific blood cancers, offering unparalleled efficacy in cases of treatment resistance or relapse. However, the emergence of cytokine release syndrome (CRS) as a side effect poses a challenge to the widespread application of CAR-T cell therapies. Melatonin, a natural hormone produced by the pineal gland known for its antioxidant and anti-inflammatory properties, has been explored for its potential immunomodulatory effects. Despite this, its specific role in mitigating CAR-T cell-induced CRS remains poorly understood. METHODS: In this study, our aim was to investigate the potential of melatonin as an immunomodulatory agent in the context of CD19-targeting CAR-T cell therapy and its impact on associated side effects. Using a mouse model, we evaluated the effects of melatonin on CAR-T cell-induced CRS and overall survival. Additionally, we assessed whether melatonin administration had any detrimental effects on the antitumor efficacy and persistence of CD19 CAR-T cells. RESULTS: Our findings demonstrate that melatonin effectively mitigated the severity of CAR-T cell-induced CRS in the mouse model, leading to improved overall survival outcomes. Remarkably, melatonin administration did not compromise the antitumor effectiveness or persistence of CD19 CAR-T cells, indicating its compatibility with therapeutic goals. These results suggest melatonin's potential as an immunomodulatory compound to alleviate CRS without compromising the therapeutic benefits of CAR-T cell therapy. CONCLUSION: The study's outcomes shed light on melatonin's promise as a valuable addition to the existing treatment protocols for CAR-T cell therapies. By attenuating CAR-T cell-induced CRS while preserving the therapeutic impact of CAR-T cells, melatonin offers a potential strategy for optimizing and refining the safety and efficacy profile of CAR-T cell therapy. This research contributes to the evolving understanding of how to harness immunomodulatory agents to enhance the clinical application of innovative cancer treatments.


Asunto(s)
Síndrome de Liberación de Citoquinas , Inmunoterapia Adoptiva , Melatonina , Antígenos CD19 , Tratamiento Basado en Trasplante de Células y Tejidos , Síndrome de Liberación de Citoquinas/terapia , Factores Inmunológicos/farmacología , Inmunoterapia Adoptiva/efectos adversos , Melatonina/farmacología , Recurrencia Local de Neoplasia , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Animales , Ratones
9.
Front Plant Sci ; 14: 1269200, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078104

RESUMEN

Introduction: The TGA transcription factors, plays a crucial role in regulating gene expression. In cultivated peanut (Arachis hypogaea), which faces abiotic stress challenges, understanding the role of TGAs is important. Methods: In this study, we conducted a comprehensive in analysis of the TGA gene family in peanut to elucidate their regulatory mechanisms and expression patterns under abiotic stress and hormone treatments. Furthermore, functional studies on the representative AhTGA gene in peanut cultivars were conducted using transgenic Arabidopsis and soybean hair roots. Results: The genome-wide analysis revealed that a total of 20 AhTGA genes were identified and classified into five subfamilies. Collinearity analysis revealed that AhTGA genes lack tandem duplication, and their amplification in the cultivated peanut genome primarily relies on the whole-genome duplication of the diploid wild peanut to form tetraploid cultivated peanut, as well as segment duplication between the A and B subgenomes. Promoter and Protein-protein interaction analysis identified a wide range of cis-acting elements and potential interacting proteins associated with growth and development, hormones, and stress responses. Expression patterns of AhTGA genes in different tissues, under abiotic stress conditions for low temperature and drought, and in response to hormonal stimuli revealed that seven AhTGA genes from groups I (AhTGA04, AhTGA14 and AhTGA20) and II (AhTGA07, AhTGA11, AhTGA16 and AhTGA18) are involved in the response to abiotic stress and hormonal stimuli. The hormone treatment results indicate that these AhTGA genes primarily respond to the regulation of jasmonic acid and salicylic acid. Overexpressing AhTGA11 in Arabidopsis enhances resistance to cold and drought stress by increasing antioxidant activities and altering endogenous hormone levels, particularly ABA, SA and JA. Discussion: The AhTGA genes plays a crucial role in hormone regulation and stress response during peanut growth and development. The findings provide insights into peanut's abiotic stress tolerance mechanisms and pave the way for future functional studies.

