Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Environ Geochem Health ; 46(6): 185, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695908

RESUMEN

Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.


Asunto(s)
Ciprofloxacina , Poliestirenos , Shewanella , Ciprofloxacina/química , Ciprofloxacina/toxicidad , Poliestirenos/toxicidad , Poliestirenos/química , Adsorción , Shewanella/efectos de los fármacos , Microplásticos/toxicidad , Microplásticos/química , Antibacterianos/química , Antibacterianos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química
2.
Mikrochim Acta ; 191(3): 155, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38403740

RESUMEN

A new sensor based on copper-zinc bimetal embedded and nitrogen-doped carbon-based composites (CuZn@NC) was prepared for triclosan (TCS) detection by pyrolyzing the precursor of Cu-Zn binuclear metal-organic framework (MOF). The performance for detecting TCS was evaluated using linear scanning voltammetry (LSV) and differential pulse voltammetry (DPV), and the proton and electron numbers during TCS oxidation have been proved to be one-to-one. The results indicated that CuZn@NC can present a satisfactory analysis performance for TCS detection. Under the optimized conditions, the linear response range was 0.2-600 µM and the detection limit was 47.9 nM. The sensor presented good stability (signal current dropped only 2.5% after 21 days) and good anti-interference of inorganic salts and small molecular organic acids. The good recovery (97.5-104.1%) for detecting spiked TCS in commercial products (toothpaste and hand sanitizer) suggested its potential for routine determination of TCS in real samples.

3.
Environ Res ; 247: 118134, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38237755

RESUMEN

Urbanization-related human activities, such as population aggregation, rapid industrial expansion, and intensified traffic, are key factors that impact local polycyclic aromatic hydrocarbon emissions and their associated health risks. Consequently, regions with varying degrees of urbanization within a megacity may exhibit diverse spatiotemporal patterns in the presence and distribution of soil polycyclic aromatic hydrocarbons, resulting in different levels of ecological risks for local inhabitants following the same period of development. In this study, we measured the concentrations of 16 polycyclic aromatic hydrocarbons in soil samples collected from industrial district and rural district in Tianjin (China) in 2018, and compared with polycyclic aromatic hydrocarbon data in 2001 from a previous study to characterize these regional variations in occurrence, source, and human risk of polycyclic aromatic hydrocarbons induced by urbanization with time and space. The results indicate the 20-year rapid urbanization and industrialization has differentially affected the composition, distribution and sources of polycyclic aromatic hydrocarbons in soils from different economic functional zones in Tianjin. Additionally, its impact on health risks in rural district appeared to be more significant than that in industrial district.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Medición de Riesgo , Contaminación Ambiental , China , Suelo
4.
Int J Biol Macromol ; 261(Pt 2): 129609, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253152

RESUMEN

Due to the widespread presence of nanoplastics (NPs) in daily essentials and drinking water, the potential adverse effects of NPs on human health have become a global concern. Human serum albumin (HSA), the most abundant and multi-functional protein in plasma, has been chosen to understand the biological effects of NPs after entering the blood. The esterase activity and the transport of bisphenol A in the presence of polystyrene nanoplastics (PSNPs) under physiological conditions (pH 4.0 and 7.4) have been investigated to evaluate the possible biological effects. The interactions between PSNPs and HSA have also been systematically studied by multispectral methods and dynamic light scattering techniques. The esterase activity of HSA presented a decreased trend with increasing PSNPs; conversely, higher permeabilities are accompanied by higher amounts of PSNPs. Compared with the unchanged hydrodynamic diameter and weaker interactions at pH 7.4, stronger binding between HSA and PSNPs at pH 4.0 led to a significant increase in the particle size of the PSNPs-HSA complex. The quenching mechanism belonged to the static quenching type. The electrostatic force is proposed to be the dominant factor for PSNPs binding to HSA. The work provides some information about the toxicity of NPs when exposed to humans.


