Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Life Sci ; : 122824, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38862061

RESUMEN

Inter-organ communication through hormones, cytokines and extracellular vesicles (EVs) has emerged to contribute to the physiological states and pathological processes of the human body. Notably, the liver coordinates multiple tissues and organs to maintain homeostasis and maximize energy utilization, with the underlying mechanisms being unraveled in recent studies. Particularly, liver-derived EVs have been found to play a key role in regulating health and disease. As an endocrine organ, the liver has also been found to perform functions via the secretion of hepatokines. Investigating the multi-organ communication centered on the liver, especially in the manner of EVs and hepatokines, is of great importance to the diagnosis and treatment of liver-related diseases. This review summarizes the crosstalk between the liver and distant organs, including the brain, the bone, the adipose tissue and the intestine in noticeable situations. The discussion of these contents will add to a new dimension of organismal homeostasis and shed light on novel theranostics of pathologies.

2.
Biochem Biophys Res Commun ; 715: 149999, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678787

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition and metabolic disorder, has emerged as a significant health issue worldwide. D-mannose, a natural monosaccharide widely existing in plants and animals, has demonstrated metabolic regulatory properties. However, the effect and mechanism by which D-mannose may counteract NAFLD have not been studied. In this study, network pharmacology followed by molecular docking analysis was utilized to identify potential targets of mannose against NAFLD, and the leptin receptor-deficient, genetically obese db/db mice was employed as an animal model of NAFLD to validate the regulation of D-mannose on core targets. As a result, 67 targets of mannose are predicted associated with NAFLD, which are surprisingly centered on the mechanistic target of rapamycin (mTOR). Further analyses suggest that mTOR signaling is functionally enriched in potential targets of mannose treating NAFLD, and that mannose putatively binds to mTOR as a core mechanism. Expectedly, repeated oral gavage of supraphysiological D-mannose ameliorates liver steatosis of db/db mice, which is based on suppression of hepatic mTOR signaling. Moreover, daily D-mannose administration reduced hepatic expression of lipogenic regulatory genes in counteracting NAFLD. Together, these findings reveal D-mannose as an effective and potential NAFLD therapeutic through mTOR suppression, which holds translational promise.


Asunto(s)
Manosa , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico , Serina-Treonina Quinasas TOR , Animales , Manosa/farmacología , Manosa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ratones , Masculino , Simulación del Acoplamiento Molecular , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos
3.
Stem Cell Rev Rep ; 20(4): 1093-1105, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38457059

RESUMEN

Breast cancer, the most prevalent malignancy in women, often progresses to bone metastases, especially in older individuals. Dormancy, a critical aspect of bone-metastasized breast cancer cells (BCCs), enables them to evade treatment and recur. This dormant state is regulated by bone marrow mesenchymal stem cells (BMMSCs) through the secretion of various factors, including those associated with senescence. However, the specific mechanisms by which BMMSCs induce dormancy in BCCs remain unclear. To address this gap, a bone-specific senescence-accelerated murine model, SAMP6, was utilized to minimize confounding systemic age-related factors. Confirming senescence-accelerated osteoporosis, distinct BMMSC phenotypes were observed in SAMP6 mice compared to SAMR1 counterparts. Notably, SAMP6-BMMSCs exhibited premature senescence primarily due to telomerase activity loss and activation of the p21 signaling pathway. Furthermore, the effects of conditioned medium (CM) derived from SAMP6-BMMSCs versus SAMR1-BMMSCs on BCC proliferation were examined. Intriguingly, only CM from SAMP6-BMMSCs inhibited BCC proliferation by upregulating p21 expression in both MCF-7 and MDA-MB-231 cells. These findings suggest that the senescence-associated secretory phenotype (SASP) of BMMSCs suppresses BCC viability by inducing p21, a pivotal cell cycle inhibitor and tumor suppressor. This highlights a heightened susceptibility of BCCs to dormancy in a senescent microenvironment, potentially contributing to the increased incidence of breast cancer bone metastasis and recurrence observed with aging.


Asunto(s)
Neoplasias de la Mama , Células Madre Mesenquimatosas , Fenotipo Secretor Asociado a la Senescencia , Células Madre Mesenquimatosas/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Humanos , Animales , Ratones , Proliferación Celular , Supervivencia Celular , Senescencia Celular , Medios de Cultivo Condicionados/farmacología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Células MCF-7
4.
World J Clin Cases ; 11(27): 6551-6557, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37900255

RESUMEN

BACKGROUND: Undifferentiated pleomorphic sarcomas, also known as spindle cell sarcomas, are a relatively uncommon subtype of soft tissue sarcomas in clinical practice. CASE SUMMARY: We present a case report of a 69-year-old female patient who was diagnosed with undifferentiated spindle cell soft tissue sarcoma on her left thigh. Surgical excision was initially performed, but the patient experienced a local recurrence following multiple surgeries and radioactive particle implantations. High-intensity focused ultrasound (HIFU) was subsequently administered, resulting in complete ablation of the sarcoma without any significant complications other than bone damage at the treated site. However, approximately four months later, the patient experienced a broken lesion at the original location. After further diagnostic workup, the patient underwent additional surgery and is currently stable with a good quality of life. CONCLUSION: HIFU has shown positive outcomes in achieving local control of limb spindle cell sarcoma, making it an effective non-invasive treatment option.

5.
iScience ; 26(9): 107455, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37680481

RESUMEN

Type H vessels couple angiogenesis with osteogenesis, while sympathetic cues regulate vascular and skeletal function. The crosstalk between sympathetic nerves and type H vessels in bone remains unclear. Here, we first identify close spatial connections between sympathetic nerves and type H vessels in bone, particularly in metaphysis. Sympathoexcitation, mimicked by isoproterenol (ISO) injection, reduces type H vessels and bone mass. Conversely, beta-2-adrenergic receptor (ADRB2) deficiency maintains type H vessels and bone mass in the physiological condition. In vitro experiments reveal indirect sympathetic modulation of angiogenesis via paracrine effects of mesenchymal stem cells (MSCs), which alter the transcription of multiple angiogenic genes in endothelial cells (ECs). Furthermore, Notch signaling in ECs underlies sympathoexcitation-regulated type H vessel formation, impacting osteogenesis and bone mass. Finally, propranolol (PRO) inhibits beta-adrenergic activity and protects type H vessels and bone mass against estrogen deficiency. These findings unravel the specialized neurovascular coupling in bone homeostasis and regeneration.

6.
Adv Healthc Mater ; 12(20): e2300019, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36999744

RESUMEN

The blood vessel system is essential for skin homeostasis and regeneration. While the heterogeneity of vascular endothelial cells has been emergingly revealed, whether a regeneration-relevant vessel subtype exists in skin remains unknown. Herein, a specialized vasculature in skin featured by simultaneous CD31 and EMCN expression contributing to the regeneration process is identified, the decline of which functionally underlies the impaired angiogenesis of diabetic nonhealing wounds. Moreover, enlightened by the developmental process that mesenchymal condensation induces angiogenesis, it is demonstrated that mesenchymal stem/stromal cell aggregates (CAs) provide an efficacious therapy to enhance regrowth of CD31+ EMCN+ vessels in diabetic wounds, which is surprisingly suppressed by pharmacological inhibition of extracellular vesicle (EV) release. It is further shown that CAs promote secretion of angiogenic protein-enriched EVs by proteomic analysis, which directly exert high efficacy in boosting CD31+ EMCN+ vessels and treating nonhealing diabetic wounds. These results add to the current knowledge on skin vasculature and help establish feasible strategies to benefit wound healing under diabetic condition.


Asunto(s)
Diabetes Mellitus , Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Células Endoteliales/metabolismo , Proteómica , Cicatrización de Heridas/fisiología , Piel/lesiones
7.
Physiol Rev ; 103(3): 1899-1964, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656056

RESUMEN

The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.


Asunto(s)
Regeneración Ósea , Mesodermo , Odontogénesis , Ingeniería de Tejidos , Pérdida de Diente , Diente , Diente/crecimiento & desarrollo , Ingeniería de Tejidos/métodos , Humanos , Animales , Mesodermo/crecimiento & desarrollo , Pérdida de Diente/terapia
8.
Neurobiol Stress ; 22: 100513, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36636173

RESUMEN

Psychological stress emerges to be a common health burden in the current society for its highly related risk of mental and physical disease outcomes. However, how the quickly-adaptive stress response process connects to the long-observed organismal alterations still remains unclear. Here, we investigated the profile of circulatory extracellular vesicles (EVs) after acute stress (AS) of restraint mice by phenotypic and proteomic analyses. We surprisingly discovered that AS-EVs demonstrated significant changes in size distribution and plasma concentration compared to control group (CN) EVs. AS-EVs were further characterized by various differentially expressed proteins (DEPs) closely associated with biological, metabolic and immune regulations and were functionally important in potentially underlying multiple diseases. Notably, we first identified the lipid raft protein Stomatin as an essential biomarker expressed on the surface of AS-EVs. These findings collectively reveal that EVs are a significant function-related liquid biopsy indicator that mediate circulation alterations impinged by psychological stress, while also supporting the idea that psychological stress-associated EV-stomatin can be used as a biomarker for potentially predicting acute stress responses and monitoring psychological status. Our study will pave an avenue for implementing routine plasma EV-based theranostics in the clinic.

10.
J Vis Exp ; (187)2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36279535

RESUMEN

Extracellular vesicles (EVs) are heterogeneous membrane nanoparticles released by most cell types, and they are increasingly recognized as physiological regulators of organismal homeostasis and important indicators of pathologies; in the meantime, their immense potential to establish accessible and controllable disease therapeutics is emerging. Mesenchymal stem cells (MSCs) can release large amounts of EVs in culture, which have shown promise to jumpstart effective tissue regeneration and facilitate extensive therapeutic applications with good scalability and reproducibility. There is a growing demand for simple and effective protocols for collecting and applying MSC-EVs. Here, a detailed protocol is provided based on differential centrifugation to isolate and characterize representative EVs from cultured human MSCs, exosomes, and microvesicles for further applications. The adaptability of this method is shown for a series of downstream approaches, such as labeling, local transplantation, and systemic injection. The implementation of this procedure will address the need for simple and reliable MSC-EVs collection and application in translational research.


Asunto(s)
Exosomas , Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Reproducibilidad de los Resultados , Vesículas Extracelulares/metabolismo , Exosomas/metabolismo , Células Cultivadas
11.
J Vis Exp ; (188)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36314805

RESUMEN

Circulating and tissue-resident extracellular vesicles (EVs) represent promising targets as novel theranostic biomarkers, and they emerge as important players in the maintenance of organismal homeostasis and the progression of a wide spectrum of diseases. While the current research focuses on the characterization of endogenous exosomes with the endosomal origin, microvesicles blebbing from the plasma membrane have gained increasing attention in health and sickness, which are featured by an abundance of surface molecules recapitulating the membrane signature of parent cells. Here, a reproducible procedure is presented based on differential centrifugation for extracting and characterizing EVs from the plasma and solid tissues, such as the bone. The protocol further describes subsequent profiling of surface antigens and protein cargos of EVs, which are thus traceable for their derivations and identified with components related to potential function. This method will be useful for correlative, functional, and mechanistic analysis of EVs in biological, physiological, and pathological studies.


Asunto(s)
Micropartículas Derivadas de Células , Exosomas , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Exosomas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Biomarcadores/metabolismo , Plasma/metabolismo
12.
STAR Protoc ; 3(4): 101674, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36107746

RESUMEN

Glioma-associated oncogene homolog 1 (Gli1) marks a subpopulation of endogenous mesenchymal stem cells (MSCs) characterized by perivascular location. Here, we present an optimized immunofluorescence staining protocol to identify resident Gli1+ MSCs in fixed/frozen bone sections from LacZ transgenic mice. This protocol describes the preparation of fixed/frozen tissue sections and the use of LacZ immunofluorescent staining for the in vivo characterization of endogenous MSCs, regarding their specific identity and specialized niches, and is applicable to LacZ-expressing cells of diverse organs. For complete details on the use and execution of this protocol, please refer to Chen et al. (2020).


Asunto(s)
Células Madre Mesenquimatosas , Ratones , Animales , Ratones Transgénicos , Operón Lac , Proteína con Dedos de Zinc GLI1 , Coloración y Etiquetado , Técnica del Anticuerpo Fluorescente
13.
World J Stem Cells ; 14(5): 318-329, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35722196

RESUMEN

Poor healing of cutaneous wounds is a common medical problem in the field of traumatology. Due to the intricate pathophysiological processes of wound healing, the use of conventional treatment methods, such as chemical molecule drugs and traditional dressings, have been unable to achieve satisfactory outcomes. Within recent years, explicit evidence suggests that mesenchymal stem cells (MSCs) have great therapeutic potentials on skin wound healing and regeneration. However, the direct application of MSCs still faces many challenges and difficulties. Intriguingly, exosomes as cell-secreted granular vesicles with a lipid bilayer membrane structure and containing specific components from the source cells may emerge to be excellent substitutes for MSCs. Exosomes derived from MSCs (MSC-exosomes) have been demonstrated to be beneficial for cutaneous wound healing and accelerate the process through a variety of mechanisms. These mechanisms include alleviating inflammation, promoting vascularization, and promoting proliferation and migration of epithelial cells and fibroblasts. Therefore, the application of MSC-exosomes may be a promising alternative to cell therapy in the treatment of cutaneous wounds and could promote wound healing through multiple mechanisms simultaneously. This review will provide an overview of the role and the mechanisms of MSC-derived exosomes in cutaneous wound healing, and elaborate the potentials and future perspectives of MSC-exosomes application in clinical practice.

14.
Small Methods ; 6(3): e2100763, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35312228

RESUMEN

Innervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho-adrenergic activation is implicated in stress-induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the ß1/2 -adrenergic receptor (ß1/2-AR) signaling triggers the transcription response of a microRNA, miR-21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis. After confirming that miR-21 deficiency retards the ß1/2-AR agonist isoproterenol (ISO)-induced osteopenia, it is shown that the pharmacological inhibition of exosome release by two clinically-relevant drugs, dimethyl amiloride and omeprazole, suppresses osteoblastic miR-21 transfer and ameliorates bone loss under both ISO and chronic variable stress (CVS)-induced depression conditions. A targeted delivery approach to specifically silence osteoblastic miR-21 is further applied, which is effective in rescuing the bone remodeling balance and ameliorating ISO- and CVS-induced osteopenias. These results decipher a previously unrecognized paradigm that neural cues drive exosomal microRNA communication to regulate organ homeostasis and help to establish feasible strategies to counteract bone loss under psychological stresses.


Asunto(s)
Enfermedades Óseas Metabólicas , Exosomas , MicroARNs , Huesos , Exosomas/genética , Homeostasis , Humanos , MicroARNs/genética
15.
Stem Cells ; 39(7): 838-852, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33621403

RESUMEN

Type 2 diabetes mellitus (T2DM) is a major threat to global public health, with increasing prevalence as well as high morbidity and mortality, to which immune dysfunction has been recognized as a crucial contributor. Mesenchymal stromal cells (MSCs), obtained from various sources and possessing potent immunomodulatory abilities, have displayed great therapeutic potential for T2DM. Interestingly, the immunomodulatory capabilities of MSCs are endowed and plastic. Among the multiple mechanisms involved in MSC-mediated immune regulation, the paracrine effects of MSCs have attracted much attention. Of note, extracellular vesicles (EVs), an important component of MSC secretome, have emerged as pivotal mediators of their immunoregulatory effects. Particularly, the necrobiology of MSCs, especially apoptosis, has recently been revealed to affect their immunomodulatory functions in vivo. In specific, a variety of preclinical studies have demonstrated the beneficial effects of MSCs on improving islet function and ameliorating insulin resistance. More importantly, clinical trials have further uncovered the therapeutic potential of MSCs for T2DM. In this review, we outline current knowledge regarding the plasticity and underlying mechanisms of MSC-mediated immune modulation, focusing on the paracrine effects. We also summarize the applications of MSC-based therapies for T2DM in both preclinical studies and clinical trials, with particular emphasis on the modulation of immune system.


Asunto(s)
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Células Madre Mesenquimatosas , Apoptosis , Diabetes Mellitus Tipo 2/terapia , Humanos , Inmunomodulación
16.
Stem Cell Reports ; 15(1): 110-124, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668219

RESUMEN

Mesenchymal stem/stromal cells (MSCs) reside in the perivascular niche and modulate tissue/organ homeostasis; however, little is known about whether and how their localization and function are linked. Particularly, whether specific MSC subsets couple with and regulate specialized vessel subtypes is unclear. Here, we show that Gli1+ cells, which are a subpopulation of MSCs couple with and regulate a specialized form of vasculature. The specific capillaries, i.e., CD31hiEMCNhi type H vessels, are the preferable vascular subtype which Gli1+ cells are adjacent to in bone. Gli1+ cells are further identified to be phenotypically coupled with type H endothelium during bone growth and defect healing. Importantly, Gli1+ cell ablation inhibits type H vessel formation associated with suppressed bone generation and regeneration. Mechanistically, Gli1+ cells initiate angiogenesis through Gli and HIF-1α signaling. These findings suggest a morphological and functional framework of Gli1+ cells modulating coupled type H vasculature for tissue homeostasis and regenerative repair.


Asunto(s)
Capilares/citología , Neovascularización Fisiológica , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Desarrollo Óseo , Huesos/irrigación sanguínea , Huesos/patología , Endotelio/irrigación sanguínea , Eliminación de Gen , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Endogámicos C57BL , Fenotipo , Transducción de Señal , Cicatrización de Heridas
17.
Trends Mol Med ; 26(1): 89-104, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31126872

RESUMEN

Mitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly important. Originated from mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) lineage commitments and interactions, bone is a representative organ where the mitochondrial essentiality to stem cell function has most recently been discovered, underlying skeletal health, aging, and diseases. Furthermore, mitochondrial medications based on modulating stem cell specification are emerging to provide promising therapies to counteract bone aging and pathologies. Here we review the cutting-edge knowledge regarding mitochondrial regulation of stem cells in bone homeostasis, highlighting mechanistic insights as well as mitochondrial strategies for augmented bone healing and tissue regeneration.


Asunto(s)
Huesos/fisiología , Células Madre Hematopoyéticas/fisiología , Homeostasis/fisiología , Células Madre Mesenquimatosas/fisiología , Mitocondrias/fisiología , Envejecimiento/fisiología , Animales , Humanos
18.
Trends Cell Biol ; 30(2): 97-116, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31866188

RESUMEN

Mesenchymal stem cells (MSCs) have putative roles in maintaining adult tissue health, and the functional decline of MSCs has emerged as a crucial pathophysiological driver of various diseases. Epigenetic regulation is essential for establishing and preserving MSC homeostasis in vivo. Furthermore, growing evidence suggests that epigenetic dysregulation contributes to age- and disease-associated MSC alterations. Epigenetic marks in MSCs can be amplified through self-renewal divisions and transmitted to differentiated progeny, further perpetuating their role in tissue maintenance and pathogenesis. We review the epigenetic regulation of MSC homeostasis, emphasizing its contributions to organismal health and disease. Understanding these epigenetic mechanisms could hold promise as targets for MSC-mediated regenerative therapies.


Asunto(s)
Epigénesis Genética , Homeostasis/genética