Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 13(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39120333

RESUMEN

The yak (Bos grunniens) is a valuable livestock animal endemic to the Qinghai-Tibet Plateau in China with low reproductive rates. Cryptorchidism is one of the primary causes of infertility in male yaks. Compared with normal testes, the tight junctions (TJs) of Sertoli cells (SCs) and the integrity of the blood-testis barrier (BTB) in cryptorchidism are both disrupted. MicroRNAs are hairpin-derived RNAs of about 19-25 nucleotides in length and are involved in a variety of biological processes. Numerous studies have shown the involvement of microRNAs in the reproductive physiology of yak. In this study, we executed RNA sequencing (RNA-seq) to describe the expression profiles of mRNAs and microRNAs in yaks with normal testes and cryptorchidism to identify differentially expressed genes. GO and KEGG analyses were used to identify the biological processes and signaling pathways which the target genes of the differentially expressed microRNAs primarily engaged. It was found that novel-m0230-3p is an important miRNA that significantly differentiates between cryptorchidism and normal testes, and it is down-regulated in cryptorchidism with p < 0.05. Novel-m0230-3p and its target gene CSF1 both significantly contribute to the regulation of cell adhesion and tight junctions. The binding sites of novel-m0230-3p with CSF1 were validated by a dual luciferase reporter system. Then, mimics and inhibitors of novel-m0230-3p were transfected in vitro into SCs, respectively. A further analysis using qRT-PCR, immunofluorescence (IF), and Western blotting confirmed that the expression of cell adhesion and tight-junction-related proteins Occludin and ZO-1 both showed changes. Specifically, both the mRNA and protein expression levels of Occludin and ZO-1 in SCs decreased after transfection with the novel-m0230-3p mimics, while they increased after transfection with the inhibitors, with p < 0.05. These were achieved via the CSF1/CSF1R/Ras signaling pathway. In summary, our findings indicate a negative miRNA-mRNA regulatory network involving the CSF1/CSF1R/Ras signaling pathway in yak SCs. These results provide new insights into the molecular mechanisms of CSF1 and suggest that novel-m0230-3p and its target protein CSF1 could be used as potential therapeutic targets for yak cryptorchidism.


Asunto(s)
Barrera Hematotesticular , MicroARNs , Transducción de Señal , Uniones Estrechas , Animales , Masculino , Barrera Hematotesticular/metabolismo , Uniones Estrechas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Bovinos , Células de Sertoli/metabolismo , Testículo/metabolismo , Regulación de la Expresión Génica
2.
J Colloid Interface Sci ; 676: 774-782, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39059283

RESUMEN

Bacterial infections pose a substantial threat to human health, particularly with the emergence of antibiotic-resistant strains. Therefore, it is essential to develop novel approaches for the efficient treatment of bacterial diseases. This study presents a therapeutic approach involving BBR@MMT nanosheets (NSs), wherein montmorillonite (MMT) was loaded with berberine (BBR) through an ion intercalation reaction to sterilize and promote wound healing. BBR@MMT exhibits nano-enzymatic-like catalytic activity, is easy to synthesize, and requires low reaction conditions. This nanocomplex showed photodynamic properties and superoxide dismutase (SOD) activity. The in vitro experiments indicated that BBR@MMT was able to effectively inhibit the growth of Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli) through the production of ROS when exposed to white light. Meanwhile, BBR@MMT inhibited the secretion of pro-inflammatory factors and scavenged free radicals via its SOD-like activity. In vivo results showed that BBR@MMT NSs were capable of effectively promoting the wound-healing process in infected mice under white light irradiation. Hence, it can be concluded that photodynamic therapy based on BBR@MMT NSs with nano-enzymatic activity has the potential to be used in treating infections and tissue repair associated with drug-resistant microorganisms.

3.
Animals (Basel) ; 14(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998045

RESUMEN

The aim of this study was to explore alterations in plasma metabolites among mares afflicted with endometritis. Mares were divided into two groups, namely, the equine endometritis group (n = 8) and the healthy control group (n = 8), which included four pregnant and four non-pregnant mares, using a combination of clinical assessment and laboratory confirmation. Plasma samples from both groups of mares were analyzed through untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics. A total of 28 differentially abundant metabolites were identified by screening and identifying differentially abundant metabolites and analyzing the pathway enrichment of differentially. Ten metabolites were identified as potential biomarkers for the diagnosis of endometritis in mares. Among them, seven exhibited a decrease in the endometritis groups, including hexadecanedioic acid, oleoyl ethanolamide (OEA), [fahydroxy(18:0)]12_13-dihydroxy-9z-octa (12,13-diHOME), deoxycholic acid 3-glucuronide (DCA-3G), 2-oxindole, and (+/-)9-HPODE, and 13(S)-HOTRE. On the other hand, three metabolites, adenosine 5'-monophosphate (AMP), 5-hydroxy-dl-tryptophan (5-HTP), and l-formylkynurenine, demonstrated an increase. These substances primarily participate in the metabolism of tryptophan and linolenic acid, as well as fat and energy. In conclusion, metabolomics revealed differentially abundant metabolite changes in patients with mare endometritis. These specific metabolites can be used as potential biomarkers for the non-invasive diagnosis of mare endometritis.

4.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062942

RESUMEN

During estrus, the poll glands of male Bactrian Camels (Camelus Bactrianus) become slightly raised, exuding a large amount of pale yellow watery secretion with a characteristic odor that may contain hydrogen sulfide (H2S). However, whether H2S can be synthesized in the poll glands of male Bactrian Camels and its role in inducing camel estrus remains unclear. This study aimed to identify differentially expressed proteins (DEPs) and signaling pathways in the poll gland tissues of male Bactrian Camels using data independent acquisition (DIA) proteomics. Additionally, gas chromatography-mass spectrometry (GC-MS) was performed to identify differentially expressed metabolites (DEMs) in the neck hair containing secretions during estrus in male Bactrian Camels, to explore the specific expression patterns and mechanisms in the poll glands of camels during estrus. The results showed that cystathionine-γ-lyase (CTH) and cystathionine-ß-synthase (CBS), which are closely related to H2S synthesis in camel poll glands during estrus, were mainly enriched in glycine, serine, and threonine metabolism, amino acid biosynthesis, and metabolic pathways. In addition, both enzymes were widely distributed and highly expressed in the acinar cells of poll gland tissues in camels during estrus. Meanwhile, the neck hair secretion contains high levels of amino acids, especially glycine, serine, threonine, and cystathionine, which are precursors for H2S biosynthesis. These results demonstrate that the poll glands of male Bactrian Camels can synthesize and secrete H2S during estrus. This study provides a basis for exploring the function and mechanism of H2S in the estrus of Bactrian Camels.


Asunto(s)
Camelus , Sulfuro de Hidrógeno , Proteómica , Animales , Sulfuro de Hidrógeno/metabolismo , Camelus/metabolismo , Masculino , Proteómica/métodos , Cistationina betasintasa/metabolismo , Metabolómica/métodos , Cistationina gamma-Liasa/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Estro/metabolismo , Femenino
5.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38929191

RESUMEN

Zearalenone (ZEN) is a common fungal toxin with reproductive toxicity in various grains. It poses a serious threat to ovine and other animal husbandry industries, as well as human reproductive health. Therefore, investigating the mechanism of toxicity and screening antagonistic drugs are of great importance. In this study, based on the natural compound library and previous Smart-seq2 results, antioxidant and anti-apoptotic drugs were selected for screening as potential antagonistic drugs. Three natural plant compounds (oxysophoridine, rutin, and phellodendrine) were screened for their ability to counteract the reproductive toxicity of ZEN on ovine oocytes in vitro using quantitative polymerase chain reaction (qPCR) and reactive oxygen species detection. The compounds exhibited varying pharmacological effects, notably impacting the expression of antioxidant (GPX, SOD1, and SOD2), autophagic (ATG3, ULK2, and LC3), and apoptotic (CAS3, CAS8, and CAS9) genes. Oxysophoridine promoted GPX, SOD1, ULK2, and LC3 expression, while inhibiting CAS3 and CAS8 expression. Rutin promoted SOD2 and ATG3 expression, and inhibited CAS3 and CAS9 expression. Phellodendrine promoted SOD2 and ATG3 expression, and inhibited CAS9 expression. However, all compounds promoted the expression of genes related to cell cycle, spindle checkpoint, oocyte maturation, and cumulus expansion factors. Although the three drugs had different regulatory mechanisms in enhancing antioxidant capacity, enhancing autophagy, and inhibiting cell apoptosis, they all maintained a stable intracellular environment and a normal cell cycle, promoted oocyte maturation and release of cumulus expansion factors, and, ultimately, counteracted ZEN reproductive toxicity to promote the in vitro maturation of ovine oocytes. This study identified three drugs that antagonize the reproductive toxicity of ZEN on ovine oocytes, and compared their mechanisms of action, providing data support and a theoretical basis for their subsequent application in the ovine breeding industry, reducing losses in the breeding industry, screening of ZEN reproductive toxicity antagonists and various toxin antagonists, improving the study of ZEN reproductive toxicity mechanisms, and even protection of human reproductive health.

6.
Animals (Basel) ; 14(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731279

RESUMEN

The type II Na/Pi co-transporter (NaPi2b), encoded by the solute carrier (SLC) transporter 34A2 (SLC34A2), is responsible for calcium (Ca) and phosphorus (P) homeostasis. Unbalanced Ca/P metabolism induces mastitis in dairy cows. However, the specific role of SLC34A2 in regulating this imbalance in Holstein cows with clinical mastitis (CM) remains unclear. The aim of this study was to investigate the role of SLC34A2 and identify differentially expressed proteins (DEPs) that interact with SLC34A2 and are associated with Ca/P metabolism in dairy cows with CM. Immunohistochemical and immunofluorescence staining results showed that SLC34A2 was located primarily in the mammary epithelial cells of the mammary alveoli in both the control (healthy cows, Con/C) and CM groups. Compared to the Con/C group, the relative expression of the SLC34A2 gene and protein were significantly downregulated in the CM group. We identified 12 important DEPs included in 11 GO terms and two pathways interacting with SLC34A2 using data-independent acquisition proteomics. The PPI (protein-and-protein interaction) network results suggested that these DEPs were associated with ion metabolism and homeostasis, especially SLC34A2. These results demonstrate that SLC34A2 downregulation is negatively correlated with the occurrence and development of CM in Holstein cows, providing a basis for exploring the function and regulatory mechanism of SLC34A2 in Ca/P metabolism and homeostasis in Holstein cows with CM.

7.
Antioxidants (Basel) ; 13(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790611

RESUMEN

Fluoride is abundant in the environment and is an essential trace element in living organisms. However, prolonged excessive fluoride intake can lead to fluorosis, which poses a threat to the reproductive health of animals and humans. Although previous research has mainly focused on animal models, the impact of fluoride on ovine follicular granulosa cells (GCs) has not been comprehensively elucidated. This study employed RNA-Seq technology to elucidate the toxic effects of fluoride on ovine follicular GCs and its mechanism of action. Culturing primary ovine follicular GCs in vitro and subjecting them to fluoride treatment revealed 3218 differentially expressed genes (DEGs), with 2278 upregulated and 940 downregulated. Significantly, this study unveiled fluoride's induction of endoplasmic reticulum (ER) stress in cells, triggering a cascade involving the PERK pathway factor ATF4, leading to cell death via DDIT3/CHOP activation and the subsequent upregulation of CHAC1, ATF3, ERO1α, and TRIB3. These findings provide crucial insights into the toxicity of fluoride in ovine, offering a foundation for mitigating fluoride-related losses in the farming industry.

8.
Equine Vet J ; 56(4): 660-669, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38616335

RESUMEN

BACKGROUND: Endometritis is a common condition in mares that causes significant economic loss. Lacking obvious clinical signs, the clinical diagnosis of endometritis in mares relies on case-by-case clinical examinations, which can be particularly inefficient in large-scale farms. Therefore, the identification of potential biomarkers can serve as a non-invasive and efficient screening technique for endometritis in mares. OBJECTIVES: To compare the blood proteome between fertile mares and mares with endometritis to identify biomarkers potentially associated with the development of endometritis and validate their predictive potential. STUDY DESIGN: Observational and experimental study. METHODS: Differentially expressed proteins were identified via Data Independent Acquisition (DIA) proteomic profiling in a screening cohort composed of eight healthy mares and eight mares with endometritis. Subsequently, enzyme-linked immunosorbent assay was employed that included a validation cohort of 40 healthy mares and 40 mares with endometritis to verify the accuracy and sensitivity of the identified proteins, thereby establishing a diagnostic threshold. RESULTS: In the screening cohort, 12 proteins were significantly differentially expressed between endometritis mares and healthy controls (p < 0.05, outside the 1/1.2 to 1.2-fold). In the validation experiment, all six screened proteins were assessed with area under the curve (AUC) >0.8. MAIN LIMITATIONS: The samples displayed certain levels of individual heterogeneity, and the number of samples analysed was limited. Additionally, the identified biomarkers were primarily associated with generalised inflammation, which potentially limited their specificity for endometritis. CONCLUSION: Levels of plasma proteins are sensitive indicators of equine endometritis and potential tools for endometritis screening. In plasma, fetuin B, von Willebrand factor, vitamin K-dependent protein C, insulin-like growth factor binding protein 3, interleukin 1 receptor accessory protein, and type II cell cytoskeleton showed great predictive ability, with fetuin B being the best predictor (AUC = 0.93, 95% CI: 0.89-0.98), which performs better when combined with all six detected proteins (AUC = 1, 95% CI: 0.99-1.00).


Asunto(s)
Biomarcadores , Proteínas Sanguíneas , Endometritis , Enfermedades de los Caballos , Animales , Caballos , Femenino , Enfermedades de los Caballos/sangre , Enfermedades de los Caballos/diagnóstico , Endometritis/veterinaria , Endometritis/sangre , Endometritis/diagnóstico , Biomarcadores/sangre , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análisis , Regulación de la Expresión Génica , Proteómica/métodos
9.
Antioxidants (Basel) ; 13(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38671899

RESUMEN

After delivery, the death of trophoblast cells can promote the expulsion of the placenta. Ferroptosis, an iron-dependent programmed cell death, is involved in mammalian development. Circular RNAs are associated with placental development; however, it is unclear whether circular RNAs regulate the expulsion of fetal membranes through ferroptosis. The gene expression profiles in the tail vein blood of Holstein cows with normal and retained placentas were investigated using RNA sequencing and a GSE214588 dataset. circAMN1 and SLC39A8 expression was significantly downregulated in the blood of cows with a retained placenta, whereas miR-205_R-1 expression was significantly upregulated. We validated erastin-induced ferroptosis in trophoblast cells. Transfection with si-circAMN1 and miR-205_R-1 mimic reduced intracellular total iron, Fe2+, and glutathione disulfide levels; increased intracellular glutathione levels and glutathione/glutathione disulfide; and enhanced cell viability in these cells. In contrast, transfection with pcDNA3.1 circAMN1 and an miR-205_R-1 inhibitor promoted ferroptosis. As an miR-205_R-1 sponge, circAMN1 regulated the expression of SLC39A8 to control erastin-induced ferroptosis and regulated the proliferation, invasion, and migration of trophoblast cells. Our findings provide a theoretical basis for studying the mechanism by which programmed cell death regulates fetal membrane expulsion and indicate its potential as a therapeutic target for placenta retention.

10.
Appl Microbiol Biotechnol ; 108(1): 283, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573435

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). Current vaccine prevention and treatment approaches for PRRS are not adequate, and commercial vaccines do not provide sufficient cross-immune protection. Therefore, establishing a precise, sensitive, simple, and rapid serological diagnostic approach for detecting PRRSV antibodies is crucial. The present study used quantum dot fluorescent microspheres (QDFM) as tracers, covalently linked to the PRRSV N protein, to develop an immunochromatography strip (ICS) for detecting PRRSV antibodies. Monoclonal antibodies against PRRSV nucleocapsid (N) and membrane (M) proteins were both coated on nitrocellulose membranes as control (C) and test (T) lines, respectively. QDFM ICS identified PRRSV antibodies under 10 min with high sensitivity and specificity. The specificity assay revealed no cross-reactivity with the other tested viruses. The sensitivity assay revealed that the minimum detection limit was 1.2 ng/mL when the maximum dilution was 1:2,048, comparable to the sensitivity of enzyme-linked immunosorbent assay (ELISA) kits. Moreover, compared to PRRSV ELISA antibody detection kits, the sensitivity, specificity, and accuracy of QDFM ICS after analyzing 189 clinical samples were 96.7%, 97.9%, and 97.4%, respectively. Notably, the test strips can be stored for up to 6 months at 4 °C and up to 4 months at room temperature (18-25 °C). In conclusion, QDFM ICS offers the advantages of rapid detection time, high specificity and sensitivity, and affordability, indicating its potential for on-site PRRS screening. KEY POINTS: • QDFM ICS is a novel method for on-site and in-lab detection of PRRSV antibodies • Its sensitivity, specificity, and accuracy are on par with commercial ELISA kits • QDFM ICS rapidly identifies PRRSV, aiding the swine industry address the evolving virus.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Puntos Cuánticos , Animales , Porcinos , Microesferas , Síndrome Respiratorio y de la Reproducción Porcina/diagnóstico , Colorantes , Anticuerpos Antivirales , Cromatografía de Afinidad
11.
Phytomedicine ; 128: 155468, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471315

RESUMEN

BACKGROUND: Oxidative stress is considered the main cause of granulosa cell apoptosis in ovarian disease. Curcumin has various biological roles, but its potential role in protecting granulosa cells from oxidative damage remains unidentified. PURPOSE: The study revealed the protective effect of curcumin on granulosa cell survival under oxidative stress, and explored its mode of action. STUDY DESIGN: The protective effect of curcumin on oxidative stress-induced ovarian cell apoptosis was evaluated in vivo and in vitro, and the role of autophagy and AMPK/mTOR signaling pathway in this process was also demonstrated. METHODS: First, mice were injected to 3-nitropropionic acid (3-NPA, 20 mg/kg/day) for 14 consecutive days to establish the ovarian oxidative stress model, at same time, curcumin (50, 100, 200 mg/kg/day) was given orally. Thereafter, functional changes, cell apoptosis, and autophagy in ovarian tissue were evaluated by hematoxylin-eosin staining, enzyme-linked immunosorbent assay, western blotting, TUNEL assays, and transmission electron microscopy. Finally, oxidative stress model of granulosa cells was established with H2O2in vitro and treated with curcumin. The underlying mechanisms of curcumin to protect the apoptosis under oxidative stress in vitro were determined using western blotting and TUNEL assays. RESULTS: In our study, after curcumin treatment, the mouse ovarian function disorder under 3-nitropropionic acid-induced oxidative stress recovered significantly, and ovarian cell apoptosis decreased. H2O2 induced granulosa cell apoptosis in vitro, and curcumin antagonized this process. Autophagy contributes to tissue and cell survival under stress. We therefore examined the role of autophagy in this process. According to the in vivo and in vitro results, curcumin restored autophagy under oxidative stress. The autophagy inhibitor (chloroquine) exhibited the same effect as curcumin, whereas the autophagy activator (rapamycin) antagonized the effect of curcumin. In addition, the study found that the AMPK/mTOR pathway plays a crucial role in curcumin- mediated autophagy to protect against oxidative stress-induced apoptosis. CONCLUSION: Our findings for the first time systematically revealed a new mechanism through which curcumin protects ovarian granulosa cells from oxidative stress-induced damage through AMPK/mTOR-mediated autophagy and suggested that it can be a new therapeutic direction for female ovarian diseases.


Asunto(s)
Autofagia , Curcumina , Ovario , Estrés Oxidativo , Serina-Treonina Quinasas TOR , Animales , Femenino , Ratones , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Curcumina/farmacología , Células de la Granulosa/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Nitrocompuestos , Ovario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Propionatos/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
12.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473826

RESUMEN

Zearalenone (ZEA) is a common non-steroidal estrogenic mycotoxin found in a range of animal feeds and poses a serious threat to the reproductive health of farm animals and humans. However, the mechanism underlying ZEA-induced reproductive toxicity in sheep remains unknown. Granulosa cells are crucial for egg maturation and the fertility of female sheep. In this study, we aimed to examine the impact of different ZEA concentrations on sheep follicular granulosa cells and to elucidate the potential molecular mechanism underlying ZEA-induced toxicity using transcriptome sequencing and molecular biological approaches. Treating primary sheep follicular granulosa cells with different concentrations of ZEA promoted the overproduction of reactive oxygen species (ROS), increased lipid peroxidation products, led to cellular oxidative stress, decreased antioxidant enzyme activities, and induced cell apoptosis. Using transcriptome approaches, 1395 differentially expressed genes were obtained from sheep follicular granulosa cells cultured in vitro after ZEA treatment. Among them, heme oxygenase-1 (HMOX1) was involved in 11 biological processes. The protein interaction network indicated interactions between HMOX1 and oxidative and apoptotic proteins. In addition, N-acetylcysteine pretreatment effectively reduced the ZEA-induced increase in the expression of HMOX1 and Caspase3 by eliminating ROS. Hence, we suggest that HMOX1 is a key differential gene involved in the regulation of ZEA-induced oxidative stress and apoptosis in follicular granulosa cells. These findings provide novel insights into the prevention and control of mycotoxins in livestock.


