Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Molecules ; 29(19)2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39407629

RESUMEN

A novel (E)-1-(4-methylbenzylidene)-4-(3-isopropylphenyl) thiosemicarbazone was synthesized in a one-pot four-step synthetic route. Fourier transform infrared spectroscopy (FTIR), 1H and 13C nuclear magnetic resonances (NMR), single-crystal X-ray diffraction, and UV-visible absorption spectroscopy were utilized to confirm the successful preparation of the title compound. Single-crystal data indicated that the intramolecular hydrogen bond N(3)-H(3)···N(1) and intermolecular hydrogen bond N(2)-H(2)···S(1) (1 - x, 1 - y, 1 - z) existed in the crystal structure and packing of the title compound. Besides the covalent interaction, the non-covalent weak intramolecular hydrogen bond N(3)-H(3)···N(1) discussed by atoms in molecules (AIM) theory also functioned in maintaining the title compound's crystal structure. The strong intermolecular hydrogen bond N(2)-H(2)···S(1) (1 - x, 1 - y, 1 - z) discussed by Hirshfeld surface analysis played a major role in maintaining the title compound's crystal packing. The local maximum and minimum electrostatic potential of the title compound was predicted by electrostatic potential (ESP) analysis. The UV-visible spectra and HOMO-LUMO analysis revealed that the title compound has a low ΔEHOMO-LUMO energy gap (3.86 eV), which implied its high chemical reactivity due to the easy occurrence of charge transfer interactions within the molecule. Molecular docking and in vitro antifungal assays evidenced that its antifungal activity is comparable to the reported pyrimethanil, indicating its usage as a potential candidate for future antifungal drugs.

2.
Adv Healthc Mater ; : e2402965, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39440626

RESUMEN

Excessive infiltration of neutrophil and inflammatory cytokines accumulation as well as the inadequate delivery of drugs to the targeted site are key pathological cascades in multiple sclerosis (MS). Herein, inflammation-targeting biomimetic nano-decoys (TFMN) is developed that inhibit the infiltration of immune cells and effectively deliver glucocorticoids to lesions for enhanced MS treatment. Nano-decoys encapsulated with the glucocorticoid methylprednisolone (MPS) are prepared by coating neutrophil membrane (NM) on nanoparticles formed by the self-assembly of tannic acid and poloxamer188/pluronic68. Benefiting from the natural inflammation-targeting ability of activated neutrophil membranes, TFMN can target the lesion site and prevent neutrophils infiltration by adsorbing and neutralizing elevated neutrophil-related cytokines, subsequently modulating the inflammatory microenvironment in experimental autoimmune encephalomyelitis mice. TFMN exhibits a strong antioxidant capacity and scavenged excessive reactive oxygen species to enhance neuronal protection. Furthermore, at the inflammation site, perforin, discharged by cytotoxic T-lymphocytes, triggered the controlled release of MPS within the TFMN through perforin-formed pores in the NM. Simultaneously, this mechanism protected neurons from perforin-induced toxicity. The MPS liberated at the targeted site achieves optimal drug accumulation, thereby enhancing therapeutic efficacy. In conclusion, the innovative system shows potential for integrating various therapeutic agents, offering a novel strategy for CNS disorders.

