Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Food Res Int ; 186: 114351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729699

RESUMEN

The global demand for high-quality animal protein faces challenges, prompting a surge in interest in plant-based meat analogues (PBMA). PBMA have emerged as a promising solution, although they encounter technological obstacles. This review discusses the technological challenges faced by PBMA from the viewpoint of plant proteins, emphasizing textural, flavor, color, and nutritional aspects. Texturally, PBMA confront issues, such as deficient fibrous structure, chewiness, and juiciness. Addressing meat flavor and mitigating beany flavor in plant protein are imperative. Furthermore, achieving a distinctive red or pink meat color remains a challenge. Plant proteins exhibit a lower content of essential amino acids. Future research directions encompass (1) shaping myofibril fibrous structures through innovative processing; (2) effectively eliminating the beany flavor; (3) developing biotechnological methodologies for leghemoglobin and plant-derived pigments; (4) optimizing amino acid composition to augment the nutritional profiles. These advancements are crucial for utilization of plant proteins in development of high-quality PBMA.


Asunto(s)
Proteínas de Plantas , Valor Nutritivo , Animales , Gusto , Carne/análisis , Manipulación de Alimentos/métodos , Humanos , Color , Sustitutos de la Carne
2.
Discov Oncol ; 15(1): 163, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743344

RESUMEN

Targeting ferroptosis-related pathway is a potential strategy for treatment of lung cancer (LC). Consequently, exploration of ferroptosis-related markers is important for treating LC. We collected LC clinical data and mRNA expression profiles from TCGA and GEO database. Ferroptosis-related genes (FRGs) were obtained through FerrDB database. Expression analysis was performed to obtain differentially expressed FRGs. Diagnostic and prognostic models were constructed based on FRGs by LASSO regression, univariate, and multivariate Cox regression analysis, respectively. External verification cohorts GSE72094 and GSE157011 were used for validation. The interrelationship between prognostic risk scores based on FRGs and the tumor immune microenvironment was analyzed. Immunocytochemistry, Western blotting, and RT-qPCR detected the FRGs level. Eighteen FRGs were used for diagnostic models, 8 FRGs were used for prognostic models. The diagnostic model distinguished well between LC and normal samples in training and validation cohorts of TCGA. The prognostic models for TCGA, GSE72094, and GSE157011 cohorts significantly confirmed lower overall survival (OS) in high-risk group, which demonstrated excellent predictive properties of the survival model. Multivariate Cox regression analysis further confirmed risk score was an independent risk factor related with OS. Immunoassays revealed that in high-risk group, a significantly higher proportion of Macrophages_M0, Neutrophils, resting Natural killer cells and activated Mast cells and the level of B7H3, CD112, CD155, B7H5, and ICOSL were increased. In conclusion, diagnostic and prognostic models provided superior diagnostic and predictive power for LC and revealed a potential link between ferroptosis and TIME.

3.
Pathol Res Pract ; 256: 155271, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574630

RESUMEN

BACKGROUND AND OBJECTIVE: The morbidity rate of non-small cell lung cancer (NSCLC) increases with age, highlighting that NSCLC is a serious threat to human health. The aim of this study was mainly to describe the role of exosomal miR-101-3p derived from bone marrow mesenchymal stem cells (BMSCs) in NSCLC. METHODS: A549 or NCI-H1703 cells (1×105/mouse) were injected into nude mice to establish an NSCLC animal model. RTqPCR, Western blotting and comet assays were used to assess the changes in gene expression, proteins and DNA damage repair. RESULTS: miR-101-3p and RAI2 were found to be expressed at low levels in NSCLC, while EZH2 was highly expressed. In terms of function, miR-101-3p downregulated EZH2. In addition, exosomal miR-101-3p derived from BMSCs promoted the expression of RAI2, inhibited DNA damage repair, and inhibited the activation of the PI3K/AKT/mTOR signaling pathway by inhibiting EZH2, thereby promoting autophagy and decreasing cell viability and finally enhancing the sensitivity of NSCLC to radiotherapy and inhibiting the malignant biological behavior of NSCLC. CONCLUSION: Exosomal miR-101-3p derived from BMSCs can inhibit DNA damage repair, promote autophagy, enhance the radiosensitivity of NSCLC, and inhibit the progression of NSCLC by inhibiting EZH2.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Neoplasias Pulmonares , Células Madre Mesenquimatosas , MicroARNs , Humanos , Ratones , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , Exosomas/genética , Exosomas/metabolismo , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Autofagia/genética , Células Madre Mesenquimatosas/metabolismo , Tolerancia a Radiación , Daño del ADN/genética , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
4.
Transl Cancer Res ; 13(2): 1166-1187, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38482437

