Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 262: 122104, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39032331

RESUMEN

Electrochemically active biofilms (EABs) play an ever-growingly critical role in the biological treatment of wastewater due to its low carbon footprint and sustainability. However, how the multispecies biofilms adapt, survive and become tolerant under acute and chronic toxicity such as antibiotic stress still remains well un-recognized. Here, the stress responses of EABs to tetracycline concentrations (CTC) and different operation schemes were comprehensively investigated. Results show that EABs can quickly adapt (start-up time is barely affected) to low CTC (≤ 5 µM) exposure while the adaptation time of EABs increases and the bioelectrocatalytic activity decreases at CTC ≥ 10 µM. EABs exhibit a good resilience and high anti-shocking capacity under chronic and acute TC stress, respectively. But chronic effects negatively affect the metabolic activity and extracellular electron transfer, and simultaneously change the spatial morphology and microbial community structure of EABs. Particularly, the typical exoelectrogens Geobacter anodireducens can be selectively enriched under chronic TC stress with relative abundance increasing from 45.11% to 85.96%, showing stronger TC tolerance than methanogens. This may be attributed to the effective survival strategies of EABs in response to TC stress, including antibiotic efflux regulated by tet(C) at the molecular level and the secretion of more extracellular proteins in the macro scale, as the C=O bond in amide I of aromatic amino acids plays a critical role in alleviating the damage of TC to cells. Overall, this study highlights the versatile defences of EABs in terms of microbial adaptation, survival strategies, and antibiotic resistance, and deepens the understanding of microbial communities' evolution of EABs in response to acute and chronic TC stress.

3.
Bioresour Technol ; 406: 131026, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917910

RESUMEN

A bioelectrochemical upflow anaerobic sludge blanket (BE-UASB) was constructed and compared with the traditional UASB to investigate the role of bioelectrocatalysis in modulating methanogenesis and sulfidogensis involved within anaerobic treatment of high-sulfate methanolic wastewater (COD/SO42- ratio ≤ 2). Methane production rate for BE-UASB was 1.4 times higher than that of the single UASB, while SO42- removal stabilized at 16.7%. Bioelectrocatalysis selectively enriched key functional anaerobes and stimulated the secretion of extracellular polymeric substances, especially humic acids favoring electron transfer, thereby accelerating the electroactive biofilms development of electrodes. Methanomethylovorans was the dominant genus (35%) to directly convert methanol to CH4. Methanobacterium as CO2 electroreduction methane-producing archaea appeared only on electrodes. Acetobacterium exhibited anode-dependence, which provided acetate for sulfate-reducing bacteria (norank Syntrophobacteraceae and Desulfomicrobium) through synergistic coexistence. This study confirmed that BE-UASB regulated the microbial ecology to achieve efficient removal and energy recovery of high-sulfate methanolic wastewater.


Asunto(s)
Metano , Metanol , Aguas del Alcantarillado , Sulfatos , Aguas Residuales , Aguas Residuales/microbiología , Metanol/metabolismo , Metano/metabolismo , Sulfatos/metabolismo , Aguas del Alcantarillado/microbiología , Anaerobiosis , Reactores Biológicos/microbiología , Electrodos
4.
Chemosphere ; 358: 142119, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697567

RESUMEN

The CO2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage.


Asunto(s)
Biocombustibles , Reactores Biológicos , Dióxido de Carbono , Metano , Dióxido de Carbono/análisis , Electrólisis , Electrodos , Fuentes de Energía Bioeléctrica , Methanobacterium/metabolismo , Membranas Artificiales , Proteobacteria/metabolismo
5.
Water Res ; 256: 121557, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581982