10.
Am J Cancer Res ; 13(10): 4888-4902, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37970340

RESUMEN

Based on its absence in normal tissues and its role in tumorigenesis and tumor progression, insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), a reader of N6-methyladenosine (M6A) on RNA, represents a putative valuable and specific target for some cancer therapy. In this study, we performed bioinformatic analysis and immunohistochemistry (IHC) to find that IGF2BP3 was highly expressed in tumor epithelial cells and fibroblasts of ovarian cancer (OC), and was associated with poor prognosis, metastasis, and chemosensitivity in OC patients. In particular, we discovered that knockdown IGF2BP3 expression inhibited the malignant phenotype of OC cell lines by decreasing the protein levels of c-MYC, VEGF, CDK2, CDK6, and STAT1. To explore the feasibility of IGF2BP3 as a therapeutic target for OC, a small molecular AE-848 was designed and screened by molecular operating environment (MOE), which not only could duplicate the above results of knockdown assay but also reduced the expression of c-MYC in M2 macrophages and tumor-associated macrophages and promoted the cytokine IFN-γ and TNF-α secretion. The pharmacodynamic models of two kinds of OC bearing animals were suggested that systemic therapy with AE-848 significantly inhibited tumor growth by reducing the expression of tumor-associated antigen (c-MYC/VEGF/Ki67/CDK2) and improving the anti-tumor effect of macrophages. These results suggest that AE-848 can inhibit the growth and progression of OC cells by disrupting the stability of the targeted mRNAs of IGF2BP3 and may be a targeted drug for OC treatment.

11.
Soft Matter ; 19(43): 8423-8433, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37877309

RESUMEN

To exploit the chemical asymmetry of diblock copolymer chains on the design of high-performance switch sensors, we propose an analytically tractable model system which contains an adsorption-responsive diblock copolymer in an otherwise inert brush, and study its phase transitions by using both analytical theory and self-consistent field calculations. The copolymer chain is chemically asymmetric in the sense that the two blocks assume different adsorption strengths, which is characterized by the defined adsorption ratio. We found that the conformation states, the number of stable phases, and transition types are mainly controlled by the length of each block and the adsorption ratio. In particular, when the length of the ungrafted block is longer than the brush chains, and the adsorption ratio is smaller than a critical value, the copolymer chain shows three thermodynamically stable states, and undergoes two unsynchronous transitions, where the two blocks respond to the adsorption in a different manner, when the adsorption changes from weak to sufficiently strong. For this kind of three-state transition, the transition point, transition barrier, and transition width are evaluated by using the self-consistent field method, and their scaling relationship with respect to the system parameters is extracted, which matches reasonably well with the predictions from the analytical theory. The self-consistent field calculations also indicate that the conformational transitions involved in the three-state transition process are sharp with a low energy barrier, and interestingly, barrier-free transitions are observed. Our finding shows that the three-state transitions not only specify a region where high performance unsynchronous switch sensors can be exploited, but may also provide a useful model understanding the unsynchronous biological processes.

