Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Comput Biol Med ; 181: 108963, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216402

RESUMEN

MOTIVATION: This study aims to investigate non-covalent and non-peptide inhibitors of Mpro, a crucial protein target, by employing a comprehensive approach that integrates molecular docking, molecular dynamics simulations, and top-hits activity predictions. The focus is on elucidating the non-covalent and non-peptide binding modes of potential inhibitors with Mpro. METHODS: We employed a semi-flexible molecular docking methodology, binding score and ADME screening, which are based on structure, to screen compounds from CMNPD and HERB in silico. These methodologies allowed us to find potential candidates depending on their binding values and interactions with the binding site of main protease. To further evaluate the stability of these interactions, we conducted molecular dynamics simulations and calculated binding energies. Ultimately, a top-hits activity prediction method was employed to prioritize compounds based on their predicted inhibitory potential. RESULTS: Through a combination of binding energy calculations and activity predictions, we identified six potential inhibitor molecules exhibiting promising activity against Mpro. These compounds demonstrated favorable binding interactions and stability profiles, making them attractive candidates for further experimental validation and drug development efforts targeting Mpro.


Asunto(s)
Productos Biológicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Humanos , Unión Proteica
2.
Mikrochim Acta ; 191(9): 522, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112842

RESUMEN

An ultrasensitive photothermal assay was designed for point-of-care testing (POCT) of tumor markers based on a filter membrane. Firstly, Cu2-xSe was successfully encapsulated in liposome spheres with biotin on the surface and connected to carcinoembryonic antigen (CEA) aptamer with 3'end modified biotin by streptavidin. Secondly, the CEA antibody was successfully modified on the surface of the nitrocellulose membrane through simple incubation. Finally, the assay process was completed using a disposable syringe, and the temperature was recorded using a handheld infrared temperature detector. In the range 0-50 ng mL-1, the temperature change of the nitrocellulose membrane has a strong linear relationship with CEA concentration, and the detection limit is 0.097 ng mL-1. It is worth noting that the entire testing process can be easily performed in 10 min, much shorter than traditional clinical methods. In addition, this method was successfully applied to the quantitative determination of CEA levels in human serum samples with a recovery of 96.2-103.3%. This rapid assay can be performed by "one suction and one push" through a disposable syringe, which is simple to operate, and the excellent sensitivity reveals the great potential of the proposed strategy in the POCT of tumor biomarkers.


Asunto(s)
Aptámeros de Nucleótidos , Biomarcadores de Tumor , Antígeno Carcinoembrionario , Cobre , Límite de Detección , Humanos , Antígeno Carcinoembrionario/sangre , Cobre/química , Aptámeros de Nucleótidos/química , Biomarcadores de Tumor/sangre , Liposomas/química , Técnicas Biosensibles/métodos , Sistemas de Atención de Punto , Temperatura , Biotina/química , Pruebas en el Punto de Atención , Colodión/química
3.
Mikrochim Acta ; 191(8): 447, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963544

RESUMEN

An intelligent nanodrug delivery system (Cu/ZIF-8@GOx-DOX@HA, hereafter CZGDH) consisting of Cu-doped zeolite imidazolate framework-8 (Cu/ZIF-8, hereafter CZ), glucose oxidase (GOx), doxorubicin (DOX), and hyaluronic acid (HA) was established for targeted drug delivery and synergistic therapy of tumors. The CZGDH specifically entered tumor cells through the targeting effect of HA and exhibited acidity-triggered biodegradation for subsequent release of GOx, DOX, and Cu2+ in the tumor microenvironment (TME). The GOx oxidized the glucose (Glu) in tumor cells to produce H2O2 and gluconic acid for starvation therapy (ST). The DOX entered the intratumoral cell nucleus for chemotherapy (CT). The released Cu2+ consumed the overexpressed glutathione (GSH) in tumor cells to produce Cu+. The generated Cu+ and H2O2 triggered the Fenton-like reaction to generate toxic hydroxyl radicals (·OH), which disrupted the redox balance of tumor cells and effectively killed tumor cells for chemodynamic therapy (CDT). Therefore, synergistic multimodal tumor treatment via TME-activated cascade reaction was achieved. The nanodrug delivery system has a high drug loading rate (48.3 wt%), and the three-mode synergistic therapy has a strong killing effect on tumor cells (67.45%).