RESUMEN

Electrochemical anaerobic membrane bioreactor (EC-AnMBR) by integrating a composite anodic membrane (CAM), represents an effective method for promoting methanogenic performance and mitigating membrane fouling. However, the development and formation of electroactive biofilm on CAM, and the spatio-temporal distribution of key functional microorganisms, especially the degradation mechanism of organic pollutants in metabolic pathways were not well documented. In this work, two AnMBR systems (EC-AnMBR and traditional AnMBR) were constructed and operated to identify the role of CAM in metabolic pathway on biogas upgrading and mitigation of membrane fouling. The methane yield of EC-AnMBR at HRT of 20 days was 217.1 ± 25.6 mL-CH4/g COD, about 32.1 % higher compared to the traditional AnMBR. The 16S rRNA analysis revealed that the EC-AnMBR significantly promoted the growth of hydrolysis bacteria (Lactobacillus and SJA-15) and methanogenic archaea (Methanosaeta and Methanobacterium). Metagenomic analysis revealed that the EC-AnMBR promotes the upregulation of functional genes involved in carbohydrate metabolism (gap and kor) and methane metabolism (mtr, mcr, and hdr), improving the degradation of soluble microbial products (SMPs)/extracellular polymeric substances (EPS) on the CAM and enhancing the methanogens activity on the cathode. Moreover, CAM biofilm exhibits heterogeneity in the degradation of organic pollutants along its vertical depth. The bacteria with high hydrolyzing ability accumulated in the upper part, driving the feedstock degradation for higher starch, sucrose and galactose metabolism. A three-dimensional mesh-like cake structure with larger pores was formed as a biofilter in the middle and lower part of CAM, where the electroactive Geobacter sulfurreducens had high capabilities to directly store and transfer electrons for the degradation of organic pollutants. This outcome will further contribute to the comprehension of the metabolic mechanisms of CAM module on membrane fouling control and organic solid waste treatment and disposal.


Asunto(s)
Biocombustibles , Reactores Biológicos , Membranas Artificiales , Reactores Biológicos/microbiología , Anaerobiosis , ARN Ribosómico 16S/genética , Metano/metabolismo , Biopelículas , Bacterias/metabolismo , Incrustaciones Biológicas
6.
J Hazard Mater ; 471: 134335, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38657504

RESUMEN

The over-dosing use of chloroquine phosphate (CQ) poses severe threats to human beings and ecosystem due to the high persistence and biotoxicity. The discharge of CQ into wastewater would affect the biomass activity and process stability during the biological processes, e.g., anammox. However, the response mechanism of anammox consortia to CQ remain unknown. In this study, the accurate role of extracellular polymeric substances barrier in attenuating the negative effects of CQ, and the mechanism on cytotoxic behavior were dissected by molecular spectroscopy and computational chemistry. Low concentrations (≤6.0 mg/L) of CQ hardly affected the nitrogen removal performance due to the adaptive evolution of EPS barrier and anammox bacteria. Compact protein of EPS barrier can bind more CQ (0.24 mg) by hydrogen bond and van der Waals force, among which O-H and amide II region respond CQ binding preferentially. Importantly, EPS contributes to the microbiota reshape with selectively enriching Candidatus_Kuenenia for self-protection. Furthermore, the macroscopical cytotoxic behavior was dissected at a molecular level by CQ fate/distribution and computational chemistry, suggesting that the toxicity was ascribed to attack of CQ on functional proteins of anammox bacteria with atom N17 (f-=0.1209) and C2 (f+=0.1034) as the most active electrophilic and nucleophilic sites. This work would shed the light on the fate and risk of non-antibiotics in anammox process.


Asunto(s)
Cloroquina , Matriz Extracelular de Sustancias Poliméricas , Cloroquina/farmacología , Cloroquina/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Aguas Residuales/química , Consorcios Microbianos/efectos de los fármacos
7.
Waste Manag ; 182: 271-283, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38688046