Asunto(s)
Micotoxinas , Zearalenona , Humanos , Femenino , Animales , Ovinos , Zearalenona/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hemo-Oxigenasa 1/metabolismo , Estrés Oxidativo , Células de la Granulosa/metabolismo , Antioxidantes/farmacología , Micotoxinas/metabolismo , Apoptosis
13.
Animals (Basel) ; 14(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38254351

RESUMEN

Yaks, a valuable livestock species endemic to China's Tibetan plateau, have a low reproductive rate. Cryptorchidism is believed to be one of the leading causes of infertility in male yaks. In this study, we compared the morphology of the normal testis of the yak with that of the cryptorchidism, and found dysplasia of the seminiferous tubules, impaired tightness of the Sertoli cells, and a disruption of the integrity of the blood-testis barrier (BTB) in the cryptorchidism. Previous studies have shown that CAV1 significantly contributes to the regulation of cell tight junctions and spermatogenesis. Therefore, we hypothesize that CAV1 may play a regulatory role in tight junctions and BTB in Yaks Sertoli cells, thereby influencing the development of cryptorchidism. Additional analysis using immunofluorescence, qRT-PCR, and Western blotting confirmed that CAV1 expression is up-regulated in yak cryptorchidism. CAV1 over-expression plasmids and small RNA interference sequences were then transfected in vitro into yak Sertoli cells. It was furthermore found that CAV1 has a positive regulatory effect on tight junctions and BTB integrity, and that this regulatory effect is achieved through the FAK/ERK signaling pathway. Taken together, our findings, the first application of CAV1 to yak cryptorchidism, provide new insights into the molecular mechanisms of cell tight junctions and BTB. This paper suggests that CAV1 could be used as a potential therapeutic target for yak cryptorchidism and may provide insight for future investigations into the occurrence of cryptorchidism, the maintenance of a normal physiological environment for spermatogenesis and male reproductive physiology in the yak.

14.
Toxins (Basel) ; 15(10)2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37888648

RESUMEN

Zearalenone (ZEN), a non-steroidal estrogenic fungal toxin widely present in forage, food, and their ingredients, poses a serious threat to animal and human reproductive health. ZEN also threatens ovine, a major source of human food and breeding stock. However, the mechanisms underlying the impact of ZEN on the in vitro maturation (IVM) of ovine oocytes remain unclear. This study aimed to elucidate these mechanisms using the Smart-seq2 technology. A total of 146 differentially expressed genes were obtained, using Smart-seq2, from sheep oocytes cultured in vitro after ZEN treatment. ZEN treatment inhibited RUNX2 and SPP1 expression in the PI3K signaling pathway, leading to the downregulation of THBS1 and ultimately the downregulation of TNFAIP6; ZEN can also decrease TNFAIP6 by reducing PTPRC and ITGAM. Both inhibit in vitro maturation of ovine oocytes and proliferation of cumulus cells by downregulating TNFAIP6. These findings provide data and a theoretical basis for elucidating ZEN's toxicity mechanisms, screening therapeutic drugs, and reducing ZEN-related losses in the ovine industry.


Asunto(s)
Estrógenos no Esteroides , Zearalenona , Femenino , Animales , Ovinos , Humanos , Zearalenona/toxicidad , Zearalenona/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Oocitos/fisiología , Estrógenos no Esteroides/toxicidad , Células del Cúmulo/metabolismo , Moléculas de Adhesión Celular/metabolismo
15.
Animals (Basel) ; 13(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570258

RESUMEN

Bovine endometritis is characterized by reduced milk production and high rates of infertility. Prior research has indicated that melatonin may possess anti-inflammatory and antioxidant properties that can counteract the progression of inflammatory diseases. In this research, we attempted to elucidate the protective effects of melatonin on LPS-induced endometritis. The results obtained from enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (qRT-PCR) revealed that melatonin effectively reduced the production and release of pro-inflammatory cytokines in an LPS-induced bovine endometrial epithelial cell line (BEND cells). Furthermore, western blotting demonstrated that melatonin treatment reduced the expression levels of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-related proteins, including NLRP3, activated caspase-1, and cleaved IL-1ß. Importantly, we further demonstrated that the anti-inflammatory effect of melatonin on BEND cells was related to autophagy by western blotting. Moreover, we used western blotting to detect autophagy-related proteins, MitoSOX to detect mitochondrial reactive oxygen species production (mtROS), and mitochondrial membrane potential (MMP) assay to detect mitochondrial membrane potential. The administration of melatonin demonstrated a significant enhancement in autophagy within BEND cells, leading to the effective elimination of impaired mitochondria. This process resulted in a reduction in the generation of reactive oxygen species within the mitochondria, restoration of mitochondrial membrane potential, and inhibition of the NLRP3 inflammasome activation. Moreover, in a mouse model of LPS-induced endometritis, melatonin treatment repressed the expression of pro-inflammatory cytokines by ELISA and qRT-PCR, alleviated pathological changes by hematoxylin-eosin staining (H&E), and inhibited myeloperoxidase (MPO) activity. In conclusion, our study showed that melatonin inhibited the activation of the NLRP3 inflammasome in BEND cells through autophagy, which may provide a novel therapeutic strategy for bovine endometritis.

16.
Animals (Basel) ; 13(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37370534

RESUMEN

Increased poll gland secretion is a major characteristic and indicator of estrus in male Bactrian camels; however, research on these poll glands and their secretion is extremely rare. In this study, we determine the chemical composition of poll gland secretions and identify the key functional substances that regulate seasonal estrus in male camels. A GC/LC-MS dual platform was used to analyze ventral hair (control) and neck mane samples containing poll gland secretions from male Bactrian camels during estrus. Multidimensional and single-dimensional analyses were used to screen differentially expressed metabolites (DEMs) between groups. Functional prediction of enriched metabolites was performed using a Human Metabolome Database comparison and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, which were then compared with a behavioral analysis of male Bactrian camels in estrus. A total of 1172 DEMs and 34 differential metabolic pathways were identified. One metabolite group was found to relate to steroid synthesis and metabolism, and another metabolite group was associated with neural metabolism. Therefore, we speculate that steroids and neurochemicals jointly regulate estrous behavior in male Bactrian camels, thus providing theoretical insights into the development and function of poll glands in Bactrian camels.

17.
J Vet Sci ; 24(1): e15, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36726280

RESUMEN

BACKGROUND: Inactivated vaccines are limited in preventing foot-and-mouth disease (FMD) due to safety problems. Recombinant virus-like particles (VLPs) are an excellent candidate for a novel vaccine for preventing FMD, given that VLPs have similar immunogenicity as natural viruses and are replication- and infection-incompetent. OBJECTIVES: The 3C protease and P1 polyprotein of type O FMD virus (FDMV) was expressed in yeast Hansenula polymorpha to generate self-resembling VLPs, and the potential of recombinant VLPs as an FMD vaccine was evaluated. METHODS: BALB/c mice were immunized with recombinant purified VLPs using CpG oligodeoxynucleotide and aluminum hydroxide gel as an adjuvant. Cytokines and lymphocytes from serum and spleen were analyzed by enzyme-linked immunosorbent assay, enzyme-linked immunospot assay, and flow cytometry. RESULTS: The VLPs of FMD were purified successfully from yeast protein with a diameter of approximately 25 nm. The immunization of mice showed that animals produced high levels of FMDV antibodies and a higher level of antibodies for a longer time. In addition, higher levels of interferon-γ and CD4+ T cells were observed in mice immunized with VLPs. CONCLUSIONS: The expression of VLPs of FMD in H. polymorpha provides a novel strategy for the generation of the FMDV vaccine.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Ratones , Adyuvantes Inmunológicos , Aluminio , Anticuerpos Antivirales , Saccharomyces cerevisiae
18.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768240

RESUMEN

Induced pluripotent stem cells (iPSCs) can differentiate into all types of cells and can be used in livestock for research on biological development, genetic breeding, and in vitro genetic resource conservation. The Bactrian camel is a large domestic animal that inhabits extreme environments and holds value in the treatment of various diseases and the development of the local economy. Therefore, we transferred four mouse genes (Oct4, Sox2, Klf4, and c-Myc) into Bactrian camel fetal fibroblasts (BCFFs) using retroviruses with a large host range to obtain Bactrian camel induced pluripotent stem cells (bciPSCs). They were comprehensively identified based on cell morphology, pluripotency gene and marker expression, chromosome number, transcriptome sequencing, and differentiation potential. The results showed the pluripotency of bciPSCs. However, unlike stem cells of other species, late formation of stem cell clones was observed; moreover, the immunofluorescence of SSEA1, SSEA3, and SSEA4 were positive, and teratoma formation took four months. These findings may be related to the extremely long gestation period and species specificity of Bactrian camels. By mining RNA sequence data, 85 potential unique pluripotent genes of Bactrian camels were predicted, which could be used as candidate genes for the production of bciPSC in the future. Among them, ASF1B, DTL, CDCA5, PROM1, CYTL1, NUP210, Epha3, and SYT13 are more attractive. In conclusion, we generated bciPSCs for the first time and obtained their transcriptome information, expanding the iPSC genetic information database and exploring the applicability of iPSCs in livestock. Our results can provide an experimental basis for Bactrian camel ESC establishment, developmental research, and genetic resource conservation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Ratones , Camelus/genética , Diferenciación Celular/genética , Animales Domésticos/metabolismo , Antígeno Lewis X/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Citocinas/metabolismo
19.
Theriogenology ; 198: 273-281, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36623430

RESUMEN

Both melatonin and androgen, which affect sperm fertility, are the important factors in epididymis of male animal. In the present study, we confirmed that melatonin regulates the formation of dihydrotestosterone (DHT) in sheep epididymides. Here, we investigated the localization and the expression levels of melatonin keys synthases AANAT and HIOMT, membrane receptors MT1 and MT2, and nuclear receptor RORα in sheep epididymides and testes. We also cultured epididymal epithelial cells and treated them with different concentrations of melatonin (10-11-10-7 M) and luzindole (10-5 M) and 4P-PDOT (10-5 M) to investigate whether melatonin is involved in the regulation of DHT formation and whether these effects are mediated through its receptor pathways. The results showed that AANAT, HIOMT, MT1, MT2, and RORα were differentially expressed between sheep epididymides and testes. In addition, melatonin is involved in mediating the formation of DHT in epididymal epithelial cells, and its influence on DHT is at least partially regulated by the melatonin receptor pathway. Our findings showed that melatonin regulates the functions of the testes and epididymides through an autocrine mechanism and regulates the formation of androgen in sheep epididymides via the receptor pathway. These results provide a basis for further exploring the regulatory mechanisms of melatonin in animal reproduction.


Asunto(s)
Melatonina , Masculino , Animales , Ovinos , Melatonina/metabolismo , Epidídimo/metabolismo , Dihidrotestosterona , Andrógenos , Acetilserotonina O-Metiltransferasa , Semen/metabolismo , Receptores de Melatonina , Células Epiteliales/metabolismo , Receptor de Melatonina MT2/metabolismo
20.
Gen Comp Endocrinol ; 333: 114182, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455642

RESUMEN

Melatonin potentially regulates the female animal reproductive function, but its regulatory mechanism in the apoptosis of sheep endometrial epithelial cells (SEECs) remains to be elucidated. In the present study, immunofluorescence staining, western blotting, and quantitative real-time polymerase chain reaction were performed to detect the distribution of melatonin receptors (MT1 and MT2) in the uterus of sheep and the effect of melatonin via the receptor and non-receptor pathways on the apoptosis of SEECs in vitro. The results showed that melatonin inhibits the apoptosis of SEECs to varying degrees to regulate the expression of estrogen receptors (ERs) and progesterone receptors (PGR) via its interaction with MT1 and MT2. In addition, the ER antagonist partially relieved the inhibitory effect of melatonin on the apoptosis of SEECs, while the PGR antagonist did not. Thus, melatonin mediates endometrial epithelial apoptosis through the MT receptors and also by regulating estrogen function. This study provides evidence of the regulatory mechanism of melatonin on the physiological function of the sheep uterus.


Asunto(s)
Melatonina , Receptor de Melatonina MT1 , Femenino , Animales , Ovinos , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/análisis , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/análisis , Receptor de Melatonina MT2/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Células Epiteliales/metabolismo , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...