RESUMEN

Background and Objective: The cancer-immunity cycle (CIC) is defined as a series of progressive events that cause an anticancer immune response leading to the killing of the cancer cell. The concept of CIC has important guiding significance for the clinical and basic tumor immunotherapy research. As one of the methods of traditional Chinese medicine (TCM), Chinese herbal medicine (CHM) has shown unique advantages in multitarget and multipathway immune regulation. However, the tumor immune circulation targeted by CHM is generally unclear at present. To provide reference for future clinical and basic research, we systematically reviewed the existing literature on CHM (including CHM monomers, CHM compounds, and CHM patent medicines) and the mechanisms related to its efficacy. Methods: We searched the PubMed and China National Knowledge Infrastructure (CNKI) databases for relevant Chinese-language and English-language literature published from January 1988 to October 2022. The literature was screened manually at three levels: title, abstract, and full text, to identify articles related to CHM and their mechanism of regulating tumor immunity. Key Content and Findings: By further classifying the CIC, it was confirmed that CHM can regulate the activation of dendritic cells (DCs) and macrophages and promote the presentation of tumor antigens. Meanwhile, CHM can also reverse tumor-immune escape by enhancing T-cell proliferation and infiltration. In addition, CHM can also enhance the antitumor ability of the body by regulating the killing process of tumor cells. Conclusions: The theory of a CIC is of guiding significance to regulating tumor immunity via CHM.

5.
J Anim Sci Biotechnol ; 14(1): 151, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38053167

RESUMEN

BACKGROUND: The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process, and ovarian aging is shown by a decrease in the number and quality of oocytes. However, little is known about the molecular mechanisms of female age-related fertility decline in different types of ovarian cells during aging, especially in goats. Therefore, the aim of this study was to reveal the mechanisms driving ovarian aging in goats at single-cell resolution. RESULTS: For the first time, we surveyed the single-cell transcriptomic landscape of over 27,000 ovarian cells from newborn, young and aging goats, and identified nine ovarian cell types with distinct gene-expression signatures. Functional enrichment analysis showed that ovarian cell types were involved in their own unique biological processes, such as Wnt beta-catenin signalling was enriched in germ cells, whereas ovarian steroidogenesis was enriched in granulosa cells (GCs). Further analysis showed that ovarian aging was linked to GCs-specific changes in the antioxidant system, oxidative phosphorylation, and apoptosis. Subsequently, we identified a series of dynamic genes, such as AMH, CRABP2, THBS1 and TIMP1, which determined the fate of GCs. Additionally, FOXO1, SOX4, and HIF1A were identified as significant regulons that instructed the differentiation of GCs in a distinct manner during ovarian aging. CONCLUSIONS: This study revealed a comprehensive aging-associated transcriptomic atlas characterizing the cell type-specific mechanisms during ovarian aging at the single-cell level and offers new diagnostic biomarkers and potential therapeutic targets for age-related goat ovarian diseases.