RESUMEN

High water and pharmaceutical and care products (PPCPs) bounded in sludge flocs limit its utilization and disposal. The advanced oxidation process of perxymonosulfate (PMS) catalyzed by iron salts has been widely used in sludge conditioning. In this study, two iron-rich minerals pyrite and siderite were proposed to enhance sludge dewatering performance and remove the target contaminant of triclosan (TCS). The permanent release of Fe2+ in the activation of PMS made siderite more effective in enhancing sludge dewater with capillary suction time (CST) diminishing by 60.5 %, specific resistance to filtration (SRF) decreasing by 79.2 %, and bound water content (BWC) dropping from 37.1 % to 2.6 % at siderite/PMS dosages of 0.36/0.20 mmol/g-TSS after 20 min of pretreatment. Pyrite/PMS performed slightly inferior under the same conditions and the corresponding CST and SRF decreased by 51.5 % and 71.8 % while the BWC only declined to 17.8 %. Rheological characterization was employed to elucidate the changes in sludge dewatering performance, with siderite/PMS treated sludge showing a 48.3 % reduction in thixotropy, higher than 28.4 % of pyrite/PMS. Oscillation and creep tests further demonstrated the significantly weakened viscoelastic behavior of the sludge by siderite/PMS pretreatment. For TCS mineralization removal, siderite/PMS achieved a high removal efficiency of 43.9 %, in comparison with 39.9 % for pyrite/PMS. The reduction in the sludge solids phase contributed the most to the TCS removal. Free radical quenching assays and EPR spectroscopy showed that both siderite/PMS and pyrite/PMS produced SO4-·  and ·OH, with the latter acting as the major radicals. Besides, the dosage of free radicals generated from siderite/PMS exhibited a lower time-dependence, which also allowed it to outperform in destroying EPS matrix, neutralizing the negative Zeta potential of sludge flocs, and mineralizing macromolecular organic matter.


Asunto(s)
Hierro , Peróxidos , Aguas del Alcantarillado , Triclosán , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/química , Triclosán/química , Hierro/química , Eliminación de Residuos Líquidos/métodos , Peróxidos/química , Contaminantes Químicos del Agua/química , Minerales/química , Oxidación-Reducción
8.
Water Res ; 253: 121265, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340701

RESUMEN

Waste activated sludge properties vary widely with different regions due to the difference in living standards and geographical distribution, making a big challenge to developing a universally effective sludge dewatering technique. The Fe(II)-activated persulfate (S2O82-) oxidation process shows excellent ability to disrupt sludge cells and extracellular polymeric substances (EPS), and release bound water from sludge flocs. In this study, the discrepancies in the physicochemical characteristics of sludge samples from seven representative cities in China (e.g., dewaterability, EPS composition, surface charge, microbial community, relative abundance of antibiotic resistance genes (ARGs), etc.) were investigated, and the role of Fe(II)-S2O82- oxidation in enhancing removal of antibiotic resistance genes and dewatering ability were explored. The results showed significant differences between the EPS distribution and chemical composition of sludge samples due to different treatment processes, effluent sources, and regions. The Fe(II)-S2O82- oxidation pretreatment had a good enhancement of sludge dewatering capacity (up to 76 %). Microbial analysis showed that the microbial community in each sludge varied significantly depending on the types of wastewater, the wastewater treatment processes, and the regions, but Fe(II)-S2O82- oxidation was able to attack and rupture the sludge zoogloea indiscriminately. Genetic analysis further showed that a considerable number of ARGs were detected in all of these sludge samples and that Fe(II)-S2O82- oxidation was effective in removing ARGs by higher than 90 %. The highly active radicals (e.g., SO4-·, ·OH) produced in this process caused drastic damage to sludge microbial cells and DNA stability while liberating the EPS/cell-bound water. Co-occurrence network analysis highlighted a positive correlation between population distribution and ARGs abundance, while variations in microbial communities were linked to regional differences in living standards and level of economic development. Despite these variations, the Fe(II)-S2O82- oxidation consistently achieved excellent performance in both ARGs removal and sludge dewatering. The significant modularity of associations between different microbial communities also confirms its ability to reduce horizontal gene transfer (HGT) by scavenging microbes.