Asunto(s)
Poliestirenos , Albúmina Sérica Humana , Humanos , Microplásticos , Dispersión Dinámica de Luz , Esterasas
5.
Toxics ; 11(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37999593

RESUMEN

With the popularization and high-intensity utilization of greenhouse cultivation for crops growth, the pollution of greenhouse soils has been of concern. Therefore, a national-scale survey was conducted to investigate the contamination status, sources, influence factors and the risks of polychlorinated biphenyls (PCBs) and hexachlorobutadiene (HCBD) in greenhouse and nearby open-field soils. Contents of PCBs ranged from 10-6). This study provided a full insight on the contamination status and risks of PCBs and HCBD when guiding greenhouse agriculture activities.

6.
Sci Total Environ ; 903: 166578, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634731

RESUMEN

Using a combination of spectroscopy, we devised an integrated structural strategy to comprehensively profile the molecular details of the impact of differently functionalized (plain, aminated, and carboxylated) polystyrene nanoparticles (PSNPs) on human serum albumin (HSA). The binding isotherms obtained from fluorescence and UV-vis absorption measurements demonstrate that surface functionalization can distinguish the interaction of PSNPs with HSA. Three-dimensional fluorescence and circular dichroism analysis of the effect of interaction with PSNPs on the native conformation and secondary structures of the protein reveals a diminution in the skeleton structure of HSA induced by the PSNPs. In accordance with this, it is discovered that the esterase activity of protein-PSNPs aggregates is diminished compared to that of the native protein. The carboxylated PSNPs exhibited the strongest protein binding and perturbation effects compared to other particles. Plain PSNPs exhibited significant hydrophobic interaction properties, as evidenced by spectral blue shifts and a diminished Stokes shift in the three-dimensional fluorescence assay. Our results exclusively highlight that the hydrophobic and surface charge characteristics of PSNPs govern the extent of interaction with the protein, which is beneficial to understanding microplastic toxicology.

7.
Sci Total Environ ; 899: 165617, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37478940

RESUMEN

Understanding nanoplastic (NP, or nanoparticle in general) toxicity requires establishing the causal relationships between the physical properties of the nanoparticles and their biological impact. We use spectroscopic, zeta-potential, and dynamic light scattering (DLS) techniques to investigate the formation, structure, and catalytic properties of hemoglobin corona complexes with polystyrene NPs (0-10 mg/mL) of various diameters (20, 50, 100, 500, and 5000 nm). Resonance light scattering, zeta-potential analysis, and DLS demonstrated that hemoglobin corona complexes formed different forms of aggregates with NPs in terms of diameter. Medium-sized (100 nm) NPs induced the most significant conformational alterations in the protein corona compared to smaller and larger ones, which was revealed by spectroscopic assays. However, the catalase-like activity of hemoglobin was promoted in the presence of 100 nm NPs by as high as 35.2 %. NP curvature and surface area are antagonistic factors that govern the conformation of proteins together. This also suggests that 100 nm NPs are more likely to disrupt protein-dependent physiological processes at a given mass concentration than small or large NPs.


Asunto(s)
Nanopartículas , Poliestirenos , Poliestirenos/química , Microplásticos , Hemoglobinas , Nanopartículas/química , Dispersión Dinámica de Luz
8.
Mikrochim Acta ; 190(7): 252, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286788

RESUMEN

A new strategy to prepare copper (Cu) nanoparticles anchored in nitrogen-doped carbon nanosheets (Cu@CN) has been designed and the nanomaterial applied to the determination of paraquat (PQ). The nanocomposite materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and several other techniques. We found that the Cu nanoparticles are uniformly distributed on the carbon materials, providing abundant active sites for electrochemical detection. The electrochemical behavior of the Cu@CN-based PQ sensor was investigated by square-wave voltammetry (SWV). Cu@CN exhibited excellent electrochemical activity and PQ detection performance. The Cu@CN-modified glassy carbon electrode (Cu@CN/GCE) exhibited excellent stability, favorable sensitivity, and high selectivity under optimized conditions (enrichment voltage -0.1 V and enrichment time 400 s) of the SWV test. The detection range reached 0.50 nM to 12.00 µM, and the limit of detection was 0.43 nM with high sensitivity of 18 µA·µM-1·cm-2. The detection limit is 9 times better than that of the high-performance liquid chromatography method. The Cu@CN electrochemical sensor demonstrated excellent sensitivity and selectivity also in environmental water and fruit samples enabling its use in practical, rapid trace-level detection of PQ in environmental samples.