12.
Int J Biol Sci ; 19(14): 4672-4688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781028

RESUMEN

Background: N6-Methyladenosine (m6A) is considered to be the most prevalent and abundant internal modification observed in mRNA between viruses and mammals. As a reversible epigenetic modification, m6A controls gene expression in diverse physiological and pathological processes. Accumulating evidence in recent years reveals that aberrant expression of m6A reader proteins may have tumor-suppressing or carcinogenic functions. However, the biological role and mechanism of m6A reader YTH Domain Containing 1 (YTHDC1) in ovarian cancer progression remain inadequately understood. Methods: Quantitative RT-PCR, immunohistochemistry, Western blot, and bioinformatics analyses were undertaken for studying the YTHDC1 expression in ovarian cancer. In vitro and in vivo models were used to examine the role of YTHDC1. RNA sequencing, RNA immunoprecipitation sequencing, m6A-modified RNA immunoprecipitation, actinomycin-D assay, chromatin immunoprecipitation, and Western blot were used in the investigation the regulatory mechanisms among YTHDC1, Signal Transducer and Activator of Transcription 3 (STAT3), Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1), and Glucosidase II Alpha Subunit (GANAB). Results: Here, we found that YTHDC1 expression is decreased in ovarian cancer. Overexpression of YTHDC1 inhibited ovarian cancer development both in vivo and in vitro. Mechanistically, PIK3R1 was identified to be the direct target for YTHDC1. YTHDC1 enhanced PIK3R1 stability in an m6A-dependent manner, which subsequently inhibited GANAB expression in the N-glycan biosynthesis via the STAT3 signaling. Conclusions: Our findings unveil YTHDC1 as a tumor suppressor in the progression of ovarian cancer and as a potential prognostic biomarker that could serve as a target in ovarian cancer treatment.


Asunto(s)
Proteínas del Tejido Nervioso , Neoplasias Ováricas , Factores de Empalme de ARN , Factor de Transcripción STAT3 , Animales , Femenino , Humanos , Adenosina , Fosfatidilinositol 3-Quinasa Clase Ia , Proteínas del Tejido Nervioso/genética , Neoplasias Ováricas/genética , Factores de Empalme de ARN/genética , Factor de Transcripción STAT3/genética
13.
Mol Biol Rep ; 50(11): 9229-9237, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37805662

RESUMEN

BACKGROUND: Precise quantification of grafted human cells in preclinical animal models such as non-human primates, rodents and rabbits is needed for the evaluations of the safety and efficacy of cell therapy. Quantitative PCR (qPCR) as a swift, sensitive and powerful assay is suitable for human cell quantification. However, it is a formidable challenge due to that the genome of non-human primates share more than 95% of similarity as human. METHODS: In the present study, we developed a probe-based quantitative PCR (qPCR) assay for the quantification of human cells in preclinical animal models via targeting human specific DNA in the intron of BRCA1 (termed BRCA1-qPCR). The 5' and 3' end of BRCA1-qPCR probe was conjugated with FAM and non-fluorescent quencher-minor groove binder (NFQ-MGB), respectively. 1 µg of genomic DNA from human and preclinical animal models including rhesus monkeys, cynomolgus monkeys, New Zealand white rabbits, SD rats, C57BL/6 and BALB/c mice were used for determining the specificity and sensitivity of the BRCA1-qPCR assay. A calibration curve was generated by BRCA1-qPCR analysis of linearized plasmid containing targeted human specific DNA in BRCA1. The BRCA1-qPCR assay was validated by analysis of 0.003%, 0.03% and 0.3% of human leukocytes mixed within murine leukocytes. RESULTS: The BRCA1-qPCR assay detected human DNA rather than DNA from tested species. The amplification efficiency of the BRCA1-qPCR assay was 95.4% and the linearity of the calibration curve was R2 = 0.9997. The BRCA1-qPCR assay detected as low as 5 copies of human specific DNA and is efficient to specially amplify 30 pg human DNA in the presence of 1 µg of genomic DNA from tested species, respectively. The BRCA1-qPCR assay was able to quantify as low as 0.003% of human cells within murine leukocytes. CONCLUSION: The BRCA1-qPCR assay is efficient for the quantification of human cells in preclinical animal models.


Asunto(s)
ADN , Primates , Humanos , Animales , Ratas , Ratones , Conejos , Intrones , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa , Modelos Animales , Proteína BRCA1/genética
14.
Front Microbiol ; 14: 1231354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692387