3.
Ital J Pediatr ; 50(1): 176, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39278913

RESUMEN

BACKGROUND: Reports on coronavirus disease 2019 (COVID-19) in neonates are limited, especially in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) Omicron variant. This study aims to analyze the clinical characteristics and identify risk factors associated with severe COVID-19 in neonates infected with Omicron variant. METHODS: The study population was represented by neonates with COVID-19, who were admitted to The Affiliated Children's Hospital of Xi'an Jiaotong University in northwest China, from December 10, 2022 to January 20, 2023. Chinese Center for Disease Control and Prevention (CDC) announced that all local COVID-19 cases were infected with Omicron variant during the study period. Clinical and laboratory data were collected retrospectively. We used logistic regression analysis to investigate the risk factors for severe COVID-19, and derived odds ratios (ORs) and the corresponding 95% confidence intervals (CIs). RESULTS: A total of 108 neonates, with median age of 18.1 days (interquartile range 9.4-23.0), were affected by COVID-19, of whom 84 had a mild disease, while 24 a severe one (22.2%). Of them, 6.5% were premature. No deaths were observed in the study population. The most common clinical manifestations were fever (88.9%) and cough (55.6%), with 5 cases (4.6%) complicated by pneumonia. 4 cases (3.7%) received respiratory support, including 2 cases of high-flow oxygen and 2 cases of continuous positive airway pressure. Gestational age at birth (OR: 0.615; 95% CI: 0.393-0.961), neutrophil count (NEU) (OR:0.576; 95% CI : 0.344-0.962) and lymphocyte count (LYM) (OR: 0.159; 95% CI: 0.063-0.401) were independent risk factors for severe COVID-19. The combination of NEU and LYM had the largest receiver operating characteristic area under the curve [0.912 (95% CI:0.830-0.993)] for identifying severe COVID-19, with a sensitivity of 0.833 and a specificity of 0.917. CONCLUSIONS: The general presentations and outcomes of neonatal COVID-19 caused by Omicron variant were not severe, and very few patients required respiratory support. The simultaneous decrease in NEU and LYM can be used to identify severe infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/epidemiología , COVID-19/diagnóstico , Recién Nacido , Estudios Retrospectivos , Masculino , Factores de Riesgo , Femenino , China/epidemiología , Hospitalización
4.
Molecules ; 29(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39339379

RESUMEN

The utilization of sheet structure composites as a viable conductive filler has been implemented in polymer-based electromagnetic shielding materials. However, the development of an innovative sheet structure to enhance electromagnetic shielding performance remains a significant challenge. Herein, we propose a novel design incorporating silver-modified nanosheet self-assembled hollow spheres to optimize their performance. The unique microporous structure of the hollow composite, combined with the self-assembled surface nanosheets, facilitates multiple reflections of electromagnetic waves, thereby enhancing the dissipation of electromagnetic energy. The contribution of absorbing and reflecting electromagnetic waves in hollow nanostructures could be attributed to both the inner and outer surfaces. When multiple reflection attenuation is implemented, the self-assembled stack structure of nanosheets outside the composite material significantly enhances the occurrence of multiple reflections, thereby effectively improving its shielding performance. The structure also facilitates multiple reflections of incoming electromagnetic waves at the internal and external interfaces of the material, thereby enhancing the shielding efficiency. Simultaneously, the incorporation of silver particles can enhance conductivity and further augment the shielding properties. Finally, the optimized Ag/NiSi-Ni nanocomposites can demonstrate superior initial permeability (2.1 × 10-6 H m-1), saturation magnetization (13.2 emu g-1), and conductivity (1.2 × 10-3 Ω•m). This work could offer insights for structural design of conductive fillers with improved electromagnetic shielding performance.

5.
Inorg Chem ; 63(39): 18429-18437, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39270127

RESUMEN

In order to facilitate the practical application of circularly polarized luminescence (CPL) active molecules, the CPL brightness (BCPL) must be optimized. We have applied a binary modular strategy to synthesize two chiral organo-Tb3+ complexes, [Tb(Coum)3(1R,2R-Ph-PyBox)] (2) and [Tb(Coum)3(1S,2S-Ph-PyBox)] (5), combining 3-acetyl-4-hydroxy-coumarin (Coum) and enantiopure 2,6-bis(4-phenyl-2-oxazolin-2-yl) pyridine (1R,2R/1S,2S-Ph-PyBox). The photophysical properties of these novel complexes have been fully characterized. The combined point-chiral induction capability of chiral bis(oxazoline) derivatives and the outstanding photophysical properties of the coumarin-derived ligand have resulted in an intense excited-state chiroptical activity (|glum| = 0.097-0.103) for both Tb3+ enantiomers, with a bright Tb3+-centered high-purity green emission (ΦPL = 74%) and enhanced antenna-centered absorption behavior (ε320 nm = 47820-47940 M-1 cm-1). A superior BCPL (1132.7-1205.8 M-1 cm-1 at 5D4 → 7F5) has been established for complexes 2 and 5. The strategy adopted in this work provides a new route to chiroptical organo-Tb3+ luminophores with outstanding comprehensive performance.