9.
Mar Pollut Bull ; 192: 115001, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37156126

RESUMEN

To study the distribution, sources, ecological/health risks, and the impact of regional economic variations on polycyclic aromatic hydrocarbons (PAHs) contaminations along the coast of the Yellow Sea in China, sediments from a broad coastal coverage were collected and analyzed. The total contents of 16 priority PAHs varied between 1.4 and 1675.9 ng/g except in the site of H18 (3191.4 ng/g) adjacent to Qingdao City, with an average value of 295.7 ng/g. PAH pollution along the coast presented a distinctive geographical feature, which was closely linked to local human activities, such as Rongcheng with industrial zones and aquacultural areas, and Yancheng Wetland with developed aquaculture. The source analysis results indicated that PAHs were mainly from pyrolytic sources, with smaller contributions from petroleum spills and combustion. Risk assessment suggested that PAH pollution along the Yellow Sea coast showed negligible biological risks and health risks in most areas.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , China , Medición de Riesgo
10.
ACS Nano ; 17(9): 8499-8510, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37074122

RESUMEN

Heterogenous Pd catalysts play a pivotal role in the chemical industry; however, it is plagued by S2- or other strong adsorbates inducing surface poisoning long term. Herein, we report the development of AuFe3@Pd/γ-Fe2O3 nanosheets (NSs) as an in situ regenerable and highly active hydrogenation catalyst. Upon poisoning, the Pd monolayer sites could be fully and oxidatively regenerated under ambient conditions, which is initiated by •OH radicals from surface defect/FeTetra vacancy-rich γ-Fe2O3 NSs via the Fenton-like pathway. Both experimental and theoretical analyses demonstrate that for the electronic and geometric effect, the 2-3 nm AuFe3 intermetallic nanocluster core promotes the adsorption of reactant onto Pd sites; in addition, it lowers Pd's affinity for •OH radicals to enhance their stability during oxidative regeneration. When packed into a quartz sand fixed-bed catalyst column, the AuFe3@Pd/γ-Fe2O3 NSs are highly active in hydrogenating the carbon-halogen bond, which comprises a crucial step for the removal of micropollutants in drinking water and recovery of resources from heavily polluted wastewater, and withstand ten rounds of regeneration. By maximizing the use of ultrathin metal oxide NSs and intermetallic nanocluster and monolayer Pd, the current study demonstrates a comprehensive strategy for developing sustainable Pd catalysts for liquid catalysis.

11.
Environ Pollut ; 327: 121547, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37028791

RESUMEN

Toxic metals can substantially change the bacterial community and functions thereof in aquatic environments. Herein, metal resistance genes (MRGs) are the core genetic foundation for microbial responses to the threats of toxic metals. In this study, waterborne bacteria collected from the Pearl River Estuary (PRE) were separated into the free-living bacteria (FLB) and particle-attached bacteria (PAB), and analyzed using metagenomic approaches. MRGs were ubiquitous in the PRE water and mainly related to Cu, Cr, Zn, Cd and Hg. The levels of PAB MRGs in the PRE water ranged from 8.11 × 109 to 9.93 × 1012 copies/kg, which were significantly higher than those of the FLB (p < 0.01). It could be attributed to a large bacterial population attached on the suspended particulate matters (SPMs), which was evidenced by a significant correlation between the PAB MRGs and 16S rRNA gene levels in the PRE water (p < 0.05). Moreover, the total levels of PAB MRGs were also significantly correlated with those of FLB MRGs in the PRE water. The spatial pattern of MRGs of both FLB and PAB exhibited a declining trend from the low reaches of the PR to the PRE and on to the coastal areas, which was closely related to metal pollution degree. MRGs likely carried by plasmids were also enriched on the SPMs with a range from to 3.85 × 108 to 3.08 × 1012 copies/kg. MRG profiles and taxonomic composition of the predicted MRG hosts were significantly different between the FLB and PAB in the PRE water. Our results suggested that FLB and PAB could behave differential response to heavy metals in the aquatic environments from the perspective of MRGs.