6.
J Adv Res ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38043610

RESUMEN

INTRODUCTION: Golden pompano (Trachinotus ovatus) is economically significant important for offshore cage aquaculture in China and Southeast Asian countries. Lack of high-quality genomic data and accurate gene annotations greatly restricts its genetic breeding progress. OBJECTIVES: To decode the mechanisms of sex determination and rapid growth in golden pompano and facilitate the sex- and growth-aimed genetic breeding. METHODS: Genome assemblies of male and female golden pompano were generated using Illumina, PacBio, BioNano, genetic maps and Hi-C sequencing data. Genomic comparisons, whole genome re-sequencing of 202 F1 individuals, QTL mapping and gonadal transcriptomes were used to analyze the sex determining region, sex chromosome evolution, SNP loci, and growth candidate genes. Zebrafish model was used to investigate the functions of growth candidate gene. RESULTS: Female (644.45 Mb) and male (652.12 Mb) genomes of golden pompano were assembled and annotated at the chromosome level. Both genomes are highly conserved and no new or highly differentiated sex chromosomes occur. A 3.5 Mb sex determining region on LG15 was identified, where Hsd17b1, Micall2 and Lmx1a were putative candidates for sex determination. Three SNP loci significantly linked to growth were pinpointed, and a growth-linked gene gpsstr1 was identified by locus BSNP1369 (G â†’ C, 17489695, Chr23). Loss of sstr1a (homologue of gpsstr1) in zebrafish caused growth retardation. CONCLUSION: This study provides insights into sex chromosome evolution, sex determination and rapid growth of golden pompano.

7.
Foods ; 12(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38002128

RESUMEN

Sheep and goat meats are increasingly popular worldwide due to their superior nutritional properties and distinctive flavor profiles. In recent decades, substantial progress in meat science has facilitated in-depth examinations of ovine and caprine muscle development during the antemortem phase, as well as post-mortem changes influencing meat attributes. To elucidate the intrinsic molecular mechanisms and identify potential biomarkers associated with meat quality, the methodologies employed have evolved from traditional physicochemical parameters (such as color, tenderness, water holding capacity, flavor, and pH) to some cutting-edge omics technologies, including transcriptomics, proteomics, and metabolomics approaches. This review provides a comprehensive analysis of multi-omics techniques and their applications in unraveling sheep and goat meat quality attributes. In addition, the challenges and future perspectives associated with implementing multi-omics technologies in this area of study are discussed. Multi-omics tools can contribute to deciphering the molecular mechanism responsible for the altered the meat quality of sheep and goats across transcriptomic, proteomic, and metabolomic dimensions. The application of multi-omics technologies holds great potential in exploring and identifying biomarkers for meat quality and quality control, thereby promoting the optimization of production processes in the sheep and goat meat industry.

8.
Animals (Basel) ; 13(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37893889

RESUMEN

Horns are an important breeding trait for sheep. However, no widely recognized viewpoint on the regulatory genes and mechanisms of horns is available, and the genetic basis of the four-horn phenotype (FHP) is unclear. This work conducted a genome-wide association study with 100 sheep genomes from multiple breeds to investigate the genetic basis of the FHP. The results revealed three significant associations (corrected as p < 1.64 × 10-8) of the InDels (CHR2: g.133,742,709delA, g.133,743,215insC, and g.133,743,940delT) for FHP in the intergenic sequence (IGS) between the MTX2 and the LOC105609047 of CHR2. Moreover, 14 significant associations (corrected as p < 1.42 × 10-9) of SNPs with the FHP phenotype were identified in CHR2 and CHR16, including five (e.g., CHR16: g.40,351,378G > A and g.40,352,577G > A) located in the intron of the ADAMTS12 gene, eight (e.g., CHR2: g.133,727,513C > T and g.133,732,145T > G) in the IGS between MTX2 and LOC105609047, and only one (CHR2: g.133,930,761A > G) in the IGS between HOXD1 and MTX2. Obvious divergence was also observed in genotype patterns between the FHP and others (two horns and hornless) in the HOXD1 and ADAMTS12 gene regions. An extremely significant linkage also occurred between Loci I and Loci II within 100 individuals (LD = -156.02186, p < 0.00001). In summary, our study indicated that the genomic sequences from CHR2 and CHR16 contributed to the FHP in sheep, specifically the key candidate genes HOXD1 and ADAMTS12. These results improved our understanding of the Mendelian genetic basis of the FHP in sheep.

9.
Open Med (Wars) ; 18(1): 20230798, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808166

RESUMEN

Chronic obstructive pulmonary disease (COPD) is commonly caused by smoking. FUN14 domain-containing protein 1 (FUNDC1) plays a fundamental role in mitochondrial autophagy and apoptosis in cigarette smoke extract (CSE)-treated BEAS-2B cells. The present study investigated the mechanism of action of FUNDC1 in mitochondrial dysfunction and apoptosis in CSE-treated BEAS-2B cells. The interaction between ubiquitin-specific peptidase 19 (USP19) and FUNDC1 was analyzed using co-immunoprecipitation. Effects of USP19 knockdown and/or FUNDC1 overexpression on the survival, apoptosis, mitochondrial membrane potential, and oxygen consumption rate (OCR) of BEAS-2B cells treated with 15% CSE were determined. In BEAS-2B cells, CSE inhibited cell survival, promoted apoptosis, increased the expression of USP19 and FUNDC1, increased the ratio of LC3 II to LC3 I (LC3 II/I), and decreased mitochondrial membrane potential and TOM20 levels. In CSE-treated BEAS-2B cells, USP19 knockdown reduced FUNDC1 and LC3 II/I, increased the levels of TOM20, improved cell survival, mitochondrial membrane potential, and OCR, and inhibited apoptosis. USP19 deubiquitinates FUNDC1. FUNDC1 overexpression inhibited the effect of USP19 knockdown in CSE-treated BEAS-2B cells. Overall, decreasing USP19 expression alleviates CSE-induced mitochondrial dysfunction in BEAS-2B cells by downregulating FUNDC1, providing novel insights into the molecular mechanism of FUNDC1 regulation in COPD.

10.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511146

RESUMEN

Serotonin (5-HT) has been reported to play an important role in mammary gland involution that is defined as the process through which the gland returns to a nonlactating state. However, the overall picture of the regulatory mechanisms of 5-HT and the effects of serotonylation on mammary gland involution still need to be further investigated. The current study aimed to investigate the effects of 5-HT on global gene expression profiles of bovine mammary epithelial cells (MAC-T) and to preliminarily examine whether the serotonylation involved in the mammary gland involution by using Monodansylcadaverine (MDC), a competitive inhibitor of transglutaminase 2. Results showed that a high concentration of 5-HT decreased viability and transepithelial electrical resistance (TEER) in MAC-T cells. Transcriptome analysis indicated that 2477 genes were differentially expressed in MAC-T cells treated with 200 µg/mL of 5-HT compared with the control group, and the Notch, p53, and PI3K-Akt signaling pathways were enriched. MDC influenced 5-HT-induced MAC-T cell death, fatty acid synthesis, and the formation and disruption of tight junctions. Overall, a high concentration of 5-HT is able to accelerate mammary gland involution, which may be regulated through the Notch, p53, and PI3K-Akt signaling pathways. Serotonylation is involved in bovine mammary gland involution.


Asunto(s)
Lactancia , Serotonina , Femenino , Animales , Bovinos , Serotonina/farmacología , Serotonina/metabolismo , Supervivencia Celular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Glándulas Mamarias Animales/metabolismo , Perfilación de la Expresión Génica , Células Epiteliales/metabolismo , Permeabilidad
11.
J Thorac Dis ; 15(4): 1892-1900, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37197527

RESUMEN

Background: Programmed cell death-ligand 1 (PD-L1) expression and other biomarkers are not completely reliable predictors of the response to checkpoint inhibitors in patients with advanced non-small cell lung cancer (NSCLC). We investigated the value of peripheral serological inflammatory indicators and their combination in predicting the prognosis of patients with advanced NSCLC treated with checkpoint inhibitors. Methods: This study retrospectively analyzed 116 NSCLC patients treated with anti-programmed cell death protein 1 (PD-1)/PD-L1 monoclonal antibodies. Clinical data of the patients were collected before treatment. X-tile plots determined the optimal cut-point for C-reactive protein (CRP) and lactate dehydrogenase (LDH). A survival analysis was performed using the Kaplan-Meier method. Multi-factor Cox regression analysis was used to evaluate the statistically significant factors identified in the univariate analysis. Results: The X-tile plots show the cut-points of CRP and LDH were 8 mg/L and 312 U/L, respectively. Univariate analyses showed high baseline serum LDH and low CRP levels were associated with adverse progression-free survival (PFS). Multivariate analyses indicated that CRP (HR, 0.214, 95% CI: 0.053-0.857, P=0.029) could be a predictive indicator for PFS. In addition, we evaluated the combination of CRP and LDH, and univariate analyses showed that patients with high CRP and low LDH exhibited significantly better PFS than those in the other groups. Conclusions: Baseline levels of serum CRP and LDH have the potential to become a convenient clinical tool to predict response to immunotherapy in advanced non-small cell lung cancer.

12.
J Thorac Dis ; 15(1): 112-122, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36794146

RESUMEN

Background: The usefulness of metagenomic next-generation sequencing (mNGS) in identifying the prognosis of lung cancer with chromosomal instability (CIN) remains unclear. We aimed to analyze clinical characteristics and prognosis of patients in patients harboring CIN. Methods: This retrospective cohort study included 668 patients diagnosed with suspected pulmonary infection or lung cancer whose samples underwent mNGS detection from January 2021 to January 2022. Difference between clinical characteristics were calculated by the Student's t-test and the chi-square test. The subjects were followed-up from registered to September 2022. Survival curves were analyzed by the Kaplan-Meier method. Results: Of 619 bronchoalveolar lavage fluid (BALF) samples collected by bronchoscopy, 30 CIN-positive samples were confirmed as malignant on histopathology, with a sensitivity of 61.22%, a specificity of 99.65%, and an 83.17% accuracy [cut-off values were established by the receiver operating characteristic (ROC) area under the curve (AUC) =0.804]. In 42 patients with lung cancer, mNGS detected 24 patients as CIN-positive and 18 as CIN-negative. There were no differences between two groups including ages, pathologic types, stage and metastases. In 25 cases, we detected 523 chromosomal copy number variants (CNVs) with forms including duplication (dup), deletion (del), mosaic (mos), and whole chromosome amplification or loss. A total of 243 duplication variants and 192 deletion variants occurred in all chromosomes. Duplications occurred in most chromosomes except for Chr9 and Chr13, in which CNV tended to delete. The median overall survival (OS) in patients with Chr5p15 duplication was 32.4 months [95% confidence interval (CI), 10.35-54.45 months]. The median OS differed significantly between the 5p15dup+ group and the combined group (32.4 vs. 8.63 months, P=0.049). In 29 patients with unresected lung cancer, the median OS of 18 cases in the CIN-positive group was 32.4 months (95% CI, 14.2-50.6 months) and the median OS of 11 cases in the CIN-negative group was 35.63 months (95% CI, 21.64-49.62 months; Wilcoxon, P=0.227). Conclusions: Various forms of CIN detected by mNGS may predict prognosis of patients with lung cancer differentially. CIN with duplication or deletion deserves further study to guide clinical treatment.

13.
Zool Res ; 44(2): 303-314, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36785897

RESUMEN

The Boer goat is one of the top meat breeds in modern animal husbandry and has attracted widespread attention for its unique growth performance. However, the genetic basis of muscle development in the Boer goat remains obscure. In this study, we identified specific structural variants in the Boer goat based on genome-wide selection signals and analyzed the basis of the molecular heredity of related candidate genes in muscle development. A total of 9 959 autosomal copy number variations (CNVs) were identified through selection signal analysis in 127 goat genomes. Specifically, we confirmed that the highest signal CNV (HSV) was a chromosomal arrangement containing an approximately 1.11 Mb (CHIR17: 60062304-61171840 bp) duplicated fragment inserted in reverse orientation and a 5 362 bp deleted region (CHIR17:60145940-60151302 bp) with overlapping genes (e.g., ARHGAP10, NR3C2, EDNRA, PRMT9, and TMEM184C). The homozygous duplicated HSV genotype (+/+) was found in 96% of Boer goats but was not detected in Eurasian goats and was only detected in 4% of indigenous African goats. The expression network of three candidate genes ( ARHGAP10, NR3C2, and EDNRA) regulating dose transcription was constructed by RNA sequencing. Results indicated that these genes were involved in the proliferation and differentiation of skeletal muscle satellite cells (SMSCs) and their overexpression significantly increased the expression of SAA3. The HSV of the Boer goat contributed to superior skeletal muscle growth via the dose effects of overlapping genes.


Asunto(s)
Cromosomas Humanos Par 17 , Cabras , Animales , Humanos , Cabras/genética , Variaciones en el Número de Copia de ADN , Genoma , Desarrollo de Músculos
14.
Theriogenology ; 197: 167-176, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36525856

RESUMEN

Anti-Müllerian hormone (AMH) is produced by ovarian granulosa cells (GCs)and plays a major role in inhibiting the recruitment of primordial follicles and reducing the sensitivity of growing follicles to follicle-stimulating hormone (FSH). Bone morphogenetic protein 6 (BMP6) has similar spatiotemporal expression to AMH during follicular development, suggesting that BMP6 may regulate AMH expression. However, the specific mechanism by which BMP6 regulates AMH expression remains unclear. The objectives of this study were to examine the molecular pathway by which BMP6 regulates AMH expression. The results showed that BMP6 promoted the secretion and expression of AMH in goat ovarian GCs. Mechanistically, BMP6 upregulated the expression of sex-determining region Y-box 9 (SOX9) and GATA-binding factor 4 (GATA4), which was associated with the transcriptional initiation of AMH. AMH expression was significantly decreased by GATA4 knockdown. Moreover, BMP6 treatment promoted the phosphorylation of SMAD1/5/8, whereas inhibiting the SMAD1/5/8 signaling pathway significantly abolished BMP6-induced upregulation of AMH and GATA4 expression. Interestingly, the activation of SMAD1/5/8 alone did not affect the expression of AMH or GATA4. The results suggested that BMP6 upregulated GATA4 through the SMAD1/5/8 signaling pathway, which in turn promoted AMH expression.


Asunto(s)
Hormona Antimülleriana , Proteína Morfogenética Ósea 6 , Femenino , Animales , Hormona Antimülleriana/genética , Hormona Antimülleriana/metabolismo , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 6/metabolismo , Regulación de la Expresión Génica , Cabras/metabolismo , Células de la Granulosa/metabolismo , Hormona Folículo Estimulante/metabolismo
15.
Anim Biotechnol ; 34(1): 85-92, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34289783

RESUMEN

This study compared and analyzed the genetic diversity and population structure of exon 2 of the DQB1 gene and 13 autosomal neutral microsatellite markers from 14 Chinese goat breeds to explore the potential evolutionary mechanism of the major histocompatibility complex (MHC). A total of 287 haplotypes were constructed from MHC-DQB1 exon 2 from 14 populations, and 82 nucleotide polymorphic sites (SNPs, 31.78%) and 172 heterozygous individuals (79.12%) were identified. The FST values of the microsatellites and MHC-DQB ranged between 0.01831-0.26907 and 0.00892-0.38871, respectively. Furthermore, 14 goat populations showed rich genetic diversity in the microsatellite loci and MHC-DQB1 exon 2. However, the population structure and phylogenetic relationship represented by the two markers were different. Positive selection and Tajima's D test results showed the occurrence of a diversified selection mechanism, which was primarily based on a positive and balancing selection in goat DQB. This study also found that the DQB sequences of bovines exhibited trans-species polymorphism (TSP) among species and families. In brief, this study indicated that positive and balancing selection played a major role in maintaining the genetic diversity of DQB, and TSP of MHC in bovines was common, which enhanced the understanding of the MHC evolution.