Asunto(s)
Antibacterianos , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Farmacorresistencia Microbiana/genética , Oxidación-Reducción , Agua/química , Compuestos Ferrosos/química
9.
Environ Sci Pollut Res Int ; 31(10): 14831-14844, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38285252

RESUMEN

The objective of this paper is to gain insights into the synergistic advantage of anaerobic co-fermentation of heat-treated sludge (HS) with food waste (FW) and heat-treated food waste (HFW) for hydrogen production. The results showed that, compared with raw sludge (RS) mixed with FW (RS-FW), the co-substrate of HS mixed with either FW (HS-FW) or HFW (HS-HFW) effectively promoted hydrogen production, with HS-HFW promoted more than HS-FW. The maximum specific hydrogen production (MSHP) and the maximum hydrogen concentration (MHC) of HS-HFW were 40.53 mL H2/g dry weight and 57.22%, respectively, and 1.21- and 1.45-fold as high as those from HS-FW. The corresponding fermentation was ethanol type for HS-HFW and butyric acid type for HS-FW. The net energy production from RS-FW and HS-FW was both negative, but it was positive (2.57 MJ) from 40% HFW addition to HS-HFW. Anaerobic fermentation was more viable for HS-HFW.


Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Fermentación , Alimento Perdido y Desperdiciado , Anaerobiosis , Reactores Biológicos , Alimentos , Calor , Hidrógeno
10.
Sci Total Environ ; 905: 167006, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37722426

RESUMEN

Thick electrochemically active biofilms (EABs) will lead to insufficient extracellular electron transfer (EET) rate because of the limitation of both substrate diffusion and electron exchange. Herein, carbon nanotubes (CNTs)-doped EABs are developed through self-assembly. The highly conductive biofilms (internal resistance of ∼211 Ω) are efficiently enriched at CNTs dosage of 1 g L-1, with the stable power output of 0.568 W m-2 over three months. The embedded CNTs can act as electron tunnel to accelerate the EET rate in thick biofilm. Self-charging/discharging experiments and Nernst-Monod model stimulation demonstrate a higher net charge storage capacity (0.15 C m-2) and more negative half-saturation potential (-0.401 V) for the hybrid biofilms than that of the control (0.09 C m-2, and -0.378 V). Enzyme activity tests and the observation of confocal laser scanning microscopy by live/dead staining show a nearly negligible cytotoxicity of CNTs, and non-targeted metabonomics analysis reveals fourteen differential metabolites that do not play key roles in microbial central metabolic pathways according to KEGG compound database. The abundance of typical exoelectrogens Geobacter sp. is 2-fold of the control, resulting in a better bioelectrocatalytic activity. These finding provide a possible approach to prolong electron exchange and power output by developing a hybrid EABs doped with conductive material.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nanotubos de Carbono , Nanotubos de Carbono/toxicidad , Electrones , Electrodos , Biopelículas , Transporte de Electrón
11.
Chemosphere ; 339: 139676, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37527740

RESUMEN

The disintegration of anaerobic sludge and blockage of membrane pores has impeded the practical application of anaerobic membrane bioreactor (AnMBR) in treating methanolic wastewater. In this study, bioelectrochemical system (BES) was integrated into AnMBR to alleviate sludge dispersion and membrane fouling as well as enhance bioconversion of methanol. Bioelectrochemical regulation effect induced by BES enhanced methane production rate from 4.94 ± 0.52 to 5.39 ± 0.37 L/Lreactor/d by accelerating the enrichment of electroactive microorganisms and the agglomeration of anaerobic sludge via the adhesive and chemical bonding force. 16 S rRNA gene high-throughput sequencing demonstrated that bioelectrochemical stimulation had modified the metabolic pathways by regulating the key functional microbial communities. Methanogenesis via the common methylotrophic Methanomethylovorans was partially substituted by the hydrogenotrophic Candidatus_Methanofastidiosum, etc. The metabolic behaviors of methanol are bioelectrochemistry-dependent, and controlling external voltage is thus an effective strategy for ensuring robust electron transfer, low membrane fouling, and long-term process stability.


Asunto(s)
Metanol , Aguas Residuales , Aguas del Alcantarillado/química , Anaerobiosis , Biomasa , Metano/metabolismo , Reactores Biológicos , Eliminación de Residuos Líquidos , Membranas Artificiales
12.
Bioresour Technol ; 382: 129222, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37217144

RESUMEN

Membrane fouling presents a big challenge for the real-world implementation of anaerobic membrane bioreactors (AnMBRs) in digesting high-solid biowastes. In this study, an electrochemical anaerobic membrane bioreactor (EC-AnMBR) with a novel sandwich-type composite anodic membrane was designed and constructed for controlling membrane fouling whilst improving the energy recovery. The results showed that EC-AnMBR produced a higher methane yield of 358.5 ± 74.8 mL/d, rising by 12.8% compared to the AnMBR without applied voltage. Integration of composite anodic membrane induced a stable membrane flux and low transmembrane pressure through forming an anodic biofilm while total coliforms removal reached 97.9%. The microbial community analysis further provided compelling evidence that EC-AnMBR enriched the relative abundance of hydrolyzing (Chryseobacterium 2.6%) bacteria and methane-producing (Methanobacterium 32.8%) archaea. These findings offered new insights into anti-biofouling performance and provided significant implications for municipal organic waste treatment and energy recovery in the new EC-AnMBR.


Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Membranas Artificiales , Metano , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
13.
Nanoscale ; 15(12): 5909-5918, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36876891

RESUMEN

Non-thermal plasma (NTP) degradation of volatile organic compounds (VOCs) into CO2 and H2O is a promising strategy for addressing ever-growing environment pollution. However, its practical implementation is hindered by low conversion efficiency and emissions of noxious by-products. Herein, an advanced low-oxygen-pressure calcination process is developed to fine-tune the oxygen vacancy concentration of MOF-derived TiO2 nanocrystals. Vo-poor and Vo-rich TiO2 catalysts were placed in the back of an NTP reactor to convert harmful ozone molecules into ROS that decompose VOCs via heterogeneous catalytic ozonation processes. The results indicate that Vo-TiO2-5/NTP with the highest Vo concentration exhibited superior catalytic activity in the degradation of toluene compared to NTP-only and TiO2/NTP, achieving a maximum 96% elimination efficiency and 76% COx selectivity at an SIE of 540 J L-1. Mechanistic analysis reveals that the 1O2, ˙O2- and ˙OH species derived from the activation of O3 molecules on Vo sites contribute to the decomposition of toluene over the Vo-rich TiO2 surface. With the aid of advanced characterization and density functional theory calculations, the roles of oxygen vacancies in manipulating the synergistic capability of post-NTP systems were explored, and were attributed to increased O3 adsorption ability and enhanced charge transfer dynamics. This work presents novel insights into the design of high-efficiency NTP catalysts structured with active Vo sites.

14.
Bioresour Technol ; 377: 128939, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36958678

RESUMEN

Membrane fouling remains a big challenge hindering the wide-application of anaerobic membrane bioreactor (AnMBR) technology. In this study, an electrochemical anaerobic membrane bioreactor (EC-AnMBR) was developed by coupling electrochemical regulation to enhance co-digestion of sewage sludge and food waste and mitigate membrane fouling. The highest methane production (0.12 ± 0.02 L/Lreactor/day) and net energy recovery (31.82 kJ/day) were achieved under the optimum conditions of 0.8 V, hydraulic retention time of 10 days and solids retention time of 50 days. Electrochemical regulation accelerated the mineralization of high-molecular-weight organics and reinforced the membrane antifouling ability by inducing electrostatic repulsive force and electrochemical oxidation. Besides, symbiotic relationships among functional microorganisms (Spirochaetes, Methanolinea, etc.) were enhanced, improving the hydrolysis and methanogenesis processes of complex organics and the long-term stability. This study confirms the technical feasibility of EC-AnMBR in treating high-solid biowastes, and provides the fundamental data to support its application in real-world scenarios.


Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Alimentos , Anaerobiosis , Metano/química , Reactores Biológicos , Membranas Artificiales , Digestión , Eliminación de Residuos Líquidos
15.
Bioresour Technol ; 376: 128835, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36889605

RESUMEN

Granular sludge disintegration and washing out pose a challenge to up-flow anaerobic sludge bed (UASB) reactor treating methanolic wastewater. Herein, in-situ bioelectrocatalysis (BE) was integrated into UASB (BE-UASB) reactor to alter microbial metabolic behaviors and enhance the re-granulation process. BE-UASB reactor exhibited the highest methane (CH4) production rate of 388.0 mL/Lreactor/d and chemical oxygen demand (COD) removal of 89.6 % at 0.8 V. Sludge re-granulation was strengthened with particle size over 300 µm of up to 22.4%. Bioelectrocatalysis stimulated extracellular polymeric substances (EPS) secretion and formation of granules with rigid [-EPS-cell-EPS-] matrix by enhancing the proliferation of key functional microorganisms (Acetobacterium, Methanobacterium, and Methanomethylovorans) and diversifying metabolic pathways. Particularly, a high Methanobacterium richness (10.8%) drove the electroreduction of CO2 into CH4 and reduced its emissions (52.8%). This study provides a novel bioelectrocatalytic strategy for controlling granular sludge disintegration, which will facilitate the practical application of UASB in methanolic wastewater treatment.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Metanol/metabolismo , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Metano/metabolismo
16.
Chemosphere ; 311(Pt 1): 136670, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36280116

RESUMEN

Energy crisis and increasing rigorous management standards pose significant challenges for solid waste management worldwide. Several emerging diseases such as COVID-19 aggravated the already complex solid waste management crisis, especially sewage sludge and food waste streams, because of the increasingly large production year by year. As mature waste disposal technologies, landfills, incineration, composting, and some other methods are widespread for solid wastes management. This paper reviews recent advances in key sewage sludge disposal technologies. These include incineration, anaerobic digestion, and valuable products oriented-conversion. Food waste disposal technologies comprised of thermal treatment, fermentation, value-added product conversion, and composting have also been described. The hot topic and dominant research foci of each area are summarized, simultaneously compared with conventional technologies in terms of organic matter degradation or conversion performance, energy generation, and renewable resources production. Future perspectives of each technology that include issues not well understood and predicted challenges are discussed with a positive effect on the full-scale implementation of the discussed disposal methods.


Asunto(s)
COVID-19 , Eliminación de Residuos , Humanos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Alimentos , Residuos Sólidos , Anaerobiosis , Metano
17.
Chemosphere ; 312(Pt 2): 137193, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36370766

RESUMEN

Clean water shortages require the reuse of wastewater. The presence of organic substances such as humic acids in wastewater makes the water treatment process more difficult. Humic acids can significantly affect the removal of heavy metals and other such toxins. Humic acids is formed by the decomposition and transformation of animal and plant remains by microorganisms, and naturally exists in soil and water. It is necessary to degrade and remove humic acids from wastewater. As it seriously human health, effective technologies for removing humic acids from wastewater have attracted great interest over the past decades. This study compared existing techniques for removing humic acids from wastewater, as well as their limitations. Physicochemical treatments including filtration and oxidation are basic and key approaches to removing humic acids. Biological treatments including enzyme and fungi-mediated humic acids degradation are economically feasible but require some scalability. In conclusion, the integrated treatment processes are more significant options for the effective removal of humic acids from wastewater. In addition, humic acids have rich utilization values. It can improve the soil, increase crop yields, and promote the removal of pollutants.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Sustancias Húmicas/análisis , Suelo/química , Aguas Residuales , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos
18.
Bioresour Technol ; 367: 128206, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36323371

RESUMEN

Granule formation, microstructure and microbial spatial distribution are crucial to granule stability and nitrogen removal. Here, an upflow blanket filter (UBF) reactor with porous fixed cylinder carriers was fabricated and operated for 234 days to investigate overall performance and the formation mechanism of anammox granules. Results showed that the UBF performed the highest nitrogen removal efficiency of 93.19 ± 3.39% under nitrogen loading rate of 3.6 kg-N/m3/d and HRT of 2 h. The tryptophan-like proteins as the key component in EPS were vital for granules formation. Further 16 s rRNA analysis indicated that SBR1031 with a relative abundance of 40.5% played an important role in cell aggregation. Thus, anammox granules were developed successfully with a two-layered spatial structure where outer-layer was ammonia oxidizing bacteria and inner-core was anaerobic ammonia oxidizing bacteria. Together, introduction of porous fixed cylinder carriers is a valid method to avoid biomass loss and floatation.


Asunto(s)
Nitrógeno , Aguas Residuales , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Amoníaco , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción
19.
Water Environ Res ; 94(8): e10767, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35941098

RESUMEN

A novel tubular bioreactor-enhanced floating treatment wetland (TB-EFTW) was developed for the in situ treatment of high nitrate river water. When compared with the enhanced floating treatment wetland (EFTW), the TB-EFTW system achieved 30% higher total nitrogen removal efficiency. Further, the average TN level of the TB-EFTW effluent was below the Grade IV requirement (1.5 mg/L) specified in Chinese standard (GB3838-2002). Microbial analysis revealed that both aerobic and anoxic denitrifying bacteria coexisted in the new system. The relative abundance of aerobic and anoxic denitrifiers were 42.69% and 22% at the middle and end of the tubular bioreactor (TB), respectively. It is reasonable to assume that effective nitrogen removal can mainly be attributed to the addition of solid carbon source and the spatial difference in DO distribution (oxic-anoxic areas in sequence) inside the TB. The initial investment cost and operating costs associated with the TB-EFTW system are approximately 14,000 and 3500 yuan per 1000 m3 river water, respectively. Considering its low cost, minimal maintenance requirements, and effective nitrogen removal, this newly developed system can be regarded as a promising technology for treating high nitrate river water. PRACTITIONER POINTS: A novel TB-EFTW system was developed to upgrade traditional in situ treatment techniques. The TB-EFTW could achieve 30% higher nitrogen removal efficiency than EFTWs. Both aerobic and anoxic denitrifying bacteria coexisted in the system. The system shows better technical and economic performance compared with routine techniques.

20.
Sci Total Environ ; 837: 155793, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35550899

RESUMEN

Wastewater treatment is an essential aspect of the earth's sustainable future. However, different wastewater treatment methods are responsible for carbon discharge into the environment, raising environmental risks. Hence, such wastewater treatment methods are required that can minimize carbon release without compromising the treatment quality. Microbiome-based carbon sequestration is a potential method for achieving this goal. Limited studies have been carried out to investigate how microbes can capture and utilize CO2. This review summarizes the approaches including microbial electrolytic carbon capture, microbial electrosynthesis, microbial fuel cell, microalgae cultivation, and constructed wetlands that employ microbes to capture and utilize CO2. Electroactive Bacteria (EAB) convert carbon dioxide to carbonates and bicarbonates in subsequent steps after organic matter decomposition. Similarly, microbial electrosynthesis (MES) not only helps capture carbon but also produces secondary products (production of polyhydroxyalkanoates by Gram-negative rod Aeromonas hydrophila bacteria) of commercial importance during wastewater treatment. In addition to this, microbial carbon capture cells (MCCs) have been now utilized for energy generation and carbon sequestration at the same time during wastewater treatment. Moreover, microalgae cultivation has also been found to capture CO2 at a rapid pace while releasing O2 as a consequence of photosynthesis. Hence, microbe-based wastewater treatment has quite a potential due to two-fold benefits like carbon sequestration and by-product formation.


Asunto(s)
Microalgas , Microbiota , Purificación del Agua , Dióxido de Carbono , Secuestro de Carbono , Aguas Residuales/análisis , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...