Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38558990

RESUMEN

Interactions of light-sensitive drugs and materials with Cerenkov radiation-emitting radiopharmaceuticals generate cytotoxic reactive oxygen species (ROS) to inhibit localized and disseminated cancer progression, but the cell death mechanisms underlying this radionuclide stimulated dynamic therapy (RaST) remain elusive. Using ROS-regenerative nanophotosensitizers coated with a tumor-targeting transferrin-titanocene complex (TiO2-TC-Tf) and radiolabeled 2-fluorodeoxyglucose (18FDG), we found that adherent dying cells maintained metabolic activity with increased membrane permeabilization. Mechanistic assessment of these cells revealed that RaST activated the expression of RIPK-1 and RIPK-3, which mediate necroptosis cell death. Subsequent recruitment of the nuclear factors kappa B and the executioner mixed lineage kinase domain-like pseudo kinase (MLKL) triggered plasma membrane permeabilization and pore formation, respectively, followed by the release of cytokines and immunogenic damage-associated molecular patterns (DAMPs). In immune-deficient breast cancer models with adequate stroma and growth factors that recapitulate the human tumor microenvironment, RaST failed to inhibit tumor progression and the ensuing lung metastasis. A similar aggressive tumor model in immunocompetent mice responded to RaST, achieving a remarkable partial response (PR) and complete response (CR) with no evidence of lung metastasis, suggesting active immune system engagement. RaST recruited antitumor CD11b+, CD11c+, and CD8b+ effector immune cells after initiating dual immunogenic apoptosis and necroptosis cell death pathways in responding tumors in vivo. Over time, cancer cells upregulated the expression of negative immune regulating cytokine (TGF-ß) and soluble immune checkpoints (sICP) to challenge RaST effect in the CR mice. Using a signal-amplifying cancer-imaging agent, LS301, we identified latent minimal residual disseminated tumors in the lymph nodes (LNs) of the CR group. Despite increased protumor immunogens in the CR mice, RaST prevented cancer relapse and metastasis through dynamic redistribution of ROS-regenerative TiO2 from bones at the early treatment stage to the spleen and LNs, maintaining active immunity against cancer progression and migration. This study reveals the immune-mechanistic underpinnings of RaST-mediated antitumor immune response and highlights immunogenic reprogramming of tumors in response to RaST. Overcoming apoptosis resistance through complementary necroptosis activation paves the way for strategic drug combinations to improve cancer treatment.

2.
Oncotarget ; 7(11): 13082-92, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26909615

RESUMEN

PURPOSE: The complexity of sarcoma has led to the need for patient selection via in vivo biomarkers. Tumor endothelial marker-1 (TEM-1) is a cell surface marker expressed by the tumor microenvironment. Currently MORAb-004 (Ontuxizumab), an anti-TEM-1 humanized monoclonal antibody, is in sarcoma clinical trials. Development of positron emission tomography (PET) for in vivo TEM-1 expression may allow for stratification of patients, potentially enhancing clinical outcomes seen with Ontuxizumab. RESULTS: Characterization of cell lines revealed clear differences in TEM-1 expression. One high expressing (RD-ES) and one low expressing (LUPI) cell line were xenografted, and mice were injected with 89Zr-Ontuxizumab. PET imaging post-injection revealed that TEM-1 was highly expressed and readily detectable in vivo only in RD-ES. In vivo biodistribution studies confirmed high radiopharmaceutical uptake in tumor relative to normal organs. EXPERIMENTAL DESIGN: Sarcoma cell lines were characterized for TEM-1 expression. Ontuxizumab was labeled with 89Zr and evaluated for immunoreactivity preservation. 89Zr-Ontuxizumab was injected into mice with high or null expressing TEM-1 xenografts. In vivo PET imaging experiments were performed. CONCLUSION: 89Zr-Ontuxizumab can be used in vivo to determine high versus low TEM-1 expression. Reliable PET imaging of TEM-1 in sarcoma patients may allow for identification of patients that will attain the greatest benefit from anti-TEM-1 therapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antígenos CD/biosíntesis , Antígenos de Neoplasias/biosíntesis , Biomarcadores de Tumor/análisis , Tomografía de Emisión de Positrones/métodos , Radioisótopos/farmacología , Sarcoma/diagnóstico por imagen , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos , Sarcoma/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Circonio/farmacología
3.
Oncoimmunology ; 5(12): e1238543, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28123874

RESUMEN

Individuals with robust natural killer (NK) cell function incur lower rates of malignancies. To expand our understanding of genetic factors contributing to this phenomenon, we analyzed NK cells from cancer resistant and susceptible strains of mice. We identified a correlation between NK levels of the X-chromosome-located adaptor protein SLy1 and immunologic susceptibility to cancer. Unlike the case for T or B lymphocytes, where SLy1 shuttles between the cytoplasm and nucleus to facilitate signal transduction, in NK cells SLy1 functions as a ribosomal protein and is located solely in the cytoplasm. In its absence, ribosomal instability results in p53-mediated NK cell senescence and decreased clearance of malignancies. NK defects are reversible under inflammatory conditions and viral clearance is not impacted by SLy1 deficiency. Our work defines a previously unappreciated X-linked ribosomopathy that results in a specific and subtle NK cell dysfunction leading to immunologic susceptibility to cancer.