Asunto(s)
Cobre , Doxorrubicina , Glucosa Oxidasa , Ácido Hialurónico , Estructuras Metalorgánicas , Microambiente Tumoral , Zeolitas , Cobre/química , Doxorrubicina/farmacología , Doxorrubicina/química , Microambiente Tumoral/efectos de los fármacos , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Humanos , Zeolitas/química , Animales , Estructuras Metalorgánicas/química , Ácido Hialurónico/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Línea Celular Tumoral , Ratones , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Imidazoles
4.
Anal Chem ; 96(28): 11603-11610, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38953495

RESUMEN

Long noncoding RNAs (lncRNAs) act as the dynamic regulatory molecules that control the expression of genes and affect numerous biological processes, and their dysregulation is associated with tumor progression. Herein, we develop a fluorescent light-up aptasensor to simultaneously measure multiple lncRNAs in living cells and breast tissue samples based on the DNAzyme-mediated cleavage reaction and transcription-driven synthesis of light-up aptamers. When target lncRNAs are present, they can be recognized by template probes to form the active DNAzyme structures, initiating the T4 PNK-catalyzed dephosphorylation-triggered extension reaction to generate double-strand DNAs with the T7 promoter sequences. The corresponding T7 promoters can initiate the transcription amplification catalyzed by the T7 RNA polymerase to generate abundant Broccoli aptamers and malachite green aptamers, which can bind DFHBI-1T and MG to generate strong fluorescence signals. Taking advantage of the good selectivity of DNAzyme-mediated cleavage of lncRNAs, high amplification efficiency of T7 transcription-driven amplification reaction, and bright fluorescence of the RNA aptamer-fluorophore complex, this method exhibits high sensitivity with a detection limit of 21.4 aM for lncRNA HOTAIR and 18.47 aM for lncRNA MALAT1, and it can accurately measure multiple lncRNAs in both tumor cell lines and breast tissue samples, providing a powerful paradigm for biomedical research and early clinic diagnostics.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , Colorantes Fluorescentes , ARN Largo no Codificante , ADN Catalítico/química , ADN Catalítico/metabolismo , ARN Largo no Codificante/análisis , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Humanos , Aptámeros de Nucleótidos/química , Colorantes Fluorescentes/química , Límite de Detección , Fluorescencia
5.
ACS Nano ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016679

RESUMEN

Nanocatalytic therapy is an emerging technology that uses synthetic nanoscale enzyme mimics for biomedical treatment. However, in the field of neuroscience, achieving neurological protection while simultaneously killing tumor cells is a technical challenge. Herein, we synthesized a biomimic and translational cerium vanadate (CeVO4) nanozyme for glioblastoma (GBM) therapy and the repair of brain damage after GBM ionizing radiation (IR). This system exhibited pH dependence: it showed potent Superoxide dismutase (SOD) enzyme activity in a neutral environment and Peroxidase (POD) enzyme activity in an acidic environment. In GBM cells, this system acted in lysosomes, causing cellular damage and reactive oxygen species (ROS) accumulation; in neuronal cells, this nanozyme could undergo lysosomal escape and nanozyme aggregation with mitochondria, reversing the mitochondrial damage caused by IR and restoring the expression level of the antiapoptotic BCL-2 protein. Mechanistically, we believe that this distribution difference is related to the specific uptake internalization mechanism and lysosomal repair pathway in neurons, and ultimately led to the dual effect of tumor killing and nerve repair in the in vivo model. In summary, this study provides insight into the repair of brain damage after GBM radiation therapy.