Asunto(s)
Metales Pesados , Ríos , Ríos/microbiología , Estuarios , ARN Ribosómico 16S/genética , Bacterias/genética , Metales Pesados/toxicidad , Metales Pesados/análisis , Genes Bacterianos , Agua
12.
Environ Sci Technol ; 57(11): 4464-4470, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36893289

RESUMEN

Human serum albumin (HSA) was used as a model protein to explore the effects of brominated flame retardant (BFR) binding and the corona formation on polystyrene nanoplastics (PNs). Under physiological conditions, HSA helped to disperse PNs but promoted the formation of aggregates in the presence of tetrabromobisphenol A (TBBPA, ΔDh = 135 nm) and S (TBBPS, ΔDh = 256 nm) at pH 7. At pH 4, these aggregates became larger with fewer electrostatic repulsion effects (ΔDh = 920 and 691 nm for TBBPA and TBBPS, respectively). However, such promotion effects as well as BFR binding are different due to structural differences of tetrabromobisphenol A and S. Environmental kosmotropes efficiently stabilized the structure of HSA and inhibited BFR binding, while the chaotropes favored bioconjugated aggregate formation. Such effects were also verified in natural seawater. The newly gained knowledge may help us anticipate the behavior and fate of plastic particles and small molecular pollutants in both physiological and natural aqueous systems.


Asunto(s)
Retardadores de Llama , Bifenilos Polibrominados , Humanos , Microplásticos , Albúmina Sérica Humana , Bifenilos Polibrominados/análisis
13.
Sci Total Environ ; 863: 160903, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36526206

RESUMEN

As an emerging pollutant that is easily bonded with some functional proteins and the effects of their physiological expressions, nano plastics (NPs) have been widely detected in various environmental mediums, even in human blood. Compared to microplastics, less information on the interactions between NPs and proteins has been reported. Here, the interaction mechanism between common polystyrene nano plastics (PSNPs) and catalase (CAT) under two typical physiological conditions, pH 7.4 and 4.0, was investigated by UV-visible spectroscopy, circular dichroism (CD), and dynamic light scattering (DLS). Compared with the enhanced catalytic effects when increasing PSNPs at pH 7.4, a trend of initial inhibition and enhanced activity was observed at pH 4.0. Spectroscopic analysis and calculation results indicated that their binding was static, with only one binding site and stronger interactions under acidic conditions. UV-visible and CD spectra analysis demonstrated that the difference in enzymatic activity could be mainly attributed to the conformational alternation of CAT in the presence of PSNPs, which is obviously affected by solution chemistry. The change was also revealed by the hydrodynamic diameter and zeta potentials of the complexes supplied by DLS analysis. This study will help understand the health risks of nano plastic pollution and provide a theoretical basis for studying their toxicological effects.


Asunto(s)
Microplásticos , Plásticos , Humanos , Catalasa/metabolismo , Dicroismo Circular , Dispersión Dinámica de Luz , Poliestirenos
14.
Toxics ; 10(9)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36136512

RESUMEN

Cities around the Bohai Sea are one of the main population cluster areas in China, which are characterized by high levels of sustainability performance and human capital, as well as resource-intensive industries. In this study, levels of economic development metrics and emissions of air pollutants (BC, CO, NH3, NOx, OC, PM2.5, PM10, and SO2) and CO2 across eleven cities around the Bohai Sea from 2008 to 2017 were compared to illustrate the potential relationships between air pollutants/carbon emissions and socioeconomic developments. Meanwhile, the associations between the levels of economic development metrics (GDP per capita), emissions, and energy use per GDP have also been examined. Large differences across these 11 cities presenting different economic development levels and energy consumption characteristics have been observed. Cities with development dependable on the consumption of fossil fuels and the development of resource-intensive industries have emitted large amounts of air pollutants and CO2. Furthermore, the emissions and energy use per GDP for all the cities follow environmental Kuznets curves. The comparison results suggested that the developing cities dependable on resource-intensive industries around the Bohai Sea would obtain greater socioeconomic benefits owing to the interregional cooperation policies under top-down socioeconomic development plans and bottom-up technology development, accompanied by reduced emissions of air pollutants and CO2.

