Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(9): e1011393, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39264939

RESUMEN

Holometabolous insects undergo morphological remodeling from larvae to pupae and to adults with typical changes in the cuticle; however, the mechanism is unclear. Using the lepidopteran agricultural insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the transcription factor RUNT-like (encoded by Runt-like) regulates the development of the pupal cuticle via promoting a pupal cuticle protein gene (HaPcp) expression. The HaPcp was highly expressed in the epidermis and wing during metamorphosis and was found being involved in pupal cuticle development by RNA interference (RNAi) analysis in larvae. Runt-like was also strongly upregulated in the epidermis and wing during metamorphosis. Knockdown of Runt-like produced similar phenomena, a failure of abdomen yellow envelope and wing formation, to those following HaPcp knockdown. The insect molting hormone 20-hydroxyecdysonen (20E) upregulated HaPcp transcription via RUNT-like. 20E upregulated Runt-like transcription via nuclear receptor EcR and the transcription factor FOXO. Together, RUNT-like and HaPCP are involved in pupal cuticle development during metamorphosis under 20E regulation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos , Mariposas Nocturnas , Animales , Ecdisterona/metabolismo , Epidermis/metabolismo , Epidermis/crecimiento & desarrollo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Metamorfosis Biológica , Muda/genética , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Pupa/crecimiento & desarrollo , Pupa/genética , Pupa/metabolismo , Interferencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
2.
BMC Biol ; 22(1): 171, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135168

RESUMEN

BACKGROUND: Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study. RESULTS: This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling. CONCLUSIONS: The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.


Asunto(s)
Encéfalo , Ácidos Grasos no Esterificados , Homeostasis , Animales , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Ácidos Grasos no Esterificados/metabolismo , Lipasa/metabolismo , Lipasa/genética , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Hormonas Juveniles/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Metamorfosis Biológica/fisiología , Ecdisterona/metabolismo
3.
Insect Sci ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185918

RESUMEN

The fat body of the holometabolous insect is remodeled by the degradation of the larval fat body and the development of the adult fat body during metamorphosis. However, the mechanism of adult fat body development is quite unclear. Using the agricultural pest Helicoverpa armigera, the cotton bollworm, as a model, we revealed that the development of adult fat body was regulated by glycolysis, triglyceride (triacylglycerol [TAG]) synthesis, cell proliferation, and cell adhesion. RNA sequencing detected a set of genes that were upregulated in the 8-d late pupal fat body at a late metamorphic stage compared with the 2-d pupal fat body at an earlier metamorphic stage. The pathways for glycolysis, TAG synthesis, cell proliferation, and cell adhesion were enriched by the differentially expressed genes, and the key genes linked with these pathways showed increased expression in the 8-d pupal fat body. Knockdown of phosphofructokinase (Pfk), acetyl-CoA carboxylase (Acc1), phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit (P110) and collagen alpha-1(IV) chain (Col4a1) by RNA interference resulted in abnormal eclosion and death at pupal stages, and repressed lipid droplets accumulation and adult fat body development. The expression of Acc1, P110, and Col4a1 was repressed by the insect steroid hormone 20-hydroxyecdysone (20E). The critical genes in the 20E pathway appeared to decrease at the late pupal stage. These data suggested that the development of the insect adult fat body is regulated by glycolysis, lipids synthesis, cell proliferation, and cell adhesion at the late pupal stage when the 20E signal decreases.

5.
J Virol ; 98(7): e0043324, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38888346

RESUMEN

The cellular endosomal sorting complex required for transport (ESCRT) system comprises five distinct components and is involved in many different physiological processes. Recent studies have shown that different viruses rely upon the host ESCRT system for viral infection. However, whether this system is involved in white spot syndrome virus (WSSV) infection remains unclear. Here, we identified 24 homologs of ESCRT subunits in kuruma shrimp, Marsupenaeus japonicus, and found that some key components were strongly upregulated in shrimp after WSSV infection. Knockdown of key components of the ESCRT system using RNA interference inhibited virus replication, suggesting that the ESCRT system is beneficial for WSSV infection. We further focused on TSG101, a crucial member of the ESCRT-I family that plays a central role in recognizing cargo and activating the ESCRT-II and ESCRT-III complexes. TSG101 colocalized with WSSV in hemocytes. The addition of N16 (a TSG101 inhibitor) markedly decreased WSSV replication. TSG101 and ALIX of the ESCRT system interact with WSSV envelope proteins. The host proteins TSG101, RAB5, and RAB7, the viral protein VP28, and DNA were detected in endosomes isolated from hemocytes of WSSV-infected shrimp. Knockdown of Rab5 and Rab7 expression reduced viral replication. Taken together, these results suggest that the ESCRT system is hijacked by WSSV for transport through the early to late endosome pathway. Our work identified a novel requirement for the intracellular trafficking and infection of WSSV, and provided novel therapeutic targets for the prevention and control of WSSV in shrimp aquaculture. IMPORTANCE: Viruses utilize the ESCRT machinery in a variety of strategies for their replication and infection. This study revealed that the interaction of ESCRT complexes with WSSV envelope proteins plays a crucial role in WSSV infection in shrimp. The ESCRT system is conserved in the shrimp Marsupenaeus japonicus, and 24 homologs of the ESCRT system were identified in the shrimp. WSSV exploits the ESCRT system for transport and propagation via the interaction of envelope proteins with host TSG101 and ALIX in an endosome pathway-dependent manner. Understanding the underlying mechanisms of WSSV infection is important for disease control and breeding in shrimp aquaculture.


Asunto(s)
Proteínas de Unión al ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte , Penaeidae , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1 , Animales , Virus del Síndrome de la Mancha Blanca 1/fisiología , Virus del Síndrome de la Mancha Blanca 1/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Penaeidae/virología , Penaeidae/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Endosomas/metabolismo , Endosomas/virología , Hemocitos/virología , Hemocitos/metabolismo , Interacciones Huésped-Patógeno , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Interferencia de ARN
6.
Fish Shellfish Immunol ; 151: 109679, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844185

RESUMEN

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) typically composing of eight subunits (CSN1-8) mediates the process of deneddylation and deubiquitination. The fifth subunit of COP9 signalosome, CSN5, has special characteristics compared with the other seven subunits, and plays vital roles in the deneddylation activity and diverse cellular processes. However, the role of CSN5 in antiviral immunity is not clear. In this study, we identified 8 subunits (CSN1-8) of COP9 signalosome in shrimp Marsupenaeus japonicus. CSN1-6 were existed in all tested tissues, but CSN7-CSN8 were not detected in hepatopancreas. After WSSV challenged, the expression level of Csn1 to Csn4, and Csn6 to Csn8 were highly decreased, but the expression level of Csn5 was conspicuously increased in shrimp challenged by white spot syndrome virus (WSSV). The CSN5 was recombinantly expressed in Escherichia coli and its polyclonal antibody was prepared. The expression level of CSN5 was conspicuously increased at RNA and protein levels in the shrimp challenged by WSSV. After knockdown of Csn5 by RNA interference, the WSSV replication was obviously increased in shrimp. When injected the recombinant protein of CSN5 with the membrane penetrating peptide into shrimp, WSSV replication was inhibited and the survival rate of shrimp was significantly improved compared with control. We further analyzed the expression of antimicrobial peptides (AMPs) in Csn5-RNAi shrimp, and the results showed that the expression of several AMPs was declined significantly. These results indicate that CSN5 inhibits replication of WSSV via regulating expression of AMPs in shrimp, and the recombinant CSN5 might be used in shrimp aquaculture for the white spot syndrome disease control.


Asunto(s)
Proteínas de Artrópodos , Complejo del Señalosoma COP9 , Inmunidad Innata , Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Penaeidae/genética , Penaeidae/inmunología , Complejo del Señalosoma COP9/genética , Complejo del Señalosoma COP9/inmunología , Virus del Síndrome de la Mancha Blanca 1/fisiología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Alineación de Secuencia/veterinaria , Filogenia
7.
Acta Pharmacol Sin ; 45(9): 1964-1977, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38698214

RESUMEN

The retinoic acid receptor-related orphan receptor γ (RORγ) is regarded as an attractive therapeutic target for the treatment of prostate cancer. Herein, we report the identification, optimization, and evaluation of 1,2,3,4-tetrahydroquinoline derivatives as novel RORγ inverse agonists, starting from high throughput screening using a thermal stability shift assay (TSA). The representative compounds 13e (designated as XY039) and 14a (designated as XY077) effectively inhibited the RORγ transcriptional activity and exhibited excellent selectivity against other nuclear receptor subtypes. The structural basis for their inhibitory potency was elucidated through the crystallographic study of RORγ LBD complex with 13e. Both 13e and 14a demonstrated reasonable antiproliferative activity, potently inhibited colony formation and the expression of AR, AR regulated genes, and other oncogene in AR positive prostate cancer cell lines. Moreover, 13e and 14a effectively suppressed tumor growth in a 22Rv1 xenograft tumor model in mice. This work provides new and valuable lead compounds for further development of drugs against prostate cancer.


Asunto(s)
Antineoplásicos , Proliferación Celular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Neoplasias de la Próstata , Quinolinas , Masculino , Animales , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Quinolinas/farmacología , Quinolinas/química , Quinolinas/uso terapéutico , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Agonismo Inverso de Drogas , Ratones , Ratones Desnudos , Descubrimiento de Drogas , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C
8.
J Biol Chem ; 300(3): 105704, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309506

RESUMEN

Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.


Asunto(s)
Autofagia , Ecdisterona , Helicoverpa armigera , Histona Acetiltransferasas , Histonas , Procesamiento Proteico-Postraduccional , Acetilación , Autofagia/genética , Ecdisterona/metabolismo , Regiones Promotoras Genéticas , Helicoverpa armigera/genética , Helicoverpa armigera/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo
9.
Int J Biol Macromol ; 256(Pt 1): 128333, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007022

RESUMEN

Viruses have developed superior strategies to escape host defenses or exploit host components and enable their infection. The forkhead box transcription factor O family proteins (FOXOs) are reportedly utilized by human cytomegalovirus during their reactivation in mammals, but if FOXOs are exploited by viruses during their infection remains unclear. In the present study, we found that the FOXO of kuruma shrimp (Marsupenaeus japonicus) was hijacked by white spot syndrome virus (WSSV) during infection. Mechanistically, the expression of leucine carboxyl methyl transferase 1 (LCMT1) was up-regulated during the early stages of WSSV infection, which activated the protein phosphatase 2A (PP2A) by methylation, leading to dephosphorylation of FOXO and translocation into the nucleus. The FOXO directly promoted transcription of the immediate early gene, wsv079 of WSSV, which functioned as a transcriptional activator to initiate the expression of viral early and late genes. Thus, WSSV utilized the host LCMT1-PP2A-FOXO axis to promote its replication during the early infection stage. We also found that, during the late stages of WSSV infection, the envelope protein of WSSV (VP26) promoted PP2A activity by directly binding to FOXO and the regulatory subunit of PP2A (B55), which further facilitated FOXO dephosphorylation and WSSV replication via the VP26-PP2A-FOXO axis in shrimp. Overall, this study reveals novel viral strategies by which WSSV hijacks host LCMT1-PP2A-FOXO or VP26-PP2A-FOXO axes to promote its propagation, and provides clinical targets for WSSV control in shrimp aquaculture.


Asunto(s)
Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Humanos , Virus del Síndrome de la Mancha Blanca 1/genética , Proteína Fosfatasa 2 , Factores de Transcripción , Mamíferos
10.
Materials (Basel) ; 16(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37444882

RESUMEN

Wire arc additive manufacturing (WAAM) is an additive manufacturing process based on gas metal arc welding. It allows the fabrication of large-volume metal components by the controlled deposition and stacking of weld beads. Next to the near-net-shape manufacturing of metal components, WAAM is also applied in the local reinforcement of structural parts, such as shell geometries. However, this procedure can lead to undesired thermally induced distortions. In this work, the distortion caused by the WAAM reinforcement of half-cylinder shell geometries was investigated through experiments and transient thermo-mechanical finite element simulations. In the experiments, the weld beads were applied to the specimen, while its thermal history was measured using thermocouples. The developing distortions were registered using displacement transducers. The experimental data were used to calibrate and validate the simulation. Using the validated model, the temperature field and the distortions of the specimens could be predicted. Subsequently, the simulation was used to assess different deposition patterns and shell thicknesses with regard to the resulting part distortions. The investigations revealed a non-linear relation between shell thickness and distortion. Moreover, the orientation and the sequence of the weld beads had a significant impact on the formation of distortion. However, those effects diminished with an increasing shell thickness.

11.
Proc Natl Acad Sci U S A ; 120(24): e2216574120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276415

RESUMEN

The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.


Asunto(s)
Crustáceos , Animales , Crustáceos/genética , Crustáceos/inmunología , Crustáceos/metabolismo , Crustáceos/microbiología , Drosophila melanogaster , Lipopolisacáridos , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Regulación hacia Arriba , Vibrio , Transducción de Señal , Humanos
12.
Cell Rep ; 42(6): 112644, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37310862

RESUMEN

Amino acid metabolism is regulated according to nutrient conditions; however, the mechanism is not fully understood. Using the holometabolous insect cotton bollworm (Helicoverpa armigera) as a model, we report that hemolymph metabolites are greatly changed from the feeding larvae to the wandering larvae and to pupae. Arginine, alpha-ketoglutarate (α-KG), and glutamate (Glu) are identified as marker metabolites of feeding larvae, wandering larvae, and pupae, respectively. Arginine level is decreased by 20-hydroxyecdysone (20E) regulation via repression of argininosuccinate synthetase (Ass) expression and upregulation of arginase (Arg) expression during metamorphosis. α-KG is transformed from Glu by glutamate dehydrogenase (GDH) in larval midgut, which is repressed by 20E. The α-KG is then transformed to Glu by GDH-like in pupal fat body, which is upregulated by 20E. Thus, 20E reprogrammed amino acid metabolism during metamorphosis by regulating gene expression in a stage- and tissue-specific manner to support insect metamorphic development.


Asunto(s)
Ecdisterona , Mariposas Nocturnas , Animales , Ecdisterona/farmacología , Ecdisterona/metabolismo , Larva/metabolismo , Metamorfosis Biológica , Aminoácidos/metabolismo , Proteínas de Insectos/metabolismo
13.
BMC Biol ; 21(1): 119, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226192

RESUMEN

BACKGROUND: The regulation of glycolysis and autophagy during feeding and metamorphosis in holometabolous insects is a complex process that is not yet fully understood. Insulin regulates glycolysis during the larval feeding stage, allowing the insects to grow and live. However, during metamorphosis, 20-hydroxyecdysone (20E) takes over and regulates programmed cell death (PCD) in larval tissues, leading to degradation and ultimately enabling the insects to transform into adults. The precise mechanism through which these seemingly contradictory processes are coordinated remains unclear and requires further research. To understand the coordination of glycolysis and autophagy during development, we focused our investigation on the role of 20E and insulin in the regulation of phosphoglycerate kinase 1 (PGK1). We examined the glycolytic substrates and products, PGK1 glycolytic activity, and the posttranslational modification of PGK1 during the development of Helicoverpa armigera from feeding to metamorphosis. RESULTS: Our findings suggest that the coordination of glycolysis and autophagy during holometabolous insect development is regulated by a balance between 20E and insulin signaling pathways. Glycolysis and PGK1 expression levels were decreased during metamorphosis under the regulation of 20E. Insulin promoted glycolysis and cell proliferation via PGK1 phosphorylation, while 20E dephosphorylated PGK1 via phosphatase and tensin homolog (PTEN) to repress glycolysis. The phosphorylation of PGK1 at Y194 by insulin and its subsequent promotion of glycolysis and cell proliferation were important for tissue growth and differentiation during the feeding stage. However, during metamorphosis, the acetylation of PGK1 by 20E was key in initiating PCD. Knockdown of phosphorylated PGK1 by RNA interference (RNAi) at the feeding stage led to glycolysis suppression and small pupae. Insulin via histone deacetylase 3 (HDAC3) deacetylated PGK1, whereas 20E via acetyltransferase arrest-defective protein 1 (ARD1) induced PGK1 acetylation at K386 to stimulate PCD. Knockdown of acetylated-PGK1 by RNAi at the metamorphic stages led to PCD repression and delayed pupation. CONCLUSIONS: The posttranslational modification of PGK1 determines its functions in cell proliferation and PCD. Insulin and 20E counteractively regulate PGK1 phosphorylation and acetylation to give it dual functions in cell proliferation and PCD.


Asunto(s)
Ecdisterona , Insulina , Animales , Ecdisterona/farmacología , Fosfoglicerato Quinasa/genética , Fosforilación , Apoptosis , Larva
14.
Commun Biol ; 6(1): 361, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012372

RESUMEN

AMPK plays significant roles in the modulation of metabolic reprogramming and viral infection. However, the detailed mechanism by which AMPK affects viral infection is unclear. The present study aims to determine how AMPK influences white spot syndrome virus (WSSV) infection in shrimp (Marsupenaeus japonicus). Here, we find that AMPK expression and phosphorylation are significantly upregulated in WSSV-infected shrimp. WSSV replication decreases remarkably after knockdown of Ampkα and the shrimp survival rate of AMPK-inhibitor injection shrimp increases significantly, suggesting that AMPK is beneficial for WSSV proliferation. Mechanistically, WSSV infection increases intracellular Ca2+ level, and activates CaMKK, which result in AMPK phosphorylation and partial nuclear translocation. AMPK directly activates mTORC2-AKT signaling pathway to phosphorylate key enzymes of glycolysis in the cytosol and promotes expression of Hif1α to mediate transcription of key glycolytic enzyme genes, both of which lead to increased glycolysis to provide energy for WSSV proliferation. Our findings reveal a novel mechanism by which WSSV exploits the host CaMKK-AMPK-mTORC2 pathway for its proliferation, and suggest that AMPK might be a target for WSSV control in shrimp aquaculture.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucólisis , Diana Mecanicista del Complejo 2 de la Rapamicina , Penaeidae , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1 , Aerobiosis , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Fosforilación , Transducción de Señal , Virus del Síndrome de la Mancha Blanca 1/fisiología , Técnicas de Silenciamiento del Gen
15.
PLoS Pathog ; 18(9): e1010808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067252

RESUMEN

Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white spot syndrome virus (WSSV) was decreased after knockdown of mTor (mechanistic target of rapamycin) or injection inhibitor of mTORC1, rapamycin, in Marsupenaeus japonicus, which suggests that mTORC1 is utilized by WSSV for its replication in shrimp. Mechanistically, WSSV infects shrimp by binding to its receptor, polymeric immunoglobulin receptor (pIgR), and induces the interaction of its intracellular domain with Calmodulin. Calmodulin then promotes the activation of protein kinase B (AKT) by interaction with the pleckstrin homology (PH) domain of AKT. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, ribosomal protein S6 kinase (S6Ks), for viral protein translation. Moreover, mTORC1 also phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which will result in the separation of 4EBP1 from eukaryotic translation initiation factor 4E (eIF4E) for the translation of viral proteins in shrimp. Our data revealed a novel pathway for WSSV proliferation in shrimp and indicated that mTORC1 may represent a potential clinical target for WSSV control in shrimp aquaculture.


Asunto(s)
Receptores de Inmunoglobulina Polimérica , Virus del Síndrome de la Mancha Blanca 1 , Antivirales/farmacología , Calmodulina/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Inmunoglobulina Polimérica/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Quinasas S6 Ribosómicas/farmacología , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1/metabolismo
16.
Cells ; 11(11)2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35681494

RESUMEN

During development, cells constantly undergo fate choices by differentiating, proliferating, and dying as part of tissue remodeling. However, we only begin to understand the mechanisms of these different fate choices. Here, we took the lepidopteran insect Helicoverpa armigera, the cotton bollworm, as a model to reveal that insulin-like growth factor 2 (IGF-2-like) prevented cell death by promoting cell growth and proliferation. Tissue remodeling occurs during insect metamorphosis from larva to adult under regulation by 20-hydroxyecdysone (20E), a steroid hormone. An unknown insulin-like peptide in the genome of H. armigera was identified as IGF-2-like by sequence analysis using human IGFs. The expression of Igf-2-like was upregulated by 20E. IGF-2-like was localized in the imaginal midgut during tissue remodeling, but not in larval midgut that located nearby. IGF-2-like spread through the fat body during fat body remodeling. Cell proliferation was detected in the imaginal midgut and some fat body cells expressing IGF-2-like. Apoptosis was detected in the larval midgut and some fat body cells that did not express IGF-2-like, suggesting the IGF-2-like was required for cell survival, and IGF-2-like and apoptosis were exclusive, pointing to a survival requirement. Knockdown of Igf-2-like resulted in repression of growth and proliferation of the imaginal midgut and fat body. Our results suggested that IGF-2-like promotes cell growth and proliferation in imaginal tissues, promoting cell death avoidance and survival of imaginal cells during tissue remodeling. It will be interesting to determine whether the mechanism of action of steroid hormones on insulin growth factors is conserved in other species.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina , Mariposas Nocturnas , Animales , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Larva/metabolismo , Mariposas Nocturnas/genética
17.
PLoS Genet ; 18(6): e1010229, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696369

RESUMEN

The regulation of glycometabolism homeostasis is vital to maintain health and development of animal and humans; however, the molecular mechanisms by which organisms regulate the glucose metabolism homeostasis from a feeding state switching to a non-feeding state are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the steroid hormone 20-hydroxyecdysone (20E) upregulated the expression of transcription factor Krüppel-like factor (identified as Klf15) to promote macroautophagy/autophagy, apoptosis and gluconeogenesis during metamorphosis. 20E via its nuclear receptor EcR upregulated Klf15 transcription in the fat body during metamorphosis. Knockdown of Klf15 using RNA interference delayed pupation and repressed autophagy and apoptosis of larval fat body during metamorphosis. KLF15 promoted autophagic flux and transiting to apoptosis. KLF15 bound to the KLF binding site (KLF bs) in the promoter of Atg8 (autophagy-related gene 8/LC3) to upregulate Atg8 expression. Knockdown Atg8 reduced free fatty acids (FFAs), glycerol, free amino acids (FAAs) and glucose levels. However, knockdown of Klf15 accumulated FFAs, glycerol, and FAAs. Glycolysis was switched to gluconeogenesis, trehalose and glycogen synthesis were changed to degradation during metamorphosis, which were accompanied by the variation of the related genes expression. KLF15 upregulated phosphoenolpyruvate carboxykinase (Pepck) expression by binding to KLF bs in the Pepck promoter for gluconeogenesis, which utilised FFAs, glycerol, and FAAs directly or indirectly to increase glucose in the hemolymph. Taken together, 20E via KLF15 integrated autophagy and gluconeogenesis by promoting autophagy-related and gluconeogenesis-related genes expression.


Asunto(s)
Ecdisterona , Mariposas Nocturnas , Animales , Autofagia/genética , Ecdisterona/metabolismo , Técnicas de Silenciamiento del Gen , Gluconeogénesis/genética , Glucosa/metabolismo , Glicerol/metabolismo , Homeostasis/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Mariposas Nocturnas/genética
18.
Front Cell Dev Biol ; 9: 753787, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765604

RESUMEN

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors in animals and humans, which transmit various signals from the extracellular environment into cells. Studies have reported that several GPCRs transmit the same signal; however, the mechanism is unclear. In the present study, we identified all 122 classical GPCRs from the genome of Helicoverpa armigera, a lepidopteran pest species. Twenty-four GPCRs were identified as upregulated at the metamorphic stage by comparing the transcriptomes of the midgut at the metamorphic and feeding stages. Nine of them were confirmed to be upregulated at the metamorphic stage. RNA interference in larvae revealed the prolactin-releasing peptide receptor (PRRPR), smoothened (SMO), adipokinetic hormone receptor (AKHR), and 5-hydroxytryptamine receptor (HTR) are involved in steroid hormone 20-hydroxyecdysone (20E)-promoted pupation. Frizzled 7 (FZD7) is involved in growth, while tachykinin-like peptides receptor 86C (TKR86C) had no effect on growth and pupation. Via these GPCRs, 20E regulated the expression of different genes, respectively, including Pten (encoding phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase), FoxO (encoding forkhead box O), BrZ7 (encoding broad isoform Z7), Kr-h1 (encoding Krüppel homolog 1), Wnt (encoding Wingless/Integrated) and cMyc, with hormone receptor 3 (HHR3) as their common regulating target. PRRPR was identified as a new 20E cell membrane receptor using a binding assay. These data suggested that 20E, via different GPCRs, regulates different gene expression to integrate growth and development.

19.
PLoS Pathog ; 17(4): e1009479, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33798239

RESUMEN

Invertebrates rely on innate immunity, including humoral and cellular immunity, to resist pathogenic infection. Previous studies showed that forkhead box transcription factor O (FOXO) participates in mucosal immune responses of mammals and the gut humoral immune regulation of invertebrates. However, whether FOXO is involved in systemic and cellular immunity regulation in invertebrates remains unknown. In the present study, we identified a FOXO from shrimp (Marsupenaeus japonicus) and found that it was expressed at relatively basal levels in normal shrimp, but was upregulated significantly in shrimp challenged by Vibrio anguillarum. FOXO played a critical role in maintaining hemolymph and intestinal microbiota homeostasis by promoting the expression of Relish, the transcription factor of the immune deficiency (IMD) pathway for expression of antimicrobial peptides (AMPs) in shrimp. We also found that pathogen infection activated FOXO and induced its nuclear translocation by reducing serine/threonine kinase AKT activity. In the nucleus, activated FOXO directly regulated the expression of its target Amp and Relish genes against bacterial infection. Furthermore, FOXO was identified as being involved in cellular immunity by promoting the phagocytosis of hemocytes through upregulating the expression of the phagocytotic receptor scavenger receptor C (Src), and two small GTPases, Rab5 and Rab7, which are related to phagosome trafficking to the lysosome in the cytoplasm. Taken together, our results indicated that FOXO exerts its effects on homeostasis of hemolymph and the enteric microbiota by activating the IMD pathway in normal shrimp, and directly or indirectly promoting AMP expression and enhancing phagocytosis of hemocytes against pathogens in bacteria-infected shrimp. This study revealed the different functions of FOXO in the mucosal (local) and systemic antibacterial immunity of invertebrates.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Microbiota , Penaeidae/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Vibrio/fisiología , Animales , Factores de Transcripción Forkhead/genética , Hemocitos/inmunología , Homeostasis , Inmunidad Innata , Penaeidae/inmunología , Penaeidae/microbiología , Fagocitosis/inmunología
20.
J Immunol ; 206(9): 2075-2087, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33863791

RESUMEN

White spot syndrome virus (WSSV) is a threatening pathogenic virus in shrimp culture, and at present, no effective strategy can prevent and control the disease. Intestinal flora and its metabolites are important for the resistance of shrimp to lethal pathogenic viruses. However, the changes of metabolites in the shrimp intestines after WSSV infection remain unclear. We established an artificial oral infection method to infect shrimp with WSSV and analyzed the metabolites in intestinal content of shrimp by HPLC and tandem mass spectrometry. A total of 78 different metabolites and five different metabolic pathways were identified. Among them, we found that the content of linoleic acid, an unsaturated fatty acid, increased significantly after WSSV infection, indicating that linoleic acid might be involved in antiviral immunity in shrimp. Further study showed that, after oral administration of linoleic acid, WSSV proliferation decreased evidently in the shrimp, and survival rate of the shrimp increased significantly. Mechanical analysis showed that linoleic acid directly bound to WSSV virions and inhibited the viral replication. Linoleic acid also promoted the expression of antimicrobial peptides and IFN-like gene Vago5 by activating the ERK-NF-κB signaling pathway. Our results indicated that WSSV infection caused metabolomic transformation of intestinal microbiota and that the metabolite linoleic acid participated in the immune response against WSSV in shrimp.


Asunto(s)
Antivirales/farmacología , Intestinos/efectos de los fármacos , Intestinos/microbiología , Ácido Linoleico/farmacología , Virus del Síndrome de la Mancha Blanca 1/efectos de los fármacos , Animales , Antivirales/metabolismo , Ácido Linoleico/metabolismo , Pruebas de Sensibilidad Microbiana , Penaeidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...