4.
Mol Imaging Biol ; 18(1): 90-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25987465

RESUMEN

PURPOSE: Copper-64 (Cu-64) and Galium-68 (Ga-68) radiolabeled DO3A and NODA conjugates of exendin-4 were used for preclinical imaging of pancreatic ß cells via targeting of glucagon-like peptide-1 receptor (GLP-1R). PROCEDURES: DO3A-VS- and NODA-VS-tagged Cys(40)exendin-4 (DO3A-VS-Cys(40)-exendin-4 and NODA-VS-Cys(40)-exendin-4, respectively) were labeled with Cu-64 and Ga-68 using standard techniques. Biodistribution and dynamic positron emission tomography (PET) were carried out in normal Sprague-Dawley (SD) rats. Ex vivo autoradiography imaging was conducted with freshly frozen pancreatic thin sections. RESULTS: DO3A-VS- and NODA-VS-Cys(40)-exendin-4 analogues were labeled with Cu-64 and Ga-68 to a specific activity of 518.7 ± 3.7 Ci/mmol (19.19 ± 0.14 TBq/mmol) and radiochemical yield above 98 %. Biodistribution data demonstrated pancreatic uptake of 0.11 ± 0.02 %ID/g for [(64)Cu]DO3A-VS-, 0.14 ± 0.02 %ID/g for [(64)Cu]NODA-VS-, 0.11 ± 0.03 for [(68)Ga]DO3A-VS-, and 0.26 ± 0.03 for [(68)Ga]NODA-VS-Cys(40)-exendin-4. Excess exendin-4 and exendin-(9-39)-amide displaced all four Cu-64 and Ga-68 labeled exendin-4 derivatives in blocking studies. CONCLUSIONS: [(64)Cu]/[(68)Ga]DO3A-VS-Cys(40)- and [(64)Cu]/[(68)Ga]NODA-VS-Cys(40)-exendin-4 can be used as PET imaging agents specific for GLP-1R expressed on ß cells. Here, we report the first evidence of pancreatic uptake visualized with exendin-4 derivative in a rat animal model via in vivo dynamic PET imaging.


Asunto(s)
Radioisótopos de Cobre/metabolismo , Radioisótopos de Galio/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Células Secretoras de Insulina/diagnóstico por imagen , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Animales , Autorradiografía , Exenatida , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Compuestos Heterocíclicos con 1 Anillo/química , Masculino , Péptidos/química , Ratas Sprague-Dawley , Procesamiento de Señales Asistido por Computador , Distribución Tisular , Tomografía Computarizada por Rayos X , Ponzoñas/química , Compuestos de Vinilo/química
5.
J Biol Chem ; 279(17): 17301-11, 2004 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-14966135

RESUMEN

Expression in OV10 cells of either wild-type CD47 or its extracellular IgV domain linked to a glycosylphosphatidylinositol anchor-(IgV-GPI) enhanced ligand-induced alpha(v)beta(3) activation as detected by the binding of LIBS1 and LIBS6 mAbs. The amplitude of LIBS binding was greater with both CD47 and IgV-GPI expression, indicating an increase in the population of "activable" integrin molecules. Expression of either CD47 species also increased alpha(v)beta(3)-mediated adhesion to vitronectin, and to surfaces coated with the anti-beta(3) antibody AP3, because of enhanced clustering of alpha(v)beta(3) as confirmed by chemical cross-linking. Cholesterol depletion with methyl-beta-cyclodextrin did not prevent the increase in anti-LIBS binding, but reduced cell adhesion to vitronectin and AP3. However, cells expressing CD47 were partially insulated against this disruption, and IgV-GPI was even more effective. Both CD47 and IgV-GPI were found in cholesterol-rich rafts prepared in the absence of detergent, but only CD47 could recruit alpha(v)beta(3) and its associated signaling molecules to these domains. Thus CD47-alpha(v)beta(3) complexes in cholesterol-rich raft domains appear to engage in G(i)-dependent signaling whereas CD47-alpha(v)beta(3) interactions that lead to integrin clustering are also detergent resistant, but are insensitive to cholesterol depletion and do not require the transmembrane region of CD47.


Asunto(s)
Antígenos CD/metabolismo , Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Integrina alfaVbeta3/metabolismo , Antígeno CD47 , Adhesión Celular , Línea Celular Tumoral , Colesterol/química , Reactivos de Enlaces Cruzados/farmacología , Ciclodextrinas/farmacología , Detergentes/farmacología , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Glicosilfosfatidilinositoles/química , Humanos , Integrinas/química , Ligandos , Microdominios de Membrana/química , Oligopéptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Vitronectina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...