RESUMEN
The self-assembling morphologies of proteins, nucleic acids, and peptides are well correlated with their functioning in biological systems. In spite of extensive studies for the morphologies regulating, the directional control of the assembly morphology structure for the peptides still remains challenging. Here, the directional structure control of a bola-like peptide Ac-KIIF-CONH2 (KIIF) was realized by introducing different amount of acetonitrile to the system. The morphologies were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM), and the secondary structure was evaluated by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that the introducing of different amount of acetonitrile has significantly tuned the hydrophobic interactions amongst the side chains, thus affecting the self-assembling morphologies. As acetonitrile content increased, the assemblies changed from nanotubes to helical/twisted ribbons and then to thin fibrils, with a steady decrease in the width. In contrast, the assemblies changed from thin fibrils to helical/twisted ribbons, and then to matured nanotubes, exhibiting a steady increase in the width with peptide concentration increasing. Complementary molecular dynamics (MD) simulations demonstrated the important role of acetonitrile in controlling the hydrophobic interactions, providing microscopic evidence for the structure transition process. We believe such observations provide important insights into the design and fabrication of functional materials with controlled shape and size.
Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Péptidos/química , Conformación Proteica en Lámina beta , Acetonitrilos/química , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
This study aimed to investigate the effects of ursolic acid (UA) on the growth performance and intestinal health of largemouth bass (Micropterus salmoides). Four diets were formulated with UA supplementation at 0, 250, 500, and 1000 mg/kg, defined as the control (CON), UA250, UA500, and UA1000, respectively. After an 8-week feeding experiment, the results showed that, in the UA500 group, the final body weight (FBW), weight gain rate (WGR), and specific growth rate (SGR) increased, and the feed conversion ratio (FCR) and hepatosomatic index decreased. Total superoxide dismutase (T-SOD) activity exhibited a significant increase, and malondialdehyde (MDA) content decreased. An intestinal histological analysis revealed an improvement in the intestinal structural integrity of the UA500 group. The mRNA relative expression levels of physical barrier-related genes [occludin, claudin-1, and zonula occluden-1 (zo-1)] were upregulated. The mRNA relative expression of interlenkin 10 (il-10) increased, and the mRNA relative expression of interlenkin 1ß (il-1ß) and tumor necrosis factor-α (tnf-α) significantly decreased. The abundance of Firmicutes and Proteobacteria decreased, and the abundance of Tenericutes increased. The abundance of Mycoplasma, Cyanobium, and Staphylococcus decreased, while the abundance of Clostridium increased. In conclusion, dietary supplementation of UA significantly enhanced the growth performance and antioxidant capacity of largemouth bass while improving intestinal barrier function through its influence on the abundance of intestinal flora, such as Tenericutes, Firmicutes, and Mycoplasma. Optimal dietary UA levels for largemouth bass were determined to be between 498 and 520 mg/kg based on quadratic regression analyses of WGR, SGR, and FCR or T-SOD and MDA content.
RESUMEN
Purpose: To review current evidence on the efficacy and safety outcomes of HIF-PHIs in chronic kidney disease (CKD) populations with an emphasize on the safety profile. Methods: A systematic search was conducted in the Medline, Embase, and Cochrane Central databases. Randomized controlled trials that had assessed the efficacy and safety of HIF-PHIs for anemia in CKD were included. The efficacy outcome included change of hemoglobin and the safety outcomes any adverse events, severe adverse events, major adverse cardiovascular events, and mortality. The qualities of studies were assessed using the Cochrane ROB tool. Results: 47 studies encompassing 55 RCTs for the study outcomes were included in this study. All six commercially available HIF-PHIs had direct comparisons to ESA and placebo, yet lacked direct comparisons among each other. The network analysis demonstrated all six HIF-PHIs were able to effectively elevate hemoglobin in the general CKD patients compared to placebo. All HIF-PHIs did not differ among each other in the efficacy of correcting anemia. Roxadustat and daprodustat had the largest number of reports in terms of adverse events. The overall risk of each safety outcome did not increase in comparison to erythropoiesis stimulating agent (ESA) or placebo, and did not differ among different types of HIF-PHIs. Conclusion: HIF-PHIs can effectively elevate hemoglobin without causing higher risk of safety concerns in CKD patients with anemia. Further evidence from long-term studies and the ongoing post-market surveillance is necessary.
RESUMEN
Although hydrophobic interactions provide the main driving force for initial peptide aggregation, their role in regulating suprastructure handedness of higher-order architectures remains largely unknown. We here interrogate the effects of hydrophobic amino acids on handedness at various assembly stages of peptide amphiphiles. Our studies reveal that relative to aliphatic side chains, aromatic side chains set the twisting directions of single ß-strands due to their strong steric repulsion to the backbone, and upon packing into multi-stranded ß-sheets, the side-chain aromatic interactions between strands form the aromatic ladders with a directional preference. This ordering not only leads to parallel ß-sheet arrangements but also induces the chiral flipping over of single ß-strands within a ß-sheet. In contrast, the lack of orientational hydrophobic interactions in the assembly of aliphatic peptides implies no chiral inversion upon packing into ß-sheets. This study opens an avenue to harness peptide aggregates with targeted handedness via aromatic side-chain interactions.
Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Péptidos , Péptidos/química , Péptidos/metabolismo , Conformación Proteica en Lámina beta , Estereoisomerismo , Estructura Secundaria de Proteína , Aminoácidos Aromáticos/química , Dicroismo Circular , Modelos Moleculares , Aminoácidos/químicaRESUMEN
The experiment investigated the effects of sea-buckthorn flavonoids (SF) on lipopolysaccharide (LPS)-challenged broilers. A total of 288 one-day-old male broilers were randomly assigned to 4 groups, with 6 replicates of 12 broilers each. The experiment lasted for 20 days. The diet included two levels of SF (0 or 1000 mg/kg) and broilers intraperitoneally injected with 500 µg/kg LPS on 16, 18, and 20 days, or an equal amount of saline. LPS challenge decreased final body weight, average daily gain, and average daily feed intake, increased feed-to-gain ratio, and elevated serum IL-1ß, IL-2, TNF-α, D-LA, and endotoxin levels. Moreover, it resulted in a reduction in the IL-10 level. LPS impaired the intestinal morphology of the duodenum, jejunum, and ileum, down-regulated the mRNA relative expression of Occludin, ZO-1, and MUC-2 in the jejunum mucosa, up-regulated the mRNA relative expression of TLR4, MyD88, NF-κB, and IL-1ß, and increased the relative abundance of Erysipelatoclostridium in broilers (p < 0.05). However, SF supplementation mitigated the decrease in growth performance, reduced serum IL-1ß, IL-2, and D-LA levels, increased IL-10 levels, alleviated intestinal morphological damage, up-regulated mRNA expression of Occludin and ZO-1, down-regulated the mRNA expression of TLR4, NF-κB, and IL-lß in jejunum mucosal (p < 0.05), and SF supplementation presented a tendency to decrease the relative abundance of proteobacteria (0.05 < p < 0.1). Collectively, incorporating SF can enhance the growth performance, alleviate serum inflammation, and improve the intestinal health of broilers, effectively mitigating the damage triggered by LPS-challenges.
RESUMEN
Antibacterial peptides (ABPs) have been recognized as promising alternatives to conventional antibiotics due to their broad antibacterial spectrum, high antibacterial activity, and low possibility of inducing bacterial resistance. However, their antibiofilm mechanisms have not yet reached a consensus. In this study, we investigated the antibiofilm activity of a short helical peptide G3 against Staphylococcus epidermidis, one of the most important strains of medical device contamination. Studies show that G3 inhibits S. epidermidis biofilm formation in a variety of ways. In the initial adhesion stage, G3 changes the properties of bacterial surfaces, such as charges, hydrophobicity, and permeability, by rapidly binding to them, thus interfering with their initial adhesion. In the mature stage, G3 prefers to target extracellular polysaccharides, leading to the death of outside bacteria and the disruption of the three-dimensional (3D) architecture of the bacterial biofilm. Such efficient antibiofilm activity of G3 endows it with great potential in the treatment of infections induced by the S. epidermidis biofilm.
Asunto(s)
Antibacterianos , Biopelículas , Staphylococcus epidermidis , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Péptidos/químicaRESUMEN
Asthma is a prevalent respiratory disease. The present study is designed to determine whether gut microbiota-derived tryptophan metabolites alleviate allergic asthma inflammation in ovalbumin (OVA)-induced mice and explore the effect and potential mechanism therein. Asthma model mice were constructed by OVA treatment, and kynurenine (KYN), indole-3-lactic acid (ILA), in-dole-3-carbaldehyde (I3C), and indole acetic acid (IAA) were administered by intraperitoneal injection. The percent survival, weight and asthma symptom score of mice were recorded. The total immunoglobulin E and OVA-specific (s)IgE in the serum and the inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) were detected by the corresponding ELISA kits. The composition of the gut microbiota and tryptophan-targeted metabolism in mouse feces were analyzed using 16S rRNA gene sequencing and targeted metabolomics, respectively. The four tryptophan metabolites improved the percent survival, weight and asthma symptoms of mice, and reduced the inflammatory cells in lung tissues, especially I3C. I3C and IAA significantly (p < 0.05) downregulated the levels of OVA-IgE and inflammatory cytokines. KYN was observed to help restore gut microbiota diversity. Additionally, I3C, KYN, and ILA increased the relative abundance of Anaeroplasma, Akkermansia, and Ruminococcus_1, respectively, which were connected with tryptophan metabolic pathways. IAA also enhanced capability of tryptophan metabolism by the gut microbiota, restoring tryptophan metabolism and increasing production of other tryptophan metabolites. These findings suggest that tryptophan metabolites may modulate asthma through the gut microbiota, offering potential benefits for clinical asthma management.
RESUMEN
Objective: At present, several important trials have been published show that perioperative immunotherapy combined with chemotherapy can improve the prognosis of patients with resectable non-small cell lung cancer, which further optimizes treatment options. Therefore, we conducted a systematic review and meta-analysis to evaluate the efficacy and safety of perioperative immunotherapy combined with chemotherapy in resectable non-small cell lung cancer. Methods: The following databases were searched for relevant studies: PubMed, EMBASE, Cochrane library (updated 12 October 2023). All randomized trials comparing perioperative immunotherapy combined with chemotherapy versus chemotherapy alone in resectable non-small cell lung cancer were eligible for inclusion. Data were analyzed using Review Manager 5.4.1 (Cochrane collaboration software). Primary outcomes and measures included overall survival (OS), event-free survival (EFS), pathological complete response (pCR), major pathological response (MPR), R0 resection rate, rate of underwent surgery and adverse events (AEs). Results: A total of 2912 patients (1453 receiving perioperative immunotherapy plus chemotherapy and 1459 receiving chemotherapy alone) were included in this systematic review and meta-analysis. The result showed that compared with chemotherapy alone, combined therapy significantly improved OS (HR = 0.68;95% CI: 0.56-0.83), EFS (HR = 0.58;95% CI: 0.51-0.65), pCR (OR = 7.53;95% CI: 4.63-12.26), MPR (OR = 5.03;95% CI: 3.40-7.44), R0 resection (OR = 1.58;95% CI: 1.152.18) and rate of underwent surgery (OR = 1.25;95% CI: 1.04-1.49). However, combination therapy was associated with higher risk of severe adverse event (OR = 1.46;95% CI: 1.19-1.78; P=0.0002), grade 3 and higher treatment-related adverse event (TRAE) (OR = 1.25;95% CI: 1.06-1.49; P=0.010), TRAE that led to interruption (OR = 1.90;95% CI: 1.34-2.68; P=0.0003) and immune-related adverse event (OR = 2.78;95% CI: 2.18-3.55; P<0.00001). Significant benefits were observed across most subgroups of EFS and pCR. However, no statistical differences were observed for EFS of never smoked (HR = 0.73;95% CI: 0.51-1.05) and EGFR-mutation positive (HR = 0.35;95% CI: 0.04-3.03). Conclusion: This systematic review and meta-analysis found superior efficacy associated with perioperative immunotherapy plus chemotherapy compared with chemotherapy alone in both tumor regression and prolonged survival in resectable NSCLC, but increased the risk of TRAE, so monitoring for adverse events is warranted. Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier (CRD42023476786).
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Neoplasias Pulmonares , Terapia Neoadyuvante , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Quimioterapia Adyuvante , Ensayos Clínicos Fase III como Asunto , Terapia Combinada , Inmunoterapia/métodos , Inmunoterapia/efectos adversos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Terapia Neoadyuvante/métodos , Resultado del TratamientoRESUMEN
Fat synthesis and lipolysis are natural processes in growth and have a close association with health. Fat provides energy, maintains physiological function, and so on, and thus plays a significant role in the body. However, excessive/abnormal fat accumulation leads to obesity and lipid metabolism disorder, which can have a detrimental impact on growth and even harm one's health. Aside from genetic effects, there are a range of factors related to obesity, such as excessive nutrient intake, inflammation, glycometabolism disease, and so on. These factors could serve as potential targets for anti-obesity therapy. Quercetin is a flavonol that has received a lot of attention recently because of its role in anti-obesity. It was thought to have the ability to regulate lipid metabolism and have a positive effect on anti-obesity, but the processes are still unknown. Recent studies have shown the role of quercetin in lipid metabolism might be related to its effects on inflammatory responses and glycometabolism. The references were chosen for this review with no date restrictions applied based on the topics they addressed, and the databases PubMed and Web of Sicence was used to conduct the references research, using the following search terms: "quercetin", "obesity", "inflammation", "glycometabolism", "insulin sensitivity", etc. This review summarizes the potential mechanisms of quercetin in alleviating lipid metabolism through anti-inflammatory and hypoglycemic signaling pathways, and describes the possible signaling pathways in the interaction of inflammation and glycometabolism, with the goal of providing references for future research and application of quercetin in the regulation of lipid metabolism.
Asunto(s)
Inflamación , Metabolismo de los Lípidos , Obesidad , Quercetina , Transducción de Señal , Quercetina/farmacología , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Inflamación/metabolismo , Transducción de Señal/efectos de los fármacos , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Animales , Resistencia a la Insulina , Antiinflamatorios/farmacología , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacosRESUMEN
Objective:To analyze the clinical feature, diagnosis and treatment of Anca-associated vasculitis with ear symptoms. Methods:In this retrospective study, we summarized the clinical and laboratory examination, pure tone audiometry, aural immittance measurement, CT scan of temporal bone and treatment of 40 patients in the First Medical Center of the PLA General Hospital. Results:A total of 11 casesï¼27.5%ï¼ had the initial symptom in the ear. The most common symptoms were hearing loss, and the other symptoms included a sense of ear fullness, otorrhea and tinnitus. There were 35 cases with hearing loss: 19 cases with conductive hearing lossï¼47.5%ï¼, 9 cases with sensorineural hearing lossï¼22.5%ï¼, and 7 cases with mixed hearing lossï¼17.5%ï¼. 5 cases had a sense of ear fullness or tinnitus, and the results of the hearing test were normalï¼12.5%ï¼. All of the 40 patients had multi-system involvement, and respiratory system accounted for the most. All patients had a positive result of Anti-neutrophil cytoplasmic antibodyï¼ANCAï¼. Treatment included systemic hormonal, immunosuppressive, or biologic therapy. There were 3 cases recoveredï¼7.5%ï¼, 22 cases with alleviated ear symptomsï¼55.0%ï¼, 6 cases with recurrent hearing lossï¼15%ï¼ and 9 cases had no significant improvementï¼22.5%ï¼. Conclusion:Conductive deafnessï¼secretory otitis mediaï¼ can be the first manifestation in the early stage of otitis media with AAVï¼OMAAVï¼, later it may turn to binaural mixed deafness. Otolaryngologists need to consider OMAAV diagnosis when diagnosing and treating patients with recurrent secretory otitis media. Multi-system symptom consultation and ANCA examination can help identify. Early systemic medication and the application of immunosuppressants or biological agents can help relieve the ear symptoms.
Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Sordera , Otitis Media con Derrame , Acúfeno , Humanos , Anticuerpos Anticitoplasma de Neutrófilos , Estudios Retrospectivos , Pérdida Auditiva Conductiva , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/complicaciones , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/diagnóstico , Audiometría de Tonos PurosRESUMEN
BACKGROUND: Stem cell exosomes are beneficial in accelerating wound repair. However, the therapeutic function is limited due to its rapid clearance in vivo. To improve the functionality of exosomes in cutaneous wound healing, a novel hydrogel was designed and fabricated by recombinant human collagen I and carboxymethyl chitosan loaded with exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs), named as the rhCol I/CMC-Exos hydrogel. METHODS: Exosomes were extracted from hUCMSCs and were characterizated by TEM (Transmission Electron Microscopy), and biomarker detection. The rhCol I hydrogel, rhCol I/carboxymethyl chitosan (rhCol I/CMC) hydrogel and the rhCol I/CMC-Exos hydrogel composites were cross-linked by genipin. These materials were assessed and compared for their physical characteristics, including cross-sectional morphology, porosity, pore distribution, and hydrophilicity. Cell biocompatibility on biomaterials was investigated using scanning electron microscopy and CFDA staining, as well as assessed in vivo through histological examination of major organs in mice. Effects of the hydrogel composite on wound healing were further evaluated by using the full-thickness skin defect mice model. RESULTS: Successful extraction of hUCMSCs-derived exosomes was confirmed by TEMï¼Western Blotting and flow cytometry. The synthesized rhCol I/CMC-Exos hydrogel composite exhibited cytocompatibility and promoted cell growth in vitro. The rhCol I/CMC-Exos hydrogel showed sustained release of exosomes. In the mice full skin-defects model, the rhCol I/CMC-Exos-treated group showed superior wound healing efficiency, with 15 % faster wound closure compared to controls. Histological examinations revealed thicker dermis formation and more balanced collagen deposition in wounds treated with rhCol I/CMC-Exos hydrogel. Mechanistically, the application of rhCol I/CMC-Exos hydrogel increased fibroblasts proliferation, alleviated inflammation responses as well as promoted angiogenesis, thereby was beneficial in promoting skin wound healing and regeneration. CONCLUSION: Our study, for the first time, introduced recombinant human Collagen I in fabricating a novel hydrogel loaded with hUCMSCs-derived exosomes, which effectively promoted skin wound closure and regeneration, demonstrating a great potential in severe skin wound healing treatment.
Asunto(s)
Quitosano , Exosomas , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Hidrogeles/farmacología , Cicatrización de Heridas , Quitosano/farmacología , Estudios Transversales , Colágeno/farmacología , Modelos Animales de Enfermedad , Colágeno Tipo I/farmacologíaRESUMEN
In SARS-CoV-2 infection, it has been observed that viral replication lasts longer in the nasal mucosa than in the lungs, despite the presence of a high viral load at both sites. In hamsters, we found that the nasal mucosa exhibited a mild inflammatory response and minimal pathological injuries, whereas the lungs displayed a significant inflammatory response and severe injuries. The underlying cellular events may be induced by viral infection in three types of cell death: apoptosis, pyroptosis, and necroptosis. Our findings indicate that apoptosis was consistently activated during infection in the nasal mucosa, and the levels of apoptosis were consistent with the viral load. On the other hand, pyroptosis and a few instances of necroptosis were observed only on 7 dpi in the nasal mucosa. In the lungs, however, both pyroptosis and apoptosis were prominently activated on 3 dpi, with lower levels of apoptosis compared to the nasal mucosa. Interestingly, in reinfection, obvious viral load and apoptosis in the nasal mucosa were detected on 3 dpi, while no other forms of cell death were detected. We noted that the inflammatory reactions and pathological injuries in the nasal mucosa were milder, indicating that apoptosis may play a role in promoting lower inflammatory reactions and milder pathological injuries and contribute to the generation of long-term viral replication in the nasal mucosa. Our study provides valuable insights into the differences in cellular mechanisms during SARS-CoV-2 infection and highlights the potential significance of apoptosis regulation in the respiratory mucosa for controlling viral replication.
Asunto(s)
Apoptosis , COVID-19 , Mesocricetus , Mucosa Nasal , Piroptosis , SARS-CoV-2 , Carga Viral , Animales , COVID-19/virología , COVID-19/patología , Mucosa Nasal/virología , Mucosa Nasal/patología , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , Reinfección/virología , Pulmón/virología , Pulmón/patología , Cricetinae , Replicación Viral , Masculino , NecroptosisRESUMEN
The controlled peptide self-assembly and disassembly are not only implicated in many cellular processes but also possess huge application potential in a wide range of biotechnology and biomedicine. ß-sheet peptide assemblies possess high kinetic stability, so it is usually hard to disassemble them rapidly. Here, we reported that both the self-assembly and disassembly of a designed short ß-sheet peptide IIIGGHK could be well harnessed through the variations of concentration, pH, and mechanical stirring. Microscopic imaging, neutron scattering, and infrared spectroscopy were used to track the assembly and disassembly processes upon these stimuli, especially the interconversion between thin, left-handed protofibrils and higher-order nanotubes with superstructural right-handedness. The underlying rationale for these controlled disassembly processes mainly lies in the fact that the specific His-His interactions between protofibrils were responsive to these stimuli. By taking advantage of the peptide self-assembly and disassembly, the encapsulation of the hydrophobic drug curcumin and its rapid release upon stimuli were achieved. Additionally, the peptide hydrogels facilitated the differentiation of neural cells while maintaining low cell cytotoxicity. We believe that such dynamic and reversible structural transformation in this work provides a distinctive paradigm for controlling the peptide self-assembly and disassembly, thus laying a foundation for practical applications of peptide assemblies.
Asunto(s)
Nanotubos de Péptidos , Nanotubos , Nanotubos de Péptidos/química , Péptidos/farmacología , Péptidos/química , Conformación Proteica en Lámina betaRESUMEN
OBJECTIVES: To explore the diagnostic value of contrast-enhanced ultrasound (CEUS) in the disease activity of idiopathic retroperitoneal fibrosis (IRPF). METHODS: This retrospective study included 148 CEUS examinations from 63 patients with IRPF treated in our hospital from April 2016 to September 2021. They were divided into two groups: IRPF active group (69 examinations) and inactive group (79 examinations). Uni- and multivariable analyses were used to identify independent risk factors for IRPF activity. Receiver operating characteristic (ROC) curves were drawn to establish different diagnostic models to evaluate the diagnostic value of IRPF activity. The z test was used to compare the differences of the area under the curves (AUCs). The value of CEUS in evaluating the variation of disease activity over time was also investigated between repeat patient studies. RESULTS: Univariate and multivariate logistic regression analyses revealed the thickness [odds ratio (OR) = 14.125, 95% confidence interval (CI) = 3.017-66.123] was the most significant independent risk factor for IRPF activity (P < 0.01). The best diagnostic model was model 3, which was established by CEUS score combined with thickness. The AUC was 0.944 (95%CI = 0.912-0.977), and the sensitivity and specificity were 89.86% and 86.08%, respectively. The diagnostic performance was not significantly improved after combining clinical symptom (back pain) and laboratory indicators [erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP)]. Compared with before treatment, the CEUS score and thickness were significantly decreased after treatment (x2 = 14.580, P < 0.001 and z = 4.708, P < 0.001, respectively). CONCLUSION: CEUS has good diagnostic value for IRPF disease activity. Key points ⢠Thickness and contrast-enhanced ultrasound score were significantly higher in the active group than those in inactive group (P < 0.001). ⢠With thickness of 4 mm and contrast-enhanced ultrasound 2 score as optimal cut-off values, the sensitivity and specificity were 89.86%, 81.01% and 52.17%, 100.00%, respectively. ⢠During follow-up, when the disease progressed, the change of CEUS score was earlier than the change of thickness.
Asunto(s)
Fibrosis Retroperitoneal , Humanos , Estudios Retrospectivos , Fibrosis Retroperitoneal/diagnóstico por imagen , Medios de Contraste , Ultrasonografía , Sensibilidad y EspecificidadRESUMEN
The co-assembly of different peptide chains usually leads to the formation of intricate architectures and sophisticated functions in biological systems. Although the co-assembly of stereoisomeric peptides represents a facile and flexible strategy for the synthesis of peptide-based nanomaterials with novel structures and potentially interesting properties, there is a lack of a general knowledge on how different isomers pack during assembly. Through the combined use of simulations and experimental observations, we report that heterochiral pairing is preferred to homochiral pairing at the molecular scale but self-sorting dictates beyond the molecular level for the mixtures of the short stereoisomeric ß-sheet peptides I3K (Ile-Ile-Ile-Lys). Furthermore, we demonstrate that flat ß-sheets and fibril morphology are always preferred to twisted ones during heterochiral pairing and subsequent assembly. However, the heterochiral pairing into flat morphology is not always at an equimolar ratio. Instead, a non-equimolar ratio (1:2) is observed for the mixing of homochiral LI3LK and heterochiral LI3DK, whose strand twisting degrees differ greatly. Such a study provides a paradigm for understanding the co-assembly of stereoisomeric peptides at the molecular scale and harnessing their blending for targeted nanostructures.
Asunto(s)
Nanoestructuras , Péptidos , Estereoisomerismo , Péptidos/química , Nanoestructuras/química , Conformación Proteica en Lámina betaRESUMEN
Patients with COVID-19 have been reported to experience neurological complications, although the main cause of death in these patients was determined to be lung damage. Notably, SARS-CoV-2-induced pathological injuries in brains with a viral presence were also found in all fatal animal cases. Thus, an appropriate animal model that mimics severe infections in the lungs and brain needs to be developed. In this paper, we compared SARS-CoV-2 infection dynamics and pathological injuries between C57BL/6Smoc-Ace2em3(hACE2-flag-Wpre-pA)Smoc transgenic hACE2-C57 mice and Syrian hamsters. Importantly, the greatest viral distribution in mice occurred in the cerebral cortex neuron area, where pathological injuries and cell death were observed. In contrast, in hamsters, viral replication and distribution occurred mainly in the lungs but not in the cerebrum, although obvious ACE2 expression was validated in the cerebrum. Consistent with the spread of the virus, significant increases in IL-1ß and IFN-γ were observed in the lungs of both animals. However, in hACE2-C57 mice, the cerebrum showed noticeable increases in IL-1ß but only mild increases in IFN-γ. Notably, our findings revealed that both the cerebrum and the lungs were prominent infection sites in hACE2 mice infected with SARS-CoV-2 with obvious pathological damage. Furthermore, hamsters exhibited severe interstitial pneumonia from 3 dpi to 5 dpi, followed by gradual recovery. Conversely, all the hACE2-C57 mice experienced severe pathological injuries in the cerebrum and lungs, leading to mortality before 5 dpi. According to these results, transgenic hACE2-C57 mice may be valuable for studying SARS-CoV-2 pathogenesis and clearance in the cerebrum. Additionally, a hamster model could serve as a crucial resource for exploring the mechanisms of recovery from infection at different dosage levels.
Asunto(s)
COVID-19 , Cerebro , Humanos , Cricetinae , Ratones , Animales , Ratones Endogámicos C57BL , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Ratones Transgénicos , Interleucina-1beta , Mesocricetus , PulmónRESUMEN
Infectious diseases pose a major challenge to human health, and there is an urgent need to develop new antimicrobial agents with excellent antibacterial activity. A series of novel triazolo[4,3-a]pyrazine derivatives were synthesized and their structures were characterized using various techniques, such as melting point, 1H and 13C nuclear magnetic resonance spectroscopy, mass spectrometry, and elemental analysis. All the synthesized compounds were evaluated for in vitro antibacterial activity using the microbroth dilution method. Among all the tested compounds, some showed moderate to good antibacterial activities against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli strains. In particular, compound 2e exhibited superior antibacterial activities (MICs: 32 µg/mL against Staphylococcus aureus and 16 µg/mL against Escherichia coli), which was comparable to the first-line antibacterial agent ampicillin. In addition, the structure-activity relationship of the triazolo[4,3-a]pyrazine derivatives was preliminarily investigated.
Asunto(s)
Antiinfecciosos , Infecciones Estafilocócicas , Humanos , Pirazinas/farmacología , Antibacterianos/química , Escherichia coli , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana , Estructura MolecularRESUMEN
The widespread prevalence of infectious bacteria is one of the greatest threats to public health, and consequently, there is an urgent need for efficient and broad-spectrum antibacterial materials that are antibiotic-free. In this study, 2-pyridinecarboxaldehyde (PCA) was grafted onto chitosan (CS) and the modified CS coordinated with silver ions to prepare PCA-CS-Ag complexes with antibacterial activity. To obtain complexes with a high silver content, the preparation process was optimized using single-factor experiments and response surface methodology. Under the optimal preparation conditions (an additional amount of silver nitrate (58 mg), a solution pH of 3.9, and a reaction temperature of 69 °C), the silver content of the PCA-CS-Ag complex reached 13.27 mg/g. The structure of the PCA-CS-Ag complex was subsequently verified using ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. Furthermore, three possible complexation modes of the PCA-CS-Ag complex were proposed using molecular mechanics calculations. The results of the antibacterial assay in vitro showed that the PCA-CS-Ag complex exhibited strong antibacterial activity against both Gram-positive and Gram-negative bacteria, exerting the synergistic antibacterial effect of modified chitosan and silver ions. Therefore, the PCA-CS-Ag complex is expected to be developed as an effective antibacterial material with promising applications in food films, packaging, medical dressings, and other fields.
Asunto(s)
Quitosano , Nanopartículas del Metal , Antibacterianos/farmacología , Antibacterianos/química , Quitosano/química , Bacterias Gramnegativas , Bacterias Grampositivas , Espectroscopía Infrarroja por Transformada de Fourier , Iones , Nanopartículas del Metal/química , Pruebas de Sensibilidad MicrobianaRESUMEN
As one of the most common malignant tumors, melanoma is a serious threat to human health. More than half of melanoma patients have a BRAF mutation, and 90% of them have a BRAF(V600E) mutation. There is a targeted therapy for patients using a BRAF(V600E) inhibitor. However, no response to treatment is generally inevitable due to the heterogeneity of melanoma. Coupled with its high metastatic character, melanoma ultimately leads to poor overall survival. This study aimed to explore the possible mechanisms of melanoma metastasis and identify a more effective method for the treatment of melanoma. In this paper, we report that TCF12 expression is higher in melanoma, especially in metastatic tumors, through analyzing data from TCGA. Then, cell proliferation, colony formation, and transwell assays show that the upregulated expression of TCF12 can promote proliferation and metastasis of melanoma cells in vitro. The same result is confirmed in the subcutaneous tumor formation assay. Moreover, TGFB2 is identified as a direct downstream target of TCF12 by RNA-seq, qPCR, immunoblotting, ChIP, and a dual luciferase reporting assay. Interestingly, depletion of TCF12 can sensitize melanoma to BRAF inhibition both in vitro and in vivo. Overall, our results demonstrate that TCF12 promotes melanoma progression and can be a potential tumor therapeutic target.