Asunto(s)
Genética de Población , Cabras , Animales , Bovinos , Filogenia , Cabras/genética , Polimorfismo Genético , Exones , Repeticiones de Microsatélite , Variación Genética , Alelos
16.
Animals (Basel) ; 12(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36009721

RESUMEN

The purpose of this study was to investigate the effects of BMP6 on the function of goat ovarian granulosa cells (GCs). The results showed that the exogenous addition of BMP6 did not affect the EdU-positive ratio of ovarian GCs and had no significant effect on the mRNA and protein expression levels of the proliferation-related gene PCNA (p > 0.05). Meanwhile, BMP6 had no significant effect on the cycle phase distribution of GCs but increased the mRNA expression of CDK4 (p < 0.05) and CCND1 (p < 0.01) and decreased the mRNA expression of CCNE1 (p < 0.01). Moreover, BMP6 had no significant effect on the apoptosis rate of GCs and did not affect the mRNA expression levels of apoptosis-related genes BAX, BCL2, and Caspase3 (p > 0.05). Importantly, BMP6 upregulated the secretion of 17 beta-estradiol (E2) and progesterone (P4) in ovarian GCs (p < 0.01). Further studies found that BMP6 inhibited the mRNA expression of 3ß-HSD and steroid synthesis acute regulator (StAR) but significantly promoted the mRNA expression of the E2 synthesis rate-limiting enzyme CYP19A1 and the P4 synthesis rate-limiting enzyme CYP11A1 (p < 0.01). Taken together, these results showed that the exogenous addition of BMP6 did not affect the proliferation, cell cycle, and apoptosis of goat ovarian GCs but promoted the secretion of E2 and progesterone P4 in ovarian GCs by upregulating the mRNA expressions of CYP19A1 and CYP11A1.

17.
Clin Transl Oncol ; 24(12): 2395-2408, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35980503

RESUMEN

PURPOSE: Non-small cell lung cancer (NSCLC) is the major subtype of lung cancer, which is the leading cause of cancer death worldwide. Tumor-associated macrophages (TAMs) are one of the main non-tumor cells in the tumor microenvironment. Here, we investigated the effect of cancer cell-derived exosomal LINC00313 on the M2 macrophage differentiation in NSCLC and clarified its underlying mechanism. METHODS: Flow cytometry, Western blotting, ELISA and immunohistochemical staining were performed to identify the macrophage phenotype by detecting the expression of M2 markers. The expression levels of LINC00313 and miR-135a-3p were measured by qRT-PCR, and luciferase reporter assay was used to validate the binding of lncRNA to miRNA, and miRNA to the target gene STAT6. The mouse-xenograft models were established by subcutaneous injection of the NCl-H1299 cells with stable overexpression or knockdown of LINC00313. GW4869 was injected intra-tumorally after tumor implantation. RESULTS: It was found that the cancer cells promoted M2 macrophage differentiation by secreting exosomes. LINC00313 was overexpressed in H1299-derived exosomes, and its knockdown abolished the effect of H1299-induced M2 macrophage differentiation. LINC00313 sponged miR-135a-3p to increase the STAT6 expression, resulting in the M2 macrophage differentiation. LINC00313 promoted tumor progression and promoted the expression of M2 markers in isolated tumor macrophages. A novel regulatory mechanism of M2 macrophage differentiation in NSCLC was revealed. It was found that cancer cell-derived exosomal LINC00313 promoted M2 macrophage differentiation in NSCLC by up-regulating STAT6 as miR-135a-3p sponge. CONCLUSIONS: This study provides a new mechanism and direction to prevent the M2 macrophage differentiation in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Exosomas/genética , Humanos , Neoplasias Pulmonares/patología , Macrófagos/patología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Microambiente Tumoral
18.
Emerg Med Int ; 2022: 6333282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844466

RESUMEN

Background: We investigated the correlation between genetic mutations and clinical-pathological features in young patients with NSCLC. Methods: Clinicopathologic information of 102 young NSCLC patients was collected. Direct ctDNA sequencing of a portion of these patients was performed. The correlation between EGFR mutation and ALK fusions with clinicopathologic parameters was analyzed. Results: In young NSCLC patients, adenocarcinoma is the major histology (86.9%), and the misdiagnosis rate was as high as 45.7%. EGFR gene mutation was found in 13 patients (31.7%) and common mutations were with EGFR19del mutation (7 cases, 17.1%) and EGFR21L858R mutation (4 patients, 9.7%). EGFR mutation was constantly found in adenocarcinoma and male gender, and ever smokers (100%, P < 0.05). Furthermore, ALK fusions were found in 7 patients (31.8%), which include EML-4-ALK fusions; there was a trend that ALK fusions were associated with adenocarcinoma and female gender. However, there was no significant difference in overall survival between patients with or without gene mutations. Conclusions: EGFR mutation and ALK fusions are related to histology, gender, and smoke exposure in young NSCLC patients, and may be effective predictive factors.

19.
Animals (Basel) ; 12(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35883386

RESUMEN

This study aimed to identify the genes related to the body size of pigs by conducting genome-wide selection analysis (GWSA). We performed a GWSA scan on 50 pigs belonging to four small-bodied pig populations (Diannan small-eared pig, Bama Xiang pig, Wuzhishan pig, and Jeju black pig from South Korea) and 124 large-bodied pigs. We used the genetic parameters of the pairwise fixation index (FST) and π ratio (case/control) to screen candidate genome regions and genes related to body size. The results revealed 47,339,509 high-quality SNPs obtained from 174 individuals, while 280 interacting candidate regions were obtained from the top 1% signal windows of both parameters, along with 187 genes (e.g., ADCK4, AMDHD2, ASPN, ASS1, and ATP6V0C). The results of the candidate gene (CG) annotation showed that a series of CGs (e.g., MSTN, LTBP4, PDPK1, PKMYT1, ASS1, and STAT6) was enriched into the gene ontology terms. Moreover, molecular pathways, such as the PI3K-Akt, HIF-1, and AMPK signaling pathways, were verified to be related to body development. Overall, we identified a series of key genes that may be closely related to the body size of pigs, further elucidating the heredity basis of body shape determination in pigs and providing a theoretical reference for molecular breeding.

20.
Animals (Basel) ; 12(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35681821

RESUMEN

Boer goats, as kemp in meat-type goats, are selected and bred from African indigenous goats under a long period of artificial selection. Their advantages in multiple economic traits, particularly their plump growth, have attracted worldwide attention. The current study displayed the genome-wide selection signature analyses of South African indigenous goat (AF), African Boer (BH), and Australian Boer (AS) to investigate the hereditary basis of artificial selection in different stages. Four methods (principal component analysis, nucleotide diversity, linkage disequilibrium decay, and neighbor-joining tree) implied the genomic diversity changes with different artificial selection intensities in Boer goats. In addition, the θπ, FST, and XP-CLR methods were used to search for the candidate signatures of positive selection in Boer goats. Consequently, 339 (BH vs. AF) and 295 (AS vs. BH) candidate genes were obtained from SNP data. Especially, 10 genes (e.g., BMPR1B, DNER, ITGAL, and KIT) under selection in both groups were identified. Functional annotation analysis revealed that these genes are potentially responsible for reproduction, metabolism, growth, and development. This study used genome-wide sequencing data to identify inheritance by artificial selection. The results of the current study are valuable for future molecular-assisted breeding and genetic improvement of goats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA