Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 9(1): 44, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402256

RESUMEN

The human papillomavirus minor capsid protein L2 is being extensively explored in pre-clinical studies as an attractive vaccine antigen capable of inducing broad-spectrum prophylactic antibody responses. Recently, we have developed two HPV vaccine antigens - PANHPVAX and CUT-PANHPVAX- both based on heptameric nanoparticle antigens displaying polytopes of the L2 major cross-neutralizing epitopes of eight mucosal and twelve cutaneous HPV types, respectively. Prompted by the variable neutralizing antibody responses against some of the HPV types targeted by the antigens observed in previous studies, here we investigated the influence on immunogenicity of six distinct glycine-proline spacers inserted upstream to a specific L2 epitope. We show that spacer variants differentially influence antigen immunogenicity in a mouse model, with the antigen constructs M8merV6 and C12merV6 displaying a superior ability in the induction of neutralizing antibodies as determined by pseudovirus-based neutralization assays (PBNAs). L2-peptide enzyme-linked immunosorbent assay (ELISA) assessments determined the total anti-L2 antibody level for each antigen variant, showing for the majority of sera a correlation with their repective neutralizing antibody level. Surface Plasmon Resonance revealed that L2 epitope-specific, neutralizing monoclonal antibodies (mAbs) display distinct avidities to different antigen spacer variants. Furthermore, mAb affinity toward individual spacer variants was well correlated with their neutralizing antibody induction capacity, indicating that the mAb affinity assay predicts L2-based antigen immunogenicity. These observations provide insights on the development and optimization of L2-based HPV vaccines.

2.
NPJ Vaccines ; 7(1): 116, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216845

RESUMEN

Skin colonization by human papillomavirus (HPV) is typically related to inconspicuous cutaneous infections without major disease or complications in immunocompetent individuals. However, in immunosuppressed patients, especially organ transplanted recipients, cutaneous HPV infections may cause massive, highly spreading and recurrent skin lesions upon synergism with UV-exposure. Current HPV prophylactic vaccines are not effective against cutaneous HPV types (cHPV). By applying a modular polytope-based approach, in this work, we explored different vaccine candidates based on selected, tandemly arranged cHPV-L2 epitopes fused to thioredoxin (Trx) as a scaffold protein. Upon conversion to heptameric nanoparticles with the use of a genetically fused oligomerization domain, our candidate Trx-L2 vaccines induce broadly neutralizing immune responses against 19 cHPV in guinea pigs. Similar findings were obtained in mice, where protection against virus challenge was also achieved via passive transfer of immune sera. Remarkably, immunization with the candidate cHPV vaccines also induced immune responses against several mucosal low- and high-risk HPV types, including HPV16 and 18. Based on cumulative immunogenicity data but also on ease and yield of production, we identified a lead vaccine candidate bearing 12 different cHPV-L2 epitopes that holds great promise as a scalable and GMP production-compatible lead molecule for the prevention of post-transplantation skin lesions caused by cHPV infection.

3.
Front Immunol ; 11: 606569, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343580

RESUMEN

Cervical cancer remains a global health burden despite the introduction of highly effective vaccines for the prophylaxis of causative human papillomavirus infection (HPV). Current efforts to eradicate cervical cancer focus on the development of broadly protective, cost-effective approaches. HPV minor capsid protein L2 is being recognized as a promising alternative to the major capsid protein L1 because of its ability to induce responses against a wider range of different HPV types. However, a major limitation of L2 as a source of cross-neutralizing epitopes is its lower immunogenicity compared to L1 when assembled into VLPs. Various approaches have been proposed to overcome this limitation, we developed and tested ferritin-based bio-nanoparticles displaying tandemly repeated L2 epitopes from eight different HPV types grafted onto the surface of Pyrococcus furiosus thioredoxin (Pf Trx). Genetic fusion of the Pf Trx-L2(8x) module to P. furiosus ferritin (Pf Fe) did not interfere with ferritin self-assembly into an octahedral structure composed by 24 protomers. In guinea pigs and mice, the ferritin super-scaffolded, L2 antigen induced a broadly neutralizing antibody response covering 14 oncogenic and two non-oncogenic HPV types. Immune-responsiveness lasted for at least one year and the resulting antibodies also conferred protection in a cervico-vaginal mouse model of HPV infection. Given the broad organism distribution of thioredoxin and ferritin, we also verified the lack of cross-reactivity of the antibodies elicited against the scaffolds with human thioredoxin or ferritin. Altogether, the results of this study point to P. furiosus ferritin nanoparticles as a robust platform for the construction of peptide-epitope-based HPV vaccines.