RESUMEN

The development of ovarian cancer is closely related to various factors, such as environmental, genetic and microbiological factors. In previous research, bacteria were identified in human tumors by 16S rRNA sequencing. However, the microbial biomass in tumor tissue is too low and cannot be accurately identified by 16S rRNA sequencing. In our study, we employ 2bRAD sequencing for Microbiome (2bRAD-M), a new sequencing technology capable of accurately characterizing the low biomass microbiome (bacteria, fungi and archaea) at species resolution. Here we surveyed 20 ovarian samples, including 10 ovarian cancer samples and 10 benign ovarian samples. The sequencing results showed that a total of 373 microbial species were identified in both two groups, of which 90 species shared in the two groups. The Meta statistic indicated that Chlamydophila_abortus and CAG-873_sp900550395 were increased in the ovarian cancer tissues, while Lawsonella_clevelandensis_A, Ralstonia_sp001078575, Brevundimonas_aurantiaca, Ralstonia_sp900115545, Ralstonia_pickettii, Corynebacterium_kefirresidentii, Corynebacterium_sp000478175, Brevibacillus_D_fluminis, Ralstonia_sp000620465, and Ralstonia_mannitolilytica were more abundant in the benign ovarian tissues. This is the first use of 2bRAD-M technique to provide an important hint for better understanding of the ovarian cancer microbiome.

16.
J Exp Med ; 220(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37097293

RESUMEN

The formation of germinal centers (GCs) is crucial for humoral immunity and vaccine efficacy. Constant stimulation through microbiota drives the formation of constitutive GCs in Peyer's patches (PPs), which generate B cells that produce antibodies against gut antigens derived from commensal bacteria and infectious pathogens. However, the molecular mechanism that regulates this persistent process is poorly understood. We report that Ewing Sarcoma Breakpoint Region 1 (EWSR1) is a brake to constitutive GC generation and immunoglobulin G (IgG) production in PPs, vaccination-induced GC formation, and IgG responses. Mechanistically, EWSR1 suppresses Bcl6 upregulation after antigen encounter, thereby negatively regulating induced GC B cell generation and IgG production. We further showed that tumor necrosis factor receptor-associated factor (TRAF) 3 serves as a negative regulator of EWSR1. These results established that the TRAF3-EWSR1 signaling axis acts as a checkpoint for Bcl6 expression and GC responses, indicating that this axis is a therapeutic target to tune GC responses and humoral immunity in infectious diseases.


Asunto(s)
Ganglios Linfáticos Agregados , Factor 3 Asociado a Receptor de TNF , Antígenos/metabolismo , Linfocitos B , Centro Germinal , Inmunoglobulina G/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Humanos
18.
Front Plant Sci ; 14: 1343402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38312353

RESUMEN

Introduction: Trehalose is vital for plant metabolism, growth, and stress resilience, relying on Trehalose-6-phosphate synthase (TPS) and Trehalose-6-phosphate phosphatase (TPP) genes. Research on these genes in cultivated peanuts (Arachis hypogaea) is limited. Methods: This study employed bioinformatics to identify and analyze AhTPS and AhTPP genes in cultivated peanuts, with subsequent experimental validation of AhTPS9's role in cold tolerance. Results: In the cultivated peanut genome, a total of 16 AhTPS and 17 AhTPP genes were identified. AhTPS and AhTPP genes were observed in phylogenetic analysis, closely related to wild diploid peanuts, respectively. The evolutionary patterns of AhTPS and AhTPP genes were predominantly characterized by gene segmental duplication events and robust purifying selection. A variety of hormone-responsive and stress-related cis-elements were unveiled in our analysis of cis-regulatory elements. Distinct expression patterns of AhTPS and AhTPP genes across different peanut tissues, developmental stages, and treatments were revealed, suggesting potential roles in growth, development, and stress responses. Under low-temperature stress, qPCR results showcased upregulation in AhTPS genes (AhTPS2-5, AhTPS9-12, AhTPS14, AhTPS15) and AhTPP genes (AhTPP1, AhTPP6, AhTPP11, AhTPP13). Furthermore, AhTPS9, exhibiting the most significant expression difference under cold stress, was obviously induced by cold stress in cultivated peanut, and AhTPS9-overexpression improved the cold tolerance of Arabidopsis by protect the photosynthetic system of plants, and regulates sugar-related metabolites and genes. Discussion: This comprehensive study lays the groundwork for understanding the roles of AhTPS and AhTPP gene families in trehalose regulation within cultivated peanuts and provides valuable insights into the mechanisms related to cold stress tolerance.

19.
Cell Death Dis ; 13(12): 1028, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477408

RESUMEN

Tumor-derived exosomes participate in omental metastatic colonization of ovarian cancer by inducing an adaptive response in the tumor microenvironment. However, cell-cell communication via exosomes between primary tumor cells and the microenvironment of distant omentum and the mechanism of pre-metastatic niche formation are poorly understood. Here, we demonstrated that ETS1-overexpressing ovarian cancer cells secreted larger exosomes with higher laminin levels. In addition, ovarian cancer exosomes could be taken up by omental macrophages through integrin and laminin interaction. Compared with control exosomes, exosomes derived from ETS1-overexpressing ovarian cancer cells (LV-ETS1 Exos) stimulated the polarization of more macrophages toward the M2 phenotype (CD163 marker), as well as the production of more CXCL5 and CCL2 in macrophages, via integrin αvß5/AKT/Sp1 signaling. In vivo experiments showed that LV-ETS1 Exos promoted omental metastasis of ovarian cancer by mediating the tumor-promoting effect of macrophages, which could be neutralized by integrin ανß5 inhibitor cilengitide. These results indicated that ETS1 could drive ovarian cancer cells to release exosomes with higher laminin levels, thereby accelerating the exosome-mediated pro-metastatic effects of omental macrophages via the integrin αvß5/AKT/Sp1 signaling pathway, and the integrin ανß5 inhibitor cilengitide could inhibit omental metastasis of ovarian cancer driven by tumor-derived exosomes.


Asunto(s)
Laminina , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/genética , Integrinas , Microambiente Tumoral , Proteína Proto-Oncogénica c-ets-1/genética
20.
Front Immunol ; 13: 946202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189231

RESUMEN

B-1 lymphocytes exhibit specialized roles in host defense against multiple pathogens. Despite the fact that CD19+CD93+B220lo/- B cells have been identified as B-1 progenitors, the definition for B-1 progenitors remains to be elucidated as CD19+CD93+B220+ B cells are capable to give rise to B-1 cells. Given that transcription factor Bhlhe41 is highly and preferentially expressed in B-1 cells and regulates B-1a cell development, we generated a transgenic mouse model, Bhlhe41dTomato-Cre , for fate mapping and functional analysis of B-1 cells. Bhlhe41dTomato-Cre mice efficiently traced Bhlhe41 expression, which was mainly restricted to B-1 cells in B-cell lineage. We showed an efficient and specific Cre-mediated DNA recombination in adult B-1 cells and neonatal B-1 progenitors rather than B-2 cells by flow cytometric analysis of Bhlhe41 dTomato-Cre/+ Rosa26 EYFP mice. Treatment of Bhlhe41 dTomato-Cre/+ Rosa26 iDTR mice with diphtheria toxin revealed a robust efficacy of B-1 cell depletion. Interestingly, using Bhlhe41 dTomato-Cre mice, we demonstrated that neonatal B-1 progenitors (CD19+CD93+B220lo/-) expressed Bhlhe41 and were identical to well-defined transitional B-1a progenitors (CD19+CD93+B220lo/-CD5+), which only gave rise to peritoneal B-1a cells. Moreover, we identified a novel population of neonatal splenic CD19hidTomato+B220hiCD43loCD5lo B cells, which differentiated to peritoneal B-1a and B-1b cells. Bhlhe41 deficiency impaired the balance between CD19hidTomato+B220lo/-CD5hi and CD19hidTomato+B220hiCD5lo cells. Hence, we identified neonatal CD19hidTomato+B220hiCD43loCD5lo B cells as novel transitional B-1 progenitors. Bhlhe41 dTomato-Cre/+ mouse can be used for fate mapping and functional studies of B-1 cells in host-immune responses.


Asunto(s)
Subgrupos de Linfocitos B , Animales , Antígenos CD19/genética , Antígenos CD19/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN/metabolismo , Toxina Diftérica/metabolismo , Modelos Animales de Enfermedad , Integrasas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...