15.
J Hazard Mater ; 414: 125582, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030421

RESUMEN

With the potential biomedical applications of nanomaterials such as silver nanoparticles (SNPs), nanotoxicity concerns are growing, and the importance of NP and protein interactions is far from being addressed enough. Here, we identified the major binding protein on SNPs in blood as human serum albumin (HSA) using polyacrylamide gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. By comparing with the previous methods, we emphasized surface area concentration as a new dose metric to address the importance of NP curvature. SNPs interacted with cysteine and cystine, disrupting the secondary structure and conformation of HSA, and this tendency became stronger on small SNPs than large ones. The protein corona significantly alleviated the toxicity and decreased SNPs' internalization in a particle size-dependent manner, where more significant inhibition effects occurred on larger particles at the same area concentration. These findings may shed light on nanotoxicity and also the design of safe nanomaterials by a comprehensive preconsideration of the metrological method.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Corona de Proteínas , Humanos , Nanopartículas del Metal/toxicidad , Tamaño de la Partícula , Plata/toxicidad
16.
Food Chem ; 350: 129214, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33601093

RESUMEN

Tetrabromobisphenol A (TBBPA), halogenated carbazole (HCZ), and their analogs are the emerging pollutants invading the marine environment. So far, a few methods have been reported for the simultaneous analysis of these pollutants due to their large polarity difference. In this study, an effective extraction and cleanup strategy was developed for the simultaneous determination of 19 TBBPA and HCZ congeners in seafood. The 19 analytes could be directly analyzed through high performance liquid chromatography after ultrasonic extraction (methanol, duplicate ethyl acetate-acetone (1:1, v/v)) and gel permeation chromatography cleanup. The acceptable spike-recoveries were within 65.7-118.3%; the precision was intra-/inter-day RSDs: 0.0-6.7%/0.0-8.5%; and the matrix effects were between -14.1% and 12.4%. The detection limits and quantification limits were 0.002-0.014 and 0.020-0.200 µg g-1 dw, respectively. Additionally, this method successfully analyzed the seafood samples and the concentrations of these analytes were in range of nd-5.4 µg g-1 dw.


Asunto(s)
Carbazoles/análisis , Fraccionamiento Químico/métodos , Análisis de los Alimentos/métodos , Halogenación , Bifenilos Polibrominados/análisis , Bifenilos Polibrominados/aislamiento & purificación , Alimentos Marinos/análisis , Carbazoles/química , Contaminantes Ambientales/análisis , Contaminantes Ambientales/química , Contaminación de Alimentos , Factores de Tiempo
17.
Sci Total Environ ; 764: 144388, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33387764

RESUMEN

Selective adsorption via the size matching effect is one of the most effective strategies for separating and analyzing low levels of organic molecules. Herein, multicomponent covalent organic frameworks (MC-COFs) with tunable pore sizes are constructed by using one knot (1,3,5-triformylphloroglucinol, Tp) and two organic linkers (p-phenylenediamine, Pa; benzidine, BD). The pore sizes of the MC-COFs composed of TpPaBDX (X = [BD]/([Pa] + [BD]) × 100 = 0, 25, 50, 75, and 100) range from 0.5-1.5 to 0.5-2.2 nm due to variations in the initial organic linker ratios. When coupling TpPaBDX-based solid-phase microextraction (SPME) with constant flow desorption ionization mass spectrometry (CFDI-MS), these MC-COFs feature better selective adsorption performance for tetrabromobisphenol A (TBBPA) derivatives than TpPa with a smaller pore size, TpBD with a larger pore size and even some commercial fibers (e.g., polydimethylsiloxane/divinylbenzene (PDMS/DVB)-, polyacrylate (PA)- and PDMS-coated fibers). The improved method involving MC-COF TpPaBD50 also presents favorable stability with relative standard deviations (RSD, 1 µg L-1) for single fibers of 5.5-7.9% (n = 7) and fiber-to-fiber of 6.6-7.8% (n = 7). Due to the decreased limits of detection and quantification (0.5-12 and 1.6-40 ng L-1), and reduced separation and detection time (7 min), ultratrace levels of TBBPA derivatives in real water samples are successfully detected. The proposed method shows great potential for the rapid tracing of the distribution, transportation and transformation of TBBPA derivatives to better understand their ecotoxicological effects in environmental media.

18.
Environ Pollut ; 268(Pt B): 115938, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33158616

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) in urban soils are of increasing concern because of their potential toxicity and persistence. However, there is limited information about PAHs in Tianjin coastal new region, although it is an important economic and industrial center in Northern China. Here we determined the concentrations of PAHs in 210 surface soil samples collected from this region according to administrative divisions covering Han'gu district, Tanggu district, and Dagang district, to evaluate their contamination and potential cancer risks. The concentrations of 16 PAHs ranged from 58.2 to 9160 ng g-1, and the highest concentration was found in Han'gu district. According to the incremental lifetime cancer risk (ILCR) model, the soils from Han'gu district and Dagang district posed a moderate carcinogenic risk to residents, and dermal contact was the main exposure pathway. Besides, ILCRs for children through ingestion were comparable to those for adults but apparently higher than adolescents, while ILCRs of dermal contact for adults were higher than children and adolescents. Comparisons between the layout of industrial zones and the distributions of PAHs as well as ILCRs indicate that PAHs accumulating in soils and then incurring risk areas is partly controlled by the economic and industrial structure.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Adolescente , Adulto , Niño , China , Monitoreo del Ambiente , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
19.
Sci Rep ; 10(1): 3712, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111980

RESUMEN

Unambiguous identification of trace amounts of biochemical molecules in a complex background using terahertz spectroscopy is extremely challenging owing to the extremely small absorption cross sections of these molecules in the terahertz regime. Herein, we numerically propose a terahertz nonresonant nano-slits structure that serves as a powerful sensor. The structure exhibits strongly enhanced electric field in the slits (five orders of magnitude), as well as high transmittance over an extra-wide frequency range that covers the characteristic frequencies of most molecules. Fingerprint features of lactose and maltose are clearly detected using this slits structure, indicating that this structure can be used to identify different saccharides without changing its geometrical parameters. The absorption signal strengths of lactose and maltose with a thickness of 200 nm are strongly enhanced by factors of 52.5 and 33.4, respectively. This structure is very sensitive to thin thickness and is suitable for the detection of trace sample, and the lactose thickness can be predicted on the basis of absorption signal strength when the thickness is less than 250 nm. The detection of a mixture of lactose and maltose indicates that this structure can also achieve multi-sensing which is very difficult to realize by using the resonant structures.

20.
Talanta ; 208: 120469, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816746

RESUMEN

A simple, green and nondestructive method based on terahertz fingerprint peaks has been developed for rapid in situ analysis of l-histidine and α-lactose in dietary supplements. Fingerprint absorption peaks of l-histidine and α-lactose located at 0.77 and 0.53 THz could be directly used for identification and quantitation of these analytes in commercial dietary supplements. Compared with the partial least squares regression model (PLSR), the linear least squares regression (LLSR) method based on peak areas presented better performance, with the linear correlation coefficients of 0.9899 and 0.9910 for l-histidine and α-lactose, respectively. Furthermore, analysis time per sample can be shortened to less than 1 min due to the narrower spectral acquisition region. The accuracies were 94.8-110% and 98.9-110%, comparable to those of ion chromatography for l-histidine and high-performance liquid chromatography for α-lactose. The results presented great potential of the developed method for rapid in situ analysis of nutrients in dietary supplements.


Asunto(s)
Suplementos Dietéticos/análisis , Histidina/análisis , Lactosa/análisis , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Espectroscopía de Terahertz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA