Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Control Release ; 373: 853-866, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39094632

RESUMEN

Radiofrequency-responsive nanoparticles (RFNPs) have drawn increasingly attentions as RF energy absorbing antenna to enhance antitumor efficacy of radiofrequency ablation (RFA). However, it remains a huge challenge for inorganic RFNPs to precisely synergize RFA with other antitumor modes in a clinically acceptable way on bio-safety and bio-compatibility. In this work, RF-responsive black phosphorus (BP) nanogel (BP-Pt@PNA) was successfully fabricated by crosslinking coordination of cisplatin with BP and temperature sensitive polymer PNA. BP-Pt@PNA exhibited strong RF-heating effect and RF-induced pulsatile release of cisplatin. Under RF irradiation, BP-Pt@PNA exhibited cytotoxic enhancement on 4T1 cells. By the synergistic effect of BP and cisplatin, BP-Pt@PNA achieved RF-stimulated systemic immune effect, thus induced enhance suppression on tumor growth and metastasis. Moreover, BP-Pt@PNA realized long-term drug retention in tumor and favorable embolization to tumor-feeding arteries. With high drug loading capacity and favorable bio-safety and bio-degradability, BP-Pt@PNA is expected as an ideal RFNP for precisely synergizing RFA with other antitumor modes in clinical application.

2.
Acta Biomater ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025390

RESUMEN

Transcatheter arterial chemoembolization (TACE) is the first-line therapy for hepatocellular carcinoma (HCC). However, the exacerbated hypoxia microenvironment induces tumor relapse and metastasis post-TACE. Here, temperature-sensitive block polymer complexed with polyphosphate-cisplatin (Pt-P@PND) was prepared for the enhancement of tumor artery embolization by coagulation activation. After supra-selective infusion into the tumor vessels, Pt-P@PND nanogels performed efficient embolization of tumor arteries by sol-gel transition at body temperature. Meanwhile, coagulation cascade was evoked to form blood clots in the peripheral arteries inaccessible to the nanogels by released PolyP. The blood clots-filled hydrogel networks composed of gel and clots showed a denser structure and higher modulus, thereby achieving long-term embolization of all levels of tumor arteries. Pt-P@PND nanogels efficiently inhibited tumor growth and reduced the expression of HIF-1α, VEGF, CD31, and MMP-9 on VX2 tumor-bearing rabbit model. The released Nitro-Pt stimulated the immunogenic cell death of tumor cells, thus enhancing the antitumor immune response to suppress tumor relapse and metastasis post-TACE. It is hoped that Pt-P@PND nanogels can be developed as a promising embolic agent with procoagulant activity for enhancing the antitumor immune response through a combination of embolism, coagulation, and chemotherapy. STATEMENT OF SIGNIFICANCE: Clinical embolic agents, such as Lipiodol and polyvinyl alcohol (PVA) microspheres, are limited by their rapid elimination or larger size, thus lead to incomplete embolization of trans-catheter arterial chemoembolization (TACE). Herein, temperature-sensitive Pt-P@PND nanogels were developed to achieve long-term embolization of all levels of tumor arteries by gel/clot generation. The released Nitro-Pt induced immunogenic cell death in tumor cells, which improved the antitumor immune microenvironment by the maturation of DCs and lymphocytic infiltration. Pt-P@PND nanogels successfully inhibited tumor growth and activated an antitumor immune response to curb the recurrence and metastasis of residual tumor cells both in VX2 tumor-bearing rabbit model and 4T1 tumor-bearing mouse model. These findings suggested that Pt-P@PND could be developed as an ideal embolic agent for clinical TACE treatment.

4.
Int J Biol Macromol ; 268(Pt 2): 131516, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621556

RESUMEN

Simvastatin (SV) is a statin drug that can effectively control cholesterol and prevent cardiovascular diseases. However, SV is water-insoluble, and poor oral bioavailability (<5 %). Solid self-emulsifying carrier system is more stable than liquid emulsions, facilitating to improve the solubility and bioavailability of poorly soluble drugs. In the present study, a solid self-emulsifying carrier stabilized by casein (Cas-SSE) was successfully used to load SV to improve its solubility in water, by formulation selection and emulsification process optimization. Compared with oral tablets, the release of SV from Cas-SSE was significantly enhanced in artificial intestinal fluid. Furthermore, everted gut sac experiments indicated some water-soluble dispersing agents such as hydroxyethyl starch (HES), were not conducive to drug absorption. Pharmacokinetic studies suggested Cas-SSE without dispersing agent has much higher relative bioavailability (184.1 % of SV and 284.5 % of simvastatin acid) than SV tablet. The present work suggests Cas-SSE is a promising drug delivery platform with good biocompatibility for improving oral bioavailability of poorly water-soluble drugs.


Asunto(s)
Disponibilidad Biológica , Caseínas , Portadores de Fármacos , Emulsiones , Simvastatina , Solubilidad , Simvastatina/farmacocinética , Simvastatina/química , Simvastatina/administración & dosificación , Caseínas/química , Caseínas/farmacocinética , Administración Oral , Animales , Portadores de Fármacos/química , Emulsiones/química , Ratas , Masculino , Liberación de Fármacos
5.
Adv Healthc Mater ; 13(7): e2302877, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38041691

RESUMEN

The postoperative periodontal wound is in a complex physiological environment; the bacteria accumulation, the saliva stimulation, and the food residues retention will aggravate the wound deterioration. Commercial periodontal dressings have been widely used for postoperative periodontal treatment, and there still exists some problems, such as poor biocompatibility, weak adhesion, insufficient antibacterial, and anti-inflammatory properties. In this study, a chitosan-gallic acid graft copolymer (CS-GA) is synthesized as a potential periodontal dressing hydrogel. CS-GA possesses high swelling rate, adjustable degradability, self-healing ability, biocompatibility, strong adhesion ability, high mechanical properties and toughness. Furthermore, CS-GA has good scavenging ability for ·OH, O2 - , and 1 O2. And CS-GA has good inhibition effect on different bacterial through bacterial membranes damage. CS-GA can stop bleeding in a short time and adsorb erythrocytes to form physical blood clots to enhance the hemostatic performance. In addition, CS-GA can reduce inflammatory factors expressions, increase collagen fibers deposition, and neovascularization to promote wounds healing, which makes it as a potential periodontal dressing for postoperative tissue restoration.


Asunto(s)
Quitosano , Humanos , Quitosano/química , Ácido Gálico/farmacología , Apósitos Periodontales , Hidrogeles/química , Cicatrización de Heridas , Polímeros/farmacología , Adherencias Tisulares , Antibacterianos/química
6.
Animals (Basel) ; 13(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003063

RESUMEN

(1) Background: Two-dimensional shear wave elastography (2D-SWE) is a non-invasive method widely used in human medicine to assess the extent of liver fibrosis but only rarely applied to veterinary medicine. This study aimed to measure liver stiffness in healthy dogs and investigate the factors that impacted 2D-SWE measurement. (2) Methods: In total, 55 healthy dogs were enrolled and subjected to 2D-SWE measurements before and after anesthesia administration. Post-anesthesia 2D-SWE measurements and computerized tomography (CT) scans were obtained. (3) Results: The liver stiffness range in healthy dogs was 3.96 ± 0.53 kPa. In a stratified analysis based on confounding factors, liver stiffness was influenced by measurement site and anesthesia, but not by sex. No correlation was observed between liver stiffness and weight or liver CT attenuation. (4) Conclusions: 2D-SWE is feasible for liver stiffness measurement in dogs. Anesthesia and measurement site are sources of variability. Therefore, these factors should be considered while recording 2D-SWE measurements. Our data on liver stiffness in healthy dogs can serve as the basis for future studies on 2D-SWE to assess pathological conditions in dogs.

7.
J Nanobiotechnology ; 21(1): 413, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946199

RESUMEN

Various X-ray imaging technologies like computed tomography (CT) and digital subtraction angiography (DSA) are widely used in transcatheter arterial embolization (TAE) therapy for treating hepatocellular cancer (HCC) patients. Although they display high-contrast imaging, they have a few disadvantages, such as complex operation and exposure to ionizing radiation. Thus, ultrasound (US) imaging plays an important role in medical diagnosis because of its advantages, like simple and fast operation, no ionizing radiation exposure, and accurate real-time imaging. Subsequently, Poly N-isopropylacrylamide-co-2,2,3,4,4,4-Hexafluorobutyl methacrylate (PNF) nanogels were synthesized for stabilizing TGFPE, the Pickering emulsions of 2H, 3H-decafluoropentane (HDFP). These emulsions displayed dual abilities of thermosensitive sol-gel transition and long-term US imaging in vitro. Thus, it was concluded that these emulsions could achieve vascular embolization and long-term US imaging in vivo as per the TAE animal model results. The emulsion droplets' flow and accumulation were visualized under the US imaging guidance. In summary, the Pickering emulsions have the potential to be used as US-guided embolization material for mediating TAE surgeries.


Asunto(s)
Carcinoma Hepatocelular , Embolización Terapéutica , Neoplasias Hepáticas , Animales , Humanos , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/terapia , Nanogeles , Temperatura , Emulsiones , Embolización Terapéutica/métodos
8.
Adv Mater ; 35(45): e2211980, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37755231

RESUMEN

Tumor-cell-derived microparticles (MPs) can function as anticancer drug-delivery carriers. However, short blood circulation time, large-size-induced insufficient tumor accumulation and penetration into tumor parenchyma, as well as limited cellular internalization by tumor cells and cancer stem cells (CSCs), and difficult intracellular drug release restrict the anticancer activity of tumor-cell-derived MP-based drug-delivery systems. In this work, hydrophobicity-adaptive polymers based on poly(N-isopropylacrylamide) are anchored to tumor-cell-derived MPs for enhanced delivery of the anticancer drug doxorubicin (DOX). The polymers are hydrophilic in blood to prolong the circulation time of DOX-loaded MPs (DOX@MPs), while rapidly switching to hydrophobic at the tumor acidic microenvironment. The hydrophobicity of polymers drives the fission of tumor-cell-derived MPs to form small vesicles, facilitating tumor accumulation, deep tumor penetration, and efficient internalization of DOX@MPs into tumor cells and CSCs. Subsequently, the hydrophobicity of polymers in acidic lysosomes further promotes DOX release to nuclei for strong cytotoxicity against tumor cells and CSCs. The work provides a facile and simple strategy for improved anticancer drug delivery of tumor-cell-derived MPs.


Asunto(s)
Antineoplásicos , Micropartículas Derivadas de Células , Neoplasias , Humanos , Polímeros/química , Antineoplásicos/química , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Interacciones Hidrofóbicas e Hidrofílicas , Portadores de Fármacos/química , Línea Celular Tumoral , Concentración de Iones de Hidrógeno , Microambiente Tumoral
9.
Biomaterials ; 302: 122324, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37738740

RESUMEN

An embolic reagent with easy injection, well-controlled target embolization, and sustained release of chemotherapy drugs is urgently needed for successful trans-arterial chemo-embolization (TACE) treatment. However, the development of a highly effective embolic reagent is still challenged. Here, inspired and guided by the structural supporting properties and defense mechanisms of wood cell walls, an ideal lignin-based embolic nanogel (DOX-pN-KL) was explored. Based on the mechanical support of branched lignin and the π-π stacking force between the lignin aromatic ring with anti-tumor drug doxorubicin (DOX), DOX-pN-KL showed the highest mechanical strength among the reported thermosensitive embolization nanogel and performed high drug-loading and favorable sustained-release. Moreover, further TACE treatment and tumor microenvironment evaluation of VX2 tumor-bearing rabbits showed that this nanogel can completely block all levels of vessels in long term and continuously release DOX, thus having effective inhibition on tumor growth and metastasis. DOX-pN-KL is expected to be a promising alternative reagent for interventional therapy.


Asunto(s)
Lignina , Neoplasias Hepáticas , Animales , Conejos , Nanogeles , Madera , Neoplasias Hepáticas/terapia , Doxorrubicina , Stents , Microambiente Tumoral
10.
Molecules ; 28(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985505

RESUMEN

The effects of the wet-dry cycles on the chemical compositions, microstructure, and mechanical properties of Pisha sandstone were experimentally investigated in the current study. A series of uniaxial compression tests were conducted to validate the deterioration of the mechanical property of specimens after wet-dry cycles. In addition, the evolutions of the mineral compositions and microstructure characteristics were confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM). Experimental results indicated that with the increase of wet-dry cycles, the mechanical properties of Pisha sandstone gradually decrease. After five wet-dry cycles, the uniaxial compressive strength, elastic modulus, and fracture energy of specimens were reduced by 41.06%, 62.39%, and 31.92%, respectively. The failure mode of the specimen changes from inclined shear failure to peel failure. Compared to the initial specimens, the relative content of primary minerals after five wet-dry cycles declined by 5.94%, and the relative content of clay minerals after five wet-dry cycles increased by 54.33%. Additionally, the porosity of samples exhibits a positive correlation with wet-dry cycles. Compared to the initial specimens, the porosity of specimens after five wet-dry cycles increased by 176.32%. Finally, a prediction model of the correlation between uniaxial compressive strength and porosity is proposed and verified.

11.
Res Vet Sci ; 156: 88-94, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36796240

RESUMEN

OBJECTIVE: Proper assessment of intraoperative abdominal incisional tension helps to select the appropriate sutures and suture method. Wound tension is usually thought to be associated with wound size, but few relevant articles have been reported. The aim of this study was to investigate the core factors influencing abdominal incisional tension and construct regression equations to judge incisional tension in clinical surgery. METHODS: Medical records were collected from clinical surgical cases at the Teaching Animal Hospital of Nanjing Agricultural University from March 2022 to June 2022. The data collected mainly included the body weight, and the incisional length, margin, and tension. The core factors affecting abdominal wall incisional tension were screened by correlation analysis, random forest analysis, and multiple linear regression analysis. RESULTS: Although correlation analysis showed that multiple same and deep layer abdominal incision parameters and body weight were significantly correlated with abdominal incisional tension. However, the same layer of abdominal incisional margin had the largest correlation coefficient. In random forest models, the abdominal incisional margin had the main contribution to the prediction of the same layer's abdominal incisional tension. In the multiple linear regression model, all incisional tension could be predicted by the same layer of abdominal incisional margin as the only independent variable, except for canine muscle and subcutaneous. The canine muscle and subcutaneous incisional tension were binary regressions with the same layer's abdominal incision margin and body weight. CONCLUSION: The same layer's abdominal incisional margin is the core factor positively related to the abdominal incisional tension intraoperatively.


Asunto(s)
Pared Abdominal , Enfermedades de los Gatos , Enfermedades de los Perros , Perros , Gatos , Animales , Pared Abdominal/cirugía , Enfermedades de los Perros/cirugía , Peso Corporal , Técnicas de Sutura/veterinaria
12.
ACS Nano ; 17(1): 515-529, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36580577

RESUMEN

Pyroptosis is gasdermin-mediated programmed necrosis that exhibits promising potential application in cancer immunotherapy, and the main challenge lies in how to provoke specific pyroptosis of tumor cells. Here, biGC@PNA with a precisely stoichiometric ratio of Au(I) ion/Au(0) atom induced pyroptosis of tumor cells by its radiofrequency (RF)-heating effect. An in vitro/in vivo assay on 4T1 tumor cells indicates RF-activated pyroptosis of tumor cells elicits a robust ICD effect, enhancing the synergistic antitumor efficacy of biGC@PNA with decitabine, significantly suppressing tumor metastasis and relapse by provoking systemic antitumor immune responses. Utilizing RF-activated pyroptotic immune responses, biGC@PNA efficiently enhances the antitumor efficacy of αPD-1 immunotherapy under RF irradiation and provides a promising strategy for improving cancer immunotherapy by the noninvasive RF field with high clinical transformation potential.


Asunto(s)
Neoplasias , Piroptosis , Humanos , Oro/farmacología , Apoptosis , Neoplasias/terapia , Neoplasias/patología , Inmunoterapia
13.
Poult Sci ; 102(2): 102335, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36470031

RESUMEN

Hexavalent chromium (Cr(Ⅵ)) is considered to be a common environmental pollutant, which widely exists in industrial effluents and wastes and then potentially noxious effects to the health of the poultry. Studies have reported that selenium (Se), which is one of the essential trace elements of the poultry and participates in the oxidative metabolism, can alleviate Cr(Ⅵ)-induced organ damage by inhibiting oxidative stress, but its specific molecular mechanism remains unclear. Herein, animal models of Cr(Ⅵ)- and Se-exposure were constructed using broilers to investigate the antagonistic mechanism of Se to Cr(Ⅵ)-induced hepatotoxicity. In this experiment, the four groups of broiler models were used as the research objects: control, Se, Se plus Cr, and Cr groups. Histopathology and ultrastructure liver changes were observed. Liver-somatic index, serum biochemistry, oxidative stress, Nrf2 pathway related factors, and autophagy-related genes were also determined. Overall, Se was found to ameliorate the disorganized structure, hepatic insufficiency, and oxidative damage caused by Cr(Ⅵ) exposure. Electron microscopy analysis further showed that the number of autophagosomes was obviously decreased after Se treatment compared to Cr group. Furthermore, gene and protein expression analyses illustrated that the levels of Nrf2, glutathione peroxidase 1 (GPx-1), NAD(P)H: quinone oxidoreductase 1 (NQO1), and mechanistic target of rapamycin (mTOR) in the Se&Cr group was upregulated, along with decreased expression of Beclin 1, ATG5 and LC3 compared to the Cr group. These suggest that Se can repair the oxidative lesion and autophagy induced by Cr(Ⅵ) exposure in broiler livers by upregulating the Nrf2 signaling pathway.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Selenio , Animales , Selenio/farmacología , Selenio/metabolismo , Pollos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Cromo/toxicidad , Cromo/metabolismo , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/veterinaria , Transducción de Señal
14.
J Control Release ; 353: 229-240, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36427657

RESUMEN

Surface PEGylation of nanomedicine is effective for prolonging blood circulation time and facilitating the EPR effect, whereas the hydrophilic stealth surface inhibits effective cellular uptake and hinders active targeting. To address the dilemma, herein, a NIR light-triggered dePEGylation/ligand-presenting strategy based on thermal decomposition of azo bonds is developed, whereby Dox/Pz-IR nanoparticle is self-assembled from thermo-labile azo molecule-linked long PEG chain polymer (Pz-IR), cRGD-conjugated IR783 with short PEG chains (rP-IR) and doxorubicin. The long PEG chains could mask cRGD peptides in the blood circulation, preventing serum degradation and nonspecific interaction with normal cells. Once exposed to NIR laser, the PEG corona is stripped off owing to the rupture of azo bonds through the photothermal effect of IR783, and the masked cRGD peptides are exposed, which remarkably enhances cellular uptake by tumor cells and improves tumor accumulation. Dox/Pz-IR achieves the optimal synergy of photothermal-chemotherapy at mild temperature through progressive tumor accumulation, precisely regulated photothermal effect and NIR-PTT induced pulsated drug release. The strategy of NIR photo-driven dePEGylation/targeting offers a new approach to overcoming the "PEG dilemma", and provides a noval avenue for programmed tumor-targeted drug delivery.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Ligandos , Sistemas de Liberación de Medicamentos , Doxorrubicina/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Fototerapia
15.
Front Vet Sci ; 9: 905759, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782566

RESUMEN

Background: Uremic cardiomyopathy (UC), the main cause of death in progressive chronic kidney disease (CKD), is characterized by diastolic dysfunction. Intraventricular pressure gradients (IVPG) derived from color m-mode echocardiography (CMME) and two-dimensional speckle tracking echocardiography (2DSTE) were established as novel echocardiographic approaches for non-invasive and repeatable assessment of cardiac function. Previously, salvianolic acid B (Sal B) showed the potential to alleviate concentric LV hypertrophy in the pressure overload model. The purpose of this study was to evaluate the changes in cardiac function in UC and assess the efficacy of Sal B therapy using IVPG and 2DSTE techniques. Materials and Methods: Twenty-four rats underwent subtotal nephrectomy to produce progressive renal failure and were allocated equally into UC (n = 12) and Sal B-UC (n = 12) groups and monitored for 8 weeks. A sham-operated group was also included in this study (n = 12). Sal B was injected from weeks 4 to 8 in the Sal B-UC group. Conventional echocardiography, 2DSTE, and CMME were performed every 2 weeks post-operation, concomitantly with an evaluation of renal function. Histopathological and immunohistochemistry analyses were carried out to confirm the echocardiography findings. Results: Renal failure and myocardial dysfunction were confirmed in the UC group from weeks 2 through 8. Eccentric and concentric hypertrophy was observed in the UC group, while the Sal B-UC group showed only eccentric hypertrophy. IVPG analysis did not reveal any significant differences between the groups. Edema, inflammation, fibrosis, and immunohistochemical expression of CD3 infiltration were higher in the UC group compared with sham and Sal B-UC groups. Conclusion: 2DSTE and IVPG explored the pathophysiology during the development of UC and indicated the incidence of myocardial dysfunction before ventricular morphological changes without intracardiac flow changes. This study confirmed increased ventricular stiffness and fibrosis in UC rats which was potentially treated by Sal B via decreasing edema, inflammation, and fibrosis.

16.
Ecotoxicol Environ Saf ; 239: 113629, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35576799

RESUMEN

Hexavalent chromium [Cr (VI)] is a common environmental pollutant. Although selenium (Se) can antagonize the toxicity of Cr (VI), the specific underlying mechanism has not been identified. To investigate this mechanism, we used potassium dichromate (K2Cr2O7) and selenium-rich yeast (SeY) to construct single Cr (VI)- and combined Se/Cr (VI)-exposed broiler models during a 42-day period. Broilers were randomly assigned to the control (C), SeY (Se), SeY + Cr (VI) (Se/Cr), and Cr (VI) (Cr) groups. The antagonistic mechanisms of Se and Cr (VI) were evaluated using histopathological evaluation, serum and tissue biochemical tests, real-time fluorescence quantitative polymerase chain reaction, and western blotting. The results suggested that Se alleviated the morphological and structural damage to renal tubules and glomeruli, while reducing the organ index, creatinine levels, and blood urea nitrogen levels in the kidneys of Cr (VI)-exposed broilers. Furthermore, Cr (VI) reduced the levels of superoxide dismutase and glutathione, and increased the levels of malondialdehyde, in broiler kidney tissues. However, Se alleviated Cr (VI)-induced oxidative stress by increasing the levels of superoxide dismutase and glutathione, and decreasing the levels of malondialdehyde, within a certain range. Compared to the C group, the levels of p38, JNK, p-p38, p-JNK, p-p38/p38, and p-JNK/JNK significantly increased, whereas those of ERK, p-ERK, and p-ERK/ERK decreased, in the Cr group. Compared to the Cr group, the levels of p38, JNK, p-p38, p-JNK, p-p38/p38, and p-JNK/JNK significantly decreased, whereas those of ERK, p-ERK, and p-ERK/ERK increased, in the Se/Cr group. Furthermore, the levels of p53, c-Myc, Bax, Cyt-c, caspase-9, and caspase-3 significantly increased, and those of Bcl-2 and Bcl-2/Bax significantly decreased, following Cr (VI) exposure, while Se restored the expression of these genes. In conclusion, our findings suggest that SeY can protect against Cr (VI)-induced dysfunction and apoptosis by regulating the mitogen-activated protein kinase pathway activated by oxidative stress in broiler kidney tissues.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Selenio , Animales , Apoptosis , Pollos/metabolismo , Cromo/toxicidad , Glutatión , Riñón/metabolismo , Malondialdehído , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Selenio/metabolismo , Selenio/farmacología , Superóxido Dismutasa , Proteína X Asociada a bcl-2
18.
Animals (Basel) ; 12(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35049769

RESUMEN

This study was conducted to investigate the molecular mechanisms of selenium (Se) antagonism of hexavalent chromium (Cr6+)-induced toxicity. Potassium dichromate (K2Cr2O7) and selenium-enriched yeast (SeY) were used to construct the single Cr6+ and combined Se/Cr6+ exposure broiler models, and then the broilers were randomly divided into four groups (C group, Se group, Se/Cr6+ group, and Cr6+ group). After a 42-day experiment, the spleen tissues of broilers were excised and weighted. The antagonistic mechanisms of Se and Cr6+ were evaluated using histopathological assessment, serum biochemical tests, oxidative stress kits, ELISA, qPCR, and Western blotting. On the whole, there were no significant changes between the C and Se groups. The spleen organ index in the Cr6+ group was significantly decreased, but SeY increased spleen organ index to a certain extent. The levels of SOD and GSH were reduced, and the MDA content was elevated by Cr6+; however, these changes were mitigated by Se/Cr6+ exposure. Importantly, Cr6+ exposure induced a series of histopathological injuries in broiler spleen tissues, while these symptoms were significantly relieved in the Se/Cr6+group. Furthermore, Cr6+ significantly decreased the levels of T-globulin, IgA, IgM, and IgG in serum. Contrarily, dramatically more T-globulin IgA, IgM, and IgG were found in the Se/Cr6+group than in the Cr6+ group. Revealed by the results of qPCR and WB, the expressions of NF-κB, IκBα, and p-IκBα were upregulated in Cr6+ groups, while they were downregulated in Se/Cr6+ group compared to that in Cr6+ group. Besides IFN-γ and IL-2, the expressions of pro-inflammatory cytokines were significantly increased by Cr6+ exposure, but the SeY supplement relived the expression levels mediated by Cr6+ exposure. In conclusion, our findings suggest SeY has biological activity that can protect broiler spleens from immunosuppression and inflammation induced by Cr6+, and we speculate that the NF-κB signaling pathway is one of its mechanisms.

19.
ACS Nano ; 16(2): 3070-3080, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35038865

RESUMEN

Photodynamic therapy (PDT), is a rising star for suppression of in situ and metastatic tumors, yet it is impeded by low ROS production and off-target phototoxicity. Herein, an aggregation degree editing strategy, inspired by gene editing, was accomplished by the coordination of an aggregation degree editor, p(MEO2MA160-co-OEGMA40)-b-pSS30 [POEGS; MEO2MA = 2-(2-methoxyethoxy)ethyl methacrylate, OEGMA = oligo(ethylene glycol) methacrylate; pSS = poly(styrene sulfonate)] and indocyanine green (ICG) to nontoxic Mg2+, forming an ICG discretely loaded nanoaggregate (ICG-DNA). Optimization of the ICG aggregation degree [POEGS/ICG (P/I) = 6.55] was achieved by tuning the P/I ratio, alleviating aggregation-caused-quenching (ACQ) and photobleaching concurrently. The process boosts the PDT efficacy, spurring robust immunogenic cell death (ICD) and systemic antitumor immunity against primary and metastatic immunogenic "cold" 4T1 tumors via intratumoral administration. Moreover, the temperature-sensitive phase-transition property facilitates intratumoral long-term retention of ICG-DNA, reducing undesired phototoxicity to normal tissues; meanwhile, the photothermal-induced tumor oxygenation further leads to an augmented PDT outcome. Thus, this simple strategy improves PDT efficacy, boosting the singlet oxygen quantum yield (ΦΔ)-dependent ICD effect and systemic antitumor responses via local treatment.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Línea Celular Tumoral , Inmunoterapia , Verde de Indocianina/farmacología , Fármacos Fotosensibilizantes/farmacología , Fototerapia
20.
Biol Trace Elem Res ; 200(11): 4750-4761, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35031963

RESUMEN

Hexavalent chromium [Cr(VI)] is one of the most common environmental contaminants caused by its broad industrial applications. Importantly, exposure to Cr(VI) induces oxidative damage and apoptosis in animal cells. Studies have shown that selenium (Se) can alleviate the toxic effects of Cr(VI) by functioning as an antioxidant and/or by chelating Cr(VI) into biologically inert complexes, but the underlying mechanism remains unknown. Here, we evaluated whether Se can ameliorate ileum damage and cecal microbial disturbances induced by Cr(VI) in vivo. Mice administered Cr(VI) for 30 days presented histopathological damage, reduced responses to oxidative stress, and increased expression of apoptosis-related genes in the ileum compared with those in the control (non-exposed) group. Se alleviated the histopathological damage and decreased the oxidative stress and apoptosis induced by Cr(VI) in the ileum. In addition, Cr(VI) disturbed cecal microflora, and it was partially reversed by Se treatment. These findings demonstrate that the damaging and potentially pathological effects of Cr(VI) on the ileum and cecal microflora can be effectively alleviated with Se treatment.


Asunto(s)
Selenio , Animales , Antioxidantes , Cromo/metabolismo , Cromo/toxicidad , Íleon/metabolismo , Ratones , Selenio/metabolismo , Selenio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...