6.
Biosens Bioelectron ; 263: 116602, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067411

RESUMEN

Conventional lateral flow assays based on colorimetry and fluorescence still have shortages in sensitivity and selectivity due to the severe background interference from complex human fluid sample matrices. In this work, Cu2-xAgxS nanocrystals with high photothermal conversion efficiency and good peroxidase-like activity were synthesized and applied in the construction of a dual-mode near-infrared-photothermal/chemiluminescence (CL) vertical flow assay of carcinoembryonic antigen (CEA). These two-mode principles showed nearly zero background and the synthesized Cu2-xAgxS exhibited a high photothermal conversion efficiency of 75.23%, enabling the luminol-H2O2 CL system to have over 4 min of chemiluminescence. By combining filter membrane enrichment, Cu2-xAgxS@liposome encapsulation amplification, and nanozyme catalysis, a dual-mode photothermal/CL portable assay was constructed for sensitive and accurate detection of CEA in serum, with linear ranges of 0.02-40 and 0.001-30 ng mL-1, and detection limits of 0.0023 and 0.00029 ng mL-1, respectively. Furthermore, a smartphone application and a 3D printing device were combined for point-of-care testing. This assay can be completed within 20 min, with simple operation and no need for large instruments. It exhibited good sensitivity, selectivity, and stability, and is expected to be used in early diagnosis and prevention of relevant diseases in resource-limited areas.


Asunto(s)
Técnicas Biosensibles , Antígeno Carcinoembrionario , Cobre , Límite de Detección , Liposomas , Mediciones Luminiscentes , Antígeno Carcinoembrionario/sangre , Humanos , Liposomas/química , Cobre/química , Luminol/química , Peróxido de Hidrógeno/química , Nanopartículas/química
7.
Angew Chem Int Ed Engl ; 63(34): e202406694, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38853141

RESUMEN

J-aggregation brings intriguing optical and electronic properties to molecular dyes and significantly expands their applicability across diverse domains, yet the challenge for rationally designing J-aggregating dyes persists. Herein, we developed a large number of J-aggregating dyes from scratch by progressively refining structure of a common heptamethine cyanine. J-aggregates with sharp spectral bands (full-width at half-maximum≤38 nm) are attained by introducing a branched structure featuring a benzyl and a trifluoroacetyl group at meso-position of dyes. Fine-tuning the benzyl group enables spectral regulation of J-aggregates. Analysis of single crystal data of nine dyes reveals a correlation between J-aggregation propensity and molecular arrangement within crystals. Some J-aggregates are successfully implemented in multiplexed optoacoustic and fluorescence imaging in animals. Notably, three-color multispectral optoacoustic tomography imaging with high spatiotemporal resolution is achieved, owing to the sharp and distinct absorption bands of the J-aggregates.


Asunto(s)
Carbocianinas , Colorantes Fluorescentes , Imagen Óptica , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Carbocianinas/química , Animales , Colorantes Fluorescentes/química , Ratones , Estructura Molecular
8.
Anal Chem ; 96(26): 10669-10676, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38913536

RESUMEN

DNA walker, a type of dynamic DNA device that is capable of moving progressively along prescribed walking tracks, has emerged as an ideal and powerful tool for biosensing and bioimaging. However, most of the reported three-dimensional (3D) DNA walker were merely designed for the detection of a single target, and they were not capable of achieving universal applicability. Herein, we reported for the first time the development of a proximity-induced 3D bipedal DNA walker for imaging of low abundance biomolecules. As a proof of concept, miRNA-34a, a biomarker of breast cancer, is chosen as the model system to demonstrate this approach. In our design, the 3D bipedal DNA walker can be generated only by the specific recognition of two proximity probes for miRNA-34a. Meanwhile, it stochastically and autonomously traveled on 3D tracks (gold nanoparticles) via catalytic hairpin assembly (CHA), resulting in the amplified fluorescence signal. In comparison with some conventional DNA walkers that were utilized for living cell imaging, the 3D DNA walkers induced by proximity ligation assay can greatly improve and ensure the high selectivity of bioanalysis. By taking advantage of these unique features, the proximity-induced 3D bipedal DNA walker successfully realizes accurate and effective monitoring of target miRNA-34a expression levels in living cells, affording a universal, valuable, and promising platform for low-abundance cancer biomarker detection and accurate identification of cancer.


Asunto(s)
Oro , MicroARNs , MicroARNs/análisis , MicroARNs/metabolismo , Humanos , Oro/química , ADN/química , Nanopartículas del Metal/química , Técnicas Biosensibles
9.
Mikrochim Acta ; 191(7): 376, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849560

RESUMEN

CRISPR/Cas system has been widely applied in the assay of disease-related nucleic acids. However, it is still challenging to use CRISPR/Cas system to detect multiple nucleic acids at the same time. Herein, we combined the preponderance of DNA logic circuit, label-free, and CRISPR/Cas technology to construct a label-free "AND" logical gate for multiple microRNAs detection with high specificity and sensitivity. With the simultaneous input of miRNA-155 and miRNA-141, the logic gate starts, and the activation chain of Cas12a is destroyed; thus, the activity is inhibited and the fluorescence of the signal probe ssDNA-AgNCs is turned on. The detection limit of this method for simultaneous quantitative detection of double target is 84 fmol/L (S/N = 3). In this "AND" logic gate, it is only necessary for the design of a simple DNA hairpin probe, which is inexpensive and easy, and since this method involves only one signal output, the data processing is very simple. What is more important, in this strategy two types of microRNAs can be monitored simultaneously by only using CRISPR/Cas12a and a type of crRNA, which offers a new design concept for the exploitation of single CRISPR/Cas system for multiple nucleic acid assays.


Asunto(s)
Sistemas CRISPR-Cas , MicroARNs , MicroARNs/análisis , MicroARNs/genética , Sistemas CRISPR-Cas/genética , Humanos , Límite de Detección , Proteínas Asociadas a CRISPR/genética , Endodesoxirribonucleasas/genética , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Proteínas Bacterianas/genética , ADN/genética , ADN/química
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124547, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823237

RESUMEN

It is crucial to identify aberrant HClO levels in living things since they pose a major health risk and are a frequent reactive oxygen species (ROS) in living organisms. In order to detect HClO in various biological systems, we created and synthesized a near-infrared fluorescent probe with an oxime group (-C = N-OH) as a recognition unit. The probe DCMP1 has the advantages of fast response (10 min), near-infrared emission (660 nm), large Stokes shift (170 nm) and high selectivity. This probe DCMP1 not only detects endogenous HClO in living cells, but also enables further fluorescence detection of HClO in living zebrafish. More importantly, it can also be used for fluorescence imaging of HClO in an rheumatoid arthritis mouse model. This fluorescent probe DCMP1 is anticipated to be an effective tool for researching HClO.


Asunto(s)
Artritis Reumatoide , Modelos Animales de Enfermedad , Colorantes Fluorescentes , Ácido Hipocloroso , Pez Cebra , Animales , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Ácido Hipocloroso/análisis , Ácido Hipocloroso/metabolismo , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/patología , Ratones , Humanos , Imagen Óptica , Espectrometría de Fluorescencia
11.
Anal Chem ; 96(19): 7687-7696, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38693877

RESUMEN

Smart theranostic nanoprobes with the integration of multiple therapeutic modalities are preferred for precise diagnosis and efficient therapy of tumors. However, it remains a big challenge to arrange the imaging and two or more kinds of therapeutic agents without weakening the intended performances. In addition, most existing fluorescence (FL) imaging agents suffer from low spatiotemporal resolution due to the short emission wavelength (<900 nm). Here, novel three-in-one Ag2S quantum dot (QD)-based smart theranostic nanoprobes were proposed for in situ ratiometric NIR-II FL imaging-guided ion/gas combination therapy of tumors. Under the acidic tumor microenvironment, three-in-one Ag2S QDs underwent destructive degradation, generating toxic Ag+ and H2S. Meanwhile, their FL emission at 1270 nm was weakened. Upon introduction of a downconversion nanoparticle (DCNP) as the delivery carrier and NIR-II FL reference signal unit, the formed Ag2S QD-based theranostic nanoprobes could achieve precise diagnosis of tumors through ratiometric NIR-II FL signals. Also, the generated Ag+ and H2S enabled specific ion/gas combination therapy toward tumors. By combining the imaging and therapeutic functions, three-in-one Ag2S QDs may open a simple yet reliable avenue to design theranostic nanoprobes.


Asunto(s)
Imagen Óptica , Puntos Cuánticos , Compuestos de Plata , Puntos Cuánticos/química , Compuestos de Plata/química , Humanos , Animales , Ratones , Rayos Infrarrojos , Nanomedicina Teranóstica , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/química , Concentración de Iones de Hidrógeno
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124392, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704997

RESUMEN

Nanozyme-based colorimetric sensing has drawn immense attention due to the rapid development of nanozyme in recent years. However, the selectivity of nanozyme-based colorimetric sensing greatly limits its subsequent practical application. It is well known that sample pretreatment can not only improve selectivity by eliminating the sample matrix interference, but also improve sensitivity by enriching trace targets. Based on the easy facile surface modification properties of nanozyme, we rationally designed nanozyme combined with sample pretreatment for colorimetric biosensing, through separation and enrichment, thereby improving the selectivity and sensitivity of the nanozyme colorimetric biosensing. As a proof of concept, the detection of Hg2+ by nanozyme-based colorimetric sensing was used as an example. Magnetic peroxidase-like nanozyme Fe3S4 was designed and synthesized. The selectivity is improved by the specific adsorption of S-Hg bond and the interference elimination after magnetic separation. In addition, the sensitivity is improved by magnetic solid-phase extraction enrichment. Our established colorimetric sensing based on Fe3S4 nanozyme integrated sample pretreatment with an enrichment factor of 100 and the limit of detection (LOD) is 26 nM. In addition, this strategy was successfully applied to detect Hg2+ in environmental water samples. Overall, the strategy showed good selectivity and sensitivity, providing a new practical method for the application of nanozyme-based biosensing in sample pretreatment.


Asunto(s)
Colorimetría , Límite de Detección , Mercurio , Estructuras Metalorgánicas , Extracción en Fase Sólida , Mercurio/análisis , Mercurio/aislamiento & purificación , Colorimetría/métodos , Extracción en Fase Sólida/métodos , Estructuras Metalorgánicas/química , Catálisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Peroxidasa/química , Técnicas Biosensibles/métodos
13.
Eur J Med Chem ; 272: 116474, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735149

RESUMEN

Small molecule photosensitizers for combined in vivo tailored cancer diagnostics and photodynamic/photothermal therapy are desperately needed. Monoamine oxidase A (MAO-A)-activated therapeutic and diagnostic compounds provide great selectivity because MAO-A can be employed as a biomarker for associated Tumors. In order to screen photosensitizers with photodynamic therapeutic potential, we have created a range of near-infrared fluorescent molecules in this work by combining dihydroxanthene parent with various heterocyclic fluorescent dyes. The NIR fluorescent diagnostic probe, DHMQ, was created by combining the screened fluorescent dye matrices with the propylamino group, which is the recognition moiety of MAO-A, based on the oxidative deamination mechanism of the enzyme. This probe has a low toxicity level and can identify MAO-A precisely. It has the ability to use fluorescence imaging on mice and cells to track MAO-A activity in real-time. It has strong phototoxicity and can produce singlet oxygen when exposed to laser light. The temperature used in photothermal imaging can get up to 50 °C, which can harm tumor cells permanently and have a positive phototherapeutic impact on tumors grown from SH-SY5Y xenograft mice. The concept of using MAO-A effectively in diseases is expanded by the MAO-A-activated diagnostic-integrated photosensitizers, which offer a new platform for in vivo cancer diagnostics and targeted anticancer treatment.


Asunto(s)
Monoaminooxidasa , Fotoquimioterapia , Fármacos Fotosensibilizantes , Terapia Fototérmica , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Animales , Humanos , Monoaminooxidasa/metabolismo , Ratones , Xantenos/química , Xantenos/farmacología , Xantenos/síntesis química , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ratones Desnudos
14.
ACS Appl Mater Interfaces ; 16(20): 25879-25891, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718301

RESUMEN

Biological imaging-guided targeted tumor therapy has been a soughtafter goal in the field of cancer diagnosis and treatment. To this end, we proposed a strategy to modulate surface plasmon resonance and endow WO3-x nanoparticles (NPs) with enzyme-like catalytic properties by doping Fe2+ in the structure of the NPs. Doping of the Fe2+ introduced oxygen vacancies into the structure of the NPs, inducing a red shift of the maximum absorption wavelength into the near-infrared II (NIR-II) region and enhancing the photoacoustic (PA) and photothermal properties of the NPs for more effective imaging-guided cancer therapy. Under NIR-II laser irradiation, the Fe-WO3-x NPs produced very strong NIR-II PA and photothermal effects, which significantly enhanced the PA imaging and photothermal treatment effects. On the other hand, Fe2+ in Fe-WO3-x could undergo Fenton reactions with H2O2 in the tumor tissue to generate ·OH for chemodynamic therapy. In addition, Fe-WO3-x can also catalyze the above reactions to produce more reactive oxygen species (ROS) and induce the oxidation of NADH to interfere with intracellular adenosine triphosphate (ATP) synthesis, thereby further improving the efficiency of cancer therapy. Specific imaging of tumor tissue and targeted synergistic therapy was achieved after ligation of a MUC1 aptamer to the surface of the Fe-WO3-x NPs by the complexing of -COOH in MUC1 with tungsten ions on the surface of the NPs. These results demonstrated that Fe-WO3-x NPs could be a promising diagnosis and therapeutic agent for cancer. Such a study opens up new avenues into the rational design of nanodiagnosis and treatment agents for NIR-II PA imaging and cancer therapy.


Asunto(s)
Técnicas Fotoacústicas , Resonancia por Plasmón de Superficie , Tungsteno , Animales , Humanos , Ratones , Tungsteno/química , Rayos Infrarrojos , Óxidos/química , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Nanopartículas/uso terapéutico , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo
15.
Mikrochim Acta ; 191(5): 244, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578321

RESUMEN

The sensing sensitivity was improved for silver nanoparticles (AgNPs)-based colorimetric biosensors by using the most suitable salt to induce AgNPs aggregation. As for the salt composed of low-affinity anion and monovalent cation, the cation-dependent charge screening effect was the driving force for AgNPs aggregation. Apart from the charge screening effect, both the bridging of multivalent cation to the surface ligand of AgNP and the interaction between anion and Ag contributed to inducing AgNPs aggregation. Considering the higher aggregation efficiency of AgNPs resulted in a narrower sensing range, salt composed of low-affinity anion and monovalent cation was recommended for AgNPs-based colorimetric analysis, which was confirmed by fourfold higher sensitivity of DNA-21 detection using NaF than NaCl. This work inspires further thinking on improving the sensing performance of metal nanomaterials-based sensors from the point of colloidal surface science.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Cloruro de Sodio , Plata , Colorimetría/métodos , Aniones , Cationes Monovalentes
16.
Biosens Bioelectron ; 257: 116310, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643549

RESUMEN

Nanozymes have been widely used in the field of biosensing owing to their high stability, low cost, adjustable catalytic activity, and convenient modification. However, achieving high selectivity and sensitivity simultaneously in nanozyme-based colorimetric sensing remains a major challenge. Nanozymes are nanomaterials with enzyme-simulating activity that are often used as solid-phase adsorbents for sample pretreatment. Our design strategy integrated sample pretreatment function into the nanozyme through separation and enrichment, thereby improving the selectivity and sensitivity of nanozyme-based colorimetric biosensing. As a proof-of-concept, glucose was used as the model analyte in this study. A phenylboric acid-modified magnetic nanozyme (Cu/Fe3O4@BA) was rationally designed and synthesized. Selectivity was enhanced by boronate-affinity specific adsorption and the elimination of interference after magnetic separation. In addition, magnetic solid-phase extraction enrichment was used to improve the sensitivity. A recovery rate of more than 80% was reached when the enrichment factor was 50. The synthesized magnetic Cu/Fe3O4@BA was recyclable at least five times. The proposed method exhibited excellent selectivity and sensitivity, simple operation, and recyclability, providing a novel and practical strategy for designing multifunctional nanozymes for biosensing.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Cobre , Glucosa , Técnicas Biosensibles/métodos , Colorimetría/métodos , Cobre/química , Glucosa/análisis , Glucosa/aislamiento & purificación , Glucosa/química , Nanoestructuras/química , Límite de Detección , Extracción en Fase Sólida/métodos , Ácidos Borónicos/química , Adsorción
17.
Nanoscale ; 16(17): 8597-8606, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38602353

RESUMEN

Frequently, subcellular-targeted drugs tend to accumulate in lysosomes after cellular absorption, a process termed the lysosomal trap. This accumulation often interferes with the drug's ability to bind to its target, resulting in decreased efficiency. Existing methods for addressing lysosome-induced drug resistance mainly involve improving the structures of small molecules or enveloping drugs in nanomaterials. Nonetheless, these approaches can lead to changes in the drug structure or potentially trigger unexpected reactions within organisms. To address these issues, we introduced a strategy that involves inactivating the lysosome with the use of Ag nanoparticles (Cy3.5@Ag NPs). In this method, the Cy3.5@Ag NPs gradually accumulate inside lysosomes, leading to permeation of the lysosomal membrane and subsequent lysosomal inactivation. In addition, Cy3.5@Ag NPs also significantly affected the motility of lysosomes and induced the occurrence of lysosome passivation. Importantly, coincubating Cy3.5@Ag NPs with various subcellular-targeted drugs was found to significantly increase the efficiency of these treatments. Our strategy illustrates the potential of using lysosomal inactivation to enhance drug efficacy, providing a promising therapeutic strategy for cancer.


Asunto(s)
Lisosomas , Nanopartículas del Metal , Plata , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología
18.
Anal Chem ; 96(16): 6483-6492, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38613481

RESUMEN

A disease-targeting nanoplatform that integrates imaging with therapeutic activity would facilitate early diagnosis, treatment, and therapeutic monitoring. To this end, a macrophage membrane-coated Cu-WO3-x-Hydro820 (CWHM) nanoreactor was prepared. This reactor was shown to target inflammatory tissues. The reactive oxygen species (ROS) such as H2O2 and ·OH in inflammatory tissues can react with Hydro820 in the reactor to form the NIR fluorophore IR820. This process allowed photoacoustic/fluorescence dual-mode imaging of H2O2 and ·OH, and it is expected to permit visual diagnosis of inflammatory diseases. The Cu-WO3-x nanoparticles within the nanoreactor shown catalase and superoxide enzyme mimetic activity, allowing the nanoreactor to catalyze the decomposition of H2O2 and ·O2- in inflammatory cells of hepatic tissues in a mouse model of liver injury, thus alleviating the oxidative stress of damaged liver tissue. This nanoreactor illustrates a new strategy for the diagnosis and treatment of hepatitis and inflammatory liver injury.

19.
Anal Chem ; 96(13): 5323-5330, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501982

RESUMEN

Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.


Asunto(s)
ADN Polimerasa Dirigida por ADN , ADN , Guanina/análogos & derivados , Humanos , ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Daño del ADN , Biomarcadores , Reparación del ADN
20.
ACS Sens ; 9(3): 1280-1289, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38456635

RESUMEN

DNA motors have attracted extensive interest in biosensing and bioimaging. However, the amplification capacity of the existing DNA motor systems is limited since the products from the walking process are unable to feedback into the original DNA motor systems. As a result, the sensitivities of such systems are limited in the contexts of biosensing and bioimaging. In this study, we report a novel self-feedback DNAzyme motor for the sensitive imaging of tumor-related mRNA in live cells and in vivo with cascade signal amplification capacity. Gold nanoparticles (AuNPs) are modified with hairpin-locked DNAzyme walker and track strands formed by hybridizing Cy5-labeled DNA trigger-incorporated substrate strands with assistant strands. Hybridization of the target mRNA with the hairpin strands activates DNAzyme and promotes the autonomous walking of DNAzyme on AuNPs through DNAzyme-catalyzed substrate cleavage, resulting in the release of many Cy5-labeled substrate segments containing DNA triggers and the generation of an amplified fluorescence signal. Moreover, each released DNA trigger can also bind with the hairpin strand to activate and operate the original motor system, which induces further signal amplification via a feedback mechanism. This motor exhibits a 102-fold improvement in detection sensitivity over conventional DNAzyme motors and high selectivity for target mRNA. It has been successfully applied to distinguish cancer cells from normal cells and diagnose tumors in vivo based on mRNA imaging. The proposed DNAzyme motor provides a promising paradigm for the amplified detection and sensitive imaging of low-abundance biomolecules in vivo.


Asunto(s)
Carbocianinas , ADN Catalítico , Nanopartículas del Metal , ADN Catalítico/química , Oro/química , Retroalimentación , Nanopartículas del Metal/química , ADN/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...