6.
Molecules ; 29(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39275123

RESUMEN

The reverse-mode smart windows, which usually fabricated by polymer stabilized liquid crystal (PSLC), are more practical for scenarios where high transparency is a priority for most of the time. However, the polymer stabilized cholesteric liquid crystal (PSCLC) film exhibits poor spacing stability due to the mobility of CLC molecules during the bending deformation. In this work, a reverse-mode PSCLC flexible film with excellent bending resistance was fabricated by the construction of polymer spacer columns. The effect of the concentration of the polymerizable monomer C6M and chiral dopant R811 on the electro-optical properties and polymer microstructure of the film were studied. The sample B2 containing 3 wt% of C6M and 3 wt% R811 presented the best electro-optical performance. The electrical switch between transparent and opaque state of the flexible PSCLC film after bending not only indicated the excellent electro-optical switching performance, but also demonstrated the outstanding bending resistance of the sample with polymer spacer columns, which makes the PSCLC film containing polymer spacer columns have a great potential to be applied in the field of flexible devices.

7.
Nano Lett ; 24(40): 12486-12492, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39292766

RESUMEN

Lanthanide-doped upconversion nanoparticles (UCNPs) can convert low-energy near-infrared (NIR) light into high-energy visible light, making them valuable for broad applications. UCNPs often suffer from poor light-harvesting capabilities, which can be significantly improved by incorporating organic dye antennas. However, the dye-sensitized upconversion systems are prone to severe photobleaching in an ambient atmosphere. Here, we present a synergistic approach to mitigate photobleaching by introducing triplet state quencher cyclooctatetraene (COT). COT effectively suppresses the generation of singlet oxygen by quenching the triplet states of the dye and consumes the existing singlet oxygen through oxidant reactions. The inclusion of COT extends the half-life of IR806 by 4.7-times by preventing the oxidation of its poly(methylene) chains. Without significantly affecting emission intensity and dynamics, COT effectively stabilized dye-UCNPs, demonstrating a notable 3.9-fold increase in half-life under continuous laser irradiation. Our findings suggest a new strategy to enhance the photostability of near-infrared dyes and dye-sensitized upconversion nanohybrids.

8.
Int J Neural Syst ; 34(11): 2450059, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39252681

RESUMEN

Since the spiking neural P system (SN P system) was proposed in 2006, it has become a research hotspot in the field of membrane computing. The SN P system performs computations through the encoding, processing, and transmission of spiking information and can be regarded as a third-generation neural network. As a variant of the SN P system, the global asynchronous numerical spiking neural P system (ANSN P system) is adaptable to a broader range of application scenarios. However, in biological neuroscience, some neurons work synchronously within a community to perform specific functions in the brain. Inspired by this, our work investigates a global asynchronous spiking neural P system (ANSN P system) that incorporates certain local synchronous neuron sets. Within these local synchronous sets, neurons must execute their production functions simultaneously, thereby reducing dependence on thresholds and enhancing control uncertainty in ANSN P systems. By analyzing the ADD, SUB, and FIN modules in the generating mode, as well as the INPUT and ADD modules in the accepting mode, this paper demonstrates the novel system's computational capacity as both a generator and an acceptor. Additionally, this paper compares each module to those in other SN P systems, considering the maximum number of neurons and rules per neuron. The results show that this new ANSN P system is at least as effective as the existing SN P systems.


Asunto(s)
Potenciales de Acción , Modelos Neurológicos , Redes Neurales de la Computación , Neuronas , Neuronas/fisiología , Potenciales de Acción/fisiología , Humanos , Simulación por Computador , Animales
9.
Sci Adv ; 10(33): eado3919, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39141742

RESUMEN

Postoperative rehemorrhage following intracerebral hemorrhage surgery is intricately associated with a high mortality rate, yet there is now no effective clinical treatment. In this study, we developed a hemoglobin (Hb)-responsive in situ implantable DNA hydrogel comprising Hb aptamers cross-linked with two complementary chains and encapsulating deferoxamine mesylate (DFO). Functionally, the hydrogel generates signals upon postoperative rehemorrhage by capturing Hb, demonstrating a distinctive "self-diagnosis" capability. In addition, the ongoing capture of Hb mediates the gradual disintegration of the hydrogel, enabling the on-demand release of DFO without compromising physiological iron-dependent functions. This process achieves self-treatment by inhibiting the ferroptosis of neurocytes. In a collagenase and autologous blood injection model-induced mimic postoperative rehemorrhage model, the hydrogel exhibited a 5.58-fold increase in iron absorption efficiency, reducing hematoma size significantly (from 8.674 to 4.768 cubic millimeters). This innovative Hb-responsive DNA hydrogel not only offers a therapeutic intervention for postoperative rehemorrhage but also provides self-diagnosis feedback, holding notable promise for enhancing clinical outcomes.


Asunto(s)
Hemorragia Cerebral , Hemoglobinas , Hidrogeles , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/tratamiento farmacológico , Hidrogeles/química , Hemoglobinas/metabolismo , Animales , Deferoxamina/farmacología , Deferoxamina/uso terapéutico , Deferoxamina/química , ADN/metabolismo , Humanos , Masculino , Ratas , Modelos Animales de Enfermedad , Ferroptosis/efectos de los fármacos , Hierro/metabolismo , Hemorragia Posoperatoria/etiología , Hemorragia Posoperatoria/diagnóstico , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/química
10.
Toxics ; 12(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39195664

RESUMEN

Pesticide residues in soil, especially multiple herbicide residues, cause a series of adverse effects on soil properties and microorganisms. In this work, the degradation of three herbicides and the effect on bacterial communities under combined pollution was investigated. The experimental results showed that the half-lives of acetochlor and prometryn significantly altered under combined exposure (5.02-11.17 d) as compared with those of individual exposure (4.70-6.87 d) in soil, suggesting that there was an antagonistic effect between the degradation of acetochlor and prometryn in soil. No remarkable variation in the degradation rate of atrazine with half-lives of 6.21-6.85 d was observed in different treatments, indicating that the degradation of atrazine was stable. 16S rRNA high-throughput sequencing results showed that the antagonistic effect of acetochlor and prometryn on the degradation rate under combined pollution was related to variation of the Sphingomonas and Nocardioide. Furthermore, the potential metabolic pathways of the three herbicides in soil were proposed and a new metabolite of acetochlor was preliminarily identified. The results of this work provide a guideline for the risk evaluation of combined pollution of the three herbicides with respect to their ecological effects in soil.

11.
J Colloid Interface Sci ; 675: 970-979, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39003816

RESUMEN

Vinyl-bearing triazine-functionalized covalent organic frameworks (COFs) have emerged as promising materials for electrocatalysis and energy storage. Guided by density functional theory calculations, a vinyl-enriched COF (VCOF-1) featuring a donor-acceptor structure was synthesized based on the Knoevenagel reaction. Moreover, the VCOF-1@Ru without pyrolysis was obtained through chemical coordination interactions between VCOF-1 and RuCl3, exhibiting enhanced electrocatalytic performance in the hydrogen evolution reaction when exposed to 0.5 M H2SO4. The results demonstrated that the protonation of VCOF-1@Ru enhanced the electrical conductivity and accelerated the generation of H2 on the catalytically active site Ru. Additionally, VCOF-1@CNT with a tubular structure was prepared by uniformly wrapping VCOF-1 onto carbon nanotubes (CNTs) and using it as a cathode for lithium-sulfur batteries by chemically and physically encapsulating S. The enhanced performance of VCOF-1@CNT was attributed to the effective suppression of lithium polysulfide migration. This suppression was achieved through several mechanisms, including the inverse vulcanization of vinyl on VCOF-1@CNT, the enhancement of material conductivity, and the interaction between N in the materials and Li ions. This study demonstrated a strategy for enhancing material performance by precisely modulating the COF structure at the molecular level.

12.
Int J Neural Syst ; 34(6): 2450028, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38706265

RESUMEN

Spiking neural membrane systems (or spiking neural P systems, SNP systems) are a new type of computation model which have attracted the attention of plentiful scholars for parallelism, time encoding, interpretability and extensibility. The original SNP systems only consider the time delay caused by the execution of rules within neurons, but not caused by the transmission of spikes via synapses between neurons and its adaptive adjustment. In view of the importance of time delay for SNP systems, which are a time encoding computation model, this study proposes SNP systems with adaptive synaptic time delay (ADSNP systems) based on the dynamic regulation mechanism of synaptic transmission delay in neural systems. In ADSNP systems, besides neurons, astrocytes that can generate adenosine triphosphate (ATP) are introduced. After receiving spikes, astrocytes convert spikes into ATP and send ATP to the synapses controlled by them to change the synaptic time delays. The Turing universality of ADSNP systems in number generating and accepting modes is proved. In addition, a small universal ADSNP system using 93 neurons and astrocytes is given. The superiority of the ADSNP system is demonstrated by comparison with the six variants. Finally, an ADSNP system is constructed for credit card fraud detection, which verifies the feasibility of the ADSNP system for solving real-world problems. By considering the adaptive synaptic delay, ADSNP systems better restore the process of information transmission in biological neural networks, and enhance the adaptability of SNP systems, making the control of time more accurate.


Asunto(s)
Astrocitos , Modelos Neurológicos , Redes Neurales de la Computación , Neuronas , Sinapsis , Transmisión Sináptica , Sinapsis/fisiología , Astrocitos/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Adenosina Trifosfato/metabolismo , Factores de Tiempo , Humanos
13.
Molecules ; 29(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474621

RESUMEN

The realization of multifunctional advanced displays with better electro-optical properties is especially crucial at present. However, conventional integral full drive-based transparent display is increasingly failing to meet the demands of the day. Herein, partitioned polymerization as a novel preparation method was introduced innovatively into polymer-dispersed liquid crystals (PDLC) for realizing a step-driven display in agreement with fluorescent dye to solve the above drawback. At first, the utilization of fluorescent dye to endow the PDLC film with fluorescent properties resulted in a reduction in the saturation voltage of the PDLC from 39.7 V to 25.5 V and an increase in the contrast ratio from 58.4 to 96.6. Meanwhile, the experimental observations and theoretical considerations have elucidated that variation in microscopic pore size can significantly influence the electro-optical behavior of PDLC. Then, the step-driven PDLC film was fabricated through the exposure of different regions of the LC cell to different UV-light intensities, resulting in stepwise voltage-transmittance (V-T) responses of the PDLC film for the corresponding regions. Consequently, under appropriate driving voltages, the PDLC can realize three different states of total scattering, semi-transparent and total transparent, respectively. In addition, the PDLC film also embodied an outstanding anti-aging property and UV-shielding performance, which makes it fascinating for multifunctional advanced display applications.

14.
Molecules ; 29(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474638

RESUMEN

Using the polymerization-induced phase separation (PIPS) method, bilayer polymer-dispersed liquid crystal (PDLC) films with a PDLC-PVA-PDLC structure were prepared in this work. It was found that all PDLC performance indexes were affected by polymer mesh size after comparing the microscopic morphology and electro-optical properties of samples with different monomer ratios. Gd2O3 nanoparticles and rhodamine B base fluorescent dyes introduced into the bilayer PDLC optimized the samples' electro-optical properties and developed new functionalities. In addition, the bilayer PDLC doped with Gd2O3 and rhodamine B base held excellent progressive driving functions as well as stable durability properties. Samples doped with Gd2O3 nanoparticles and rhodamine B base also produced excellent anti-counterfeiting effects under UV irradiation at different angles, further exploiting the application potential of PDLC.

15.
Molecules ; 29(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542919

RESUMEN

To improve the mess-specific activity of Co supported on zeolite catalysts in Fischer-Tropsch (FT) synthesis, the Co-MCM-22 catalyst was prepared by simply grinding the MCM-22 with nanosized Co3O4 prefabricated by the thermal decomposition of the Co(II)-glycine complex. It is found that this novel strategy is effective for improving the mess-specific activity of Co catalysts in FT synthesis compared to the impregnation method. Moreover, the ion exchange and calcination sequence of MCM-22 has a significant influence on the dispersion, particle size distribution, and reduction degree of Co. The Co-MCM-22 prepared by the physical grinding of prefabricated Co3O4 and H+-type MCM-22 without a further calcination process exhibits a moderate interaction between Co3O4 and MCM-22, which results in the higher reduction degree, higher dispersion, and higher mess-specific activity of Co. Thus, the newly developed method is more controllable and promising for the synthesis of metal-supported catalysts.

16.
Dalton Trans ; 53(15): 6625-6630, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38517688

RESUMEN

Applying molecular design to chiral organo-Zn2+ complexes, a new pair of chiral heteroleptic bis-pyrazolonate-Zn2+ enantiomers [Zn(PMBP)2(1R,2R-Chxn)] (R,R-Zn2+; HPMBP = 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and 1R,2R-Chxn = (1R,2R)-cyclohexane-1,2-diamine) and [Zn(PMBP)2(1S,2S-Chxn)] (S,S-Zn2+; 1S,2S-Chxn = (1S,2S)-cyclohexane-1,2-diamine) have been synthesized and characterized in terms of photophysical and thermodynamic properties. In addition to a small Flack parameter (0.05(3)) associated with the solid-state elucidation of S,S-Zn2+, the circular dichroism (CD) and circularly polarized light (CPL) spectra for the chiral Zn2+ enantiomers show perfect mirror symmetry, establishing that the enantiopure 1,2-diamines successfully induce the optical isomerism of R,R-Zn2+ and S,S-Zn2+. As a result of the combined strong chiral induction capability of chiral 1,2-diamines and excellent photophysical properties of the pyrazolone ligand (PMBP)-, the two Zn2+ enantiomers exhibit high-quality pure blue fluorescence (ΦPL = 9-10%) and significant CPL activity (|glum| = 0.0065-0.0068). The heteroleptic strategy adopted in this study offers a new route to develop high-performance chiroptical luminophores.

17.
Adv Sci (Weinh) ; 11(17): e2305877, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38444306

RESUMEN

Precise and efficient regulation of microglia is vital for ischemic stroke therapy and prognosis. The infiltration of neutrophils into the brain provides opportunities for regulatory drugs across the blood-brain barrier, while hindered by neutrophil extracellular traps (NETs) and targeted delivery of intracerebral drugs to microglia. This study reports an efficient neutrophil hijacking nanoplatform (referred to as APTS) for targeted A151 (a telomerase repeat sequence) delivery to microglia without the generation of NETs. In the middle cerebral artery occlusion (MCAO) mouse model, the delivery efficiency to ischemic stroke tissues increases by fourfold. APTS dramatically reduces the formation of NETs by 2.2-fold via reprogramming NETosis to apoptosis in neutrophils via a reactive oxygen species scavenging-mediated citrullinated histone 3 inhibition pathway. Noteworthy, A151 within neutrophils is repackaged into apoptotic bodies following the death pattern reprogramming, which, when engulfed by microglia, polarizes microglia to an anti-inflammatory M2 phenotype. After four times treatment, the cerebral infarction area in the APTS group decreases by 5.1-fold. Thus, APTS provides a feasible, efficient, and practical drug delivery approach for reshaping the immune microenvironment and treating brain disorders in the central nervous system.


Asunto(s)
Modelos Animales de Enfermedad , Trampas Extracelulares , Accidente Cerebrovascular Isquémico , Microglía , Neutrófilos , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , Ratones , Trampas Extracelulares/metabolismo , Trampas Extracelulares/efectos de los fármacos , Accidente Cerebrovascular Isquémico/inmunología , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Masculino , Nanopartículas , Ratones Endogámicos C57BL
18.
J Control Release ; 367: 661-675, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301928

RESUMEN

Bacteria have shown great potential in anti-tumor treatment, and an attenuated strain of Salmonella named VNP20009 has been shown to be safe in clinical trials. However, colonized bacteria recruit neutrophils into the tumor, which release NETs to capture and eliminate bacteria, compromising bacterial-based tumor treatment. In this study, we report a neutrophil hitchhiking nanoparticles (SPPS) that block the formation of NET to enhance bacteria-mediated tumor therapy. In the 4 T1 tumor-bearing mouse model, following 24 h of bacterial therapy, there was an approximately 3.0-fold increase in the number of neutrophils in the bloodstream, while the amount of SPPS homing to tumor tissue through neutrophil hitchhiking increased approximately 2.0-fold. It is worth noting that the NETs in tumors significantly decreased by approximately 2.0-fold through an intracellular ROS scavenging-mediated NETosis reprogramming, thereby increasing bacterial vitality by 1.9-fold in tumors. More importantly, the gene drug (siBcl-2) loaded in SPPS can be re-encapsulated in apoptotic bodies by reprogramming neutrophils from NETosis to apoptosis, and enable the redelivery of drugs to tumor cells, further boosting the antitumor efficacy with a synergistic effect, resulting in about 98% tumor inhibition rate and 90% survival rate.


Asunto(s)
Trampas Extracelulares , Neoplasias , Animales , Ratones , Neutrófilos , Modelos Animales de Enfermedad , Neoplasias/tratamiento farmacológico , Bacterias
19.
Adv Mater ; 36(19): e2313056, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38315828

RESUMEN

Conventional 3D organic-inorganic halide perovskite materials have shown substantial potential in the field of optoelectronics, enabling the power conversation efficiency of solar cells beyond 26%. A key challenge limiting the further commercial application of 3D perovskite solar cells is their inherent instability over outer oxygen, humidity, light, and heat. By contrast, 2D Ruddlesden-Popper (2DRP) perovskites with bulky organic cations can effectively stabilize the inorganic slabs, yielding excellent environmental stability. However, the efficiencies of 2DRP perovskite solar cells are much lower than those of the 3D counterparts due to poor charge carrier transporting property of insulating bulky organic cations. Their inner structural, dielectric, optical, and excitonic properties remain to be primarily studied. In this review, the main reasons for the low efficiency of 2DRP perovskite solar cells are first analyzed. Next, a detailed description of various strategies for improving the charge carrier transporting of 2DRP perovskites is provided, such as bandgap regulation, perovskite crystal phase orientation and distribution, energy level matching, interfacial modification, etc. Finally, a summary is given, and the possible future research directions and methods to achieve high-efficiency and stable 2DRP perovskite solar cells are rationalized.

20.
J Colloid Interface Sci ; 662: 333-341, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354560

RESUMEN

It is significant to tailor multifunctional electrode materials for storing sustainable energy in lithium-sulfur (Li-S) batteries and converting intermittent solar energy into H2, facilitated by electricity. In this context, COF-1@CNT obtained through interfacial interaction fulfilled both requisites via post-functionalization. Upon integrating COF-1@CNT with S as the cathode for Li-S batteries, the system exhibited an initial discharge capacity of 1360 mAh g-1. Subsequently, it maintained a sustained actual capacity even after undergoing 200 charge-discharge cycles at 0.5C. The performance improvement was attributed to the optimized conductivity due to the addition of carbon nanotubes (CNTs). Furthermore, the synergistic interaction between the nitrogen of COF-1 and lithium mitigated the shuttle effect in Li-S batteries. In the modified three-electrode electrolytic cell system, COF-1@CNT-Ru produced by COF-1@CNT with RuCl3 showed better electrochemical reactivity for photothermal-assisted hydrogen evolution reaction (HER). This effect was demonstrated by reducing the overpotential to 140 mV relative to the no-photothermal condition (180 mV) at a current density of 10 mA cm-2. This study marked the first simultaneous application of covalent organic frameworks (COFs) based materials in Li-S batteries and photothermal-assisted electrocatalysts. The modified electrocatalytic system held promise as a novel avenue for exploring solar thermal energy utilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...