Asunto(s)
Alphapapillomavirus/efectos de los fármacos , Anticuerpos Antivirales/sangre , Proteínas Bacterianas/farmacología , Anticuerpos ampliamente neutralizantes/sangre , Proteínas de la Cápside/farmacología , Ferritinas/farmacología , Proteínas Oncogénicas Virales/farmacología , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/farmacología , Alphapapillomavirus/genética , Alphapapillomavirus/inmunología , Animales , Especificidad de Anticuerpos , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Epítopos , Femenino , Ferritinas/genética , Ferritinas/inmunología , Cobayas , Inmunización , Inmunogenicidad Vacunal , Ratones Endogámicos BALB C , Nanopartículas , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/inmunología , Infecciones por Papillomavirus/sangre , Infecciones por Papillomavirus/inmunología , Vacunas contra Papillomavirus/genética , Vacunas contra Papillomavirus/inmunología , Células Sf9 , Spodoptera , Tiorredoxinas/genética , Tiorredoxinas/inmunología , Tiorredoxinas/farmacología , Factores de Tiempo , Vacunas de ADN/farmacología
4.
PLoS Pathog ; 16(9): e1008827, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32886721

RESUMEN

Global burden of cervical cancer, the most common cause of mortality caused by human papillomavirus (HPV), is expected to increase during the next decade, mainly because current alternatives for HPV vaccination and cervical cancer screening programs are costly to be established in low-and-middle income countries. Recently, we described the development of the broadly protective, thermostable vaccine antigen Trx-8mer-OVX313 based on the insertion of eight different minor capsid protein L2 neutralization epitopes into a thioredoxin scaffold from the hyperthermophilic archaeon Pyrococcus furiosus and conversion of the resulting antigen into a nanoparticle format (median radius ~9 nm) upon fusion with the heptamerizing OVX313 module. Here we evaluated whether the engineered thioredoxin scaffold, in addition to humoral immune responses, can induce CD8+ T-cell responses upon incorporation of MHC-I-restricted epitopes. By systematically examining the contribution of individual antigen modules, we demonstrated that B-cell and T-cell epitopes can be combined into a single antigen construct without compromising either immunogenicity. While CD8+ T-cell epitopes had no influence on B-cell responses, the L2 polytope (8mer) and OVX313-mediated heptamerization of the final antigen significantly increased CD8+ T-cell responses. In a proof-of-concept experiment, we found that vaccinated mice remained tumor-free even after two consecutive tumor challenges, while unvaccinated mice developed tumors. A cost-effective, broadly protective vaccine with both prophylactic and therapeutic properties represents a promising option to overcome the challenges associated with prevention and treatment of HPV-caused diseases.


Asunto(s)
Antígenos de Neoplasias , Antígenos Virales , Proteínas Arqueales , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer , Inmunidad Celular/efectos de los fármacos , Nanopartículas , Papillomaviridae , Vacunas contra Papillomavirus , Pyrococcus furiosus/química , Tiorredoxinas , Neoplasias del Cuello Uterino/inmunología , Animales , Antígenos de Neoplasias/química , Antígenos de Neoplasias/farmacología , Antígenos Virales/química , Antígenos Virales/farmacología , Proteínas Arqueales/química , Proteínas Arqueales/farmacología , Linfocitos T CD8-positivos/patología , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/farmacología , Epítopos de Linfocito B/química , Epítopos de Linfocito B/farmacología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/farmacología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Nanopartículas/uso terapéutico , Papillomaviridae/química , Papillomaviridae/inmunología , Vacunas contra Papillomavirus/química , Vacunas contra Papillomavirus/farmacología , Tiorredoxinas/química , Tiorredoxinas/farmacología , Neoplasias del Cuello Uterino/virología
5.
PLoS One ; 9(8): e105215, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25137044

RESUMEN

Glycoconjugate is one of the most efficacious and safest vaccines against bacterial pathogens. Previous studies of glycoconjugates against pathogen E. coli O157:H7 focused more on the humoral responses they elicited. However, little was known about their cellular responses. In this study, we exploited a novel approach based on bacterial protein N-linked glycosylation system to produce glycoconjugate containing Escherichia coli O157:H7 O-antigen linked with maltose-binding protein and examined its humoral and cellular responses in BALB/c mice. The transfer of E. coli O157:H7 O-antigen to MBP was confirmed by western blot and MALDI-TOF MS. Mice injected with glycoconjugate O-Ag-MBP elicited serum bactericidal antibodies including anti-E. coli O157:H7 O-antigen IgG and IgM. Interestingly, O-Ag-MBP also stimulated the secretion of anti-E. coli O157:H7 O-antigen IgA in intestine. In addition, O-Ag-MBP stimulated cellular responses by recruiting Th1-biased CD4+ T cells, CD8+ T cells. Meanwhile, O-Ag-MBP induced the upregulation of Th1-related IFN-γ and downregulation of Th2-related IL-4, and the upregulation of IFN-γ was stimulated by MBP in a dose-dependent manner. MBP showed TLR4 agonist-like properties to activate Th1 cells as carrier protein of O-Ag-MBP. Thus, glycoconjugate vaccine E. coli O157:H7-specific O-Ag-MBP produced by bacterial protein N-linked glycosylation system was able to elicit both humoral and Th1-biased cellular responses.


Asunto(s)
Infecciones por Escherichia coli/prevención & control , Vacunas contra Escherichia coli/inmunología , Inmunidad Celular , Inmunidad Humoral , Antígenos O/inmunología , Animales , Animales no Consanguíneos , Anticuerpos Antibacterianos/sangre , Escherichia coli O157/inmunología , Femenino , Ratones , Vacunación
6.
Eur J Med Chem ; 80: 423-7, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24796882

RESUMEN

Globotriose is involved in numerous pathogenic processes and drug development strategies. Recent studies have demonstrated that globotriosylceramide could be used in colon cancer therapy and as a crucial indicator for susceptibility to HIV-1 infection. Therefore, the cost-effective and facile approaches for large-scale production of globotiose as potential drugs are highly required. Here, a multi-enzyme one-pot system containing a galactokinase (SpGalK, E.C.2.7.1.6), a UDP-glucose pyrophosphorylase (SpGalU, E.C.2.7.7.9), a α-1,4-galactosyltransferase (LgtC, E.C. 2.4.1.44) and a commercial inorganic pyrophosphatase (PPase, EC 3.6.1.1) was designed to achieve globotriose on preparative scales. This method exploits a cheaper initial substrate, galactose, for donor UDP-galactose production. More importantly, the substrate specificity of SpGalK and SpGalU is highly promiscuous and various UDP-galactose derivatives obtained could be used as the donor substrates for LgtC. This pointcut of rapid preparation of globotriose derivatives is proposed for the first time. Finally, three globotriose analogs were achieved by this one-pot multi-enzyme system in our study.


Asunto(s)
Galactosa/metabolismo , Transferasas/metabolismo , Trisacáridos/biosíntesis , Trisacáridos/química , Escherichia coli/genética , Transferasas/genética , Trisacáridos/aislamiento & purificación
7.
Bioorg Med Chem Lett ; 23(13): 3764-8, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23707255

RESUMEN

Nucleotide sugars are activated forms of monosaccharides and key intermediates of carbohydrate metabolism in all organisms. The availability of structurally diverse nucleotide sugars is particularly important for the characterization of glycosyltransferases. Given that limited methods are available for preparation of nucleotide sugars, especially their useful non-natural derivatives, we introduced herein an efficient one-step three-enzyme catalytic system for the synthesis of nucleotide sugars from monosaccharides. In this study, a promiscuous UDP-sugar pyrophosphorylase (USP) from Arabidopsis thaliana (AtUSP) was used with a galactokinase from Streptococcus pneumoniae TIGR4 (SpGalK) and an inorganic pyrophosphatase (PPase) to effectively synthesize four UDP-sugars. AtUSP has better tolerance for C4-derivatives of Gal-1-P compared to UDP-glucose pyrophosphorylase from S. pneumoniae TIGR4 (SpGalU). Besides, the nucleotide substrate specificity and kinetic parameters of AtUSP were systematically studied. AtUSP exhibited considerable activity toward UTP, dUTP and dTTP, the yield of which was 87%, 85% and 84%, respectively. These results provide abundant information for better understanding of the relationship between substrate specificity and structural features of AtUSP.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Nucleotidiltransferasas/metabolismo , Azúcares de Uridina Difosfato/biosíntesis , Arabidopsis/metabolismo , Conformación de Carbohidratos , Galactoquinasa/metabolismo , Pirofosfatasas/metabolismo , Streptococcus pneumoniae/enzimología , Azúcares de Uridina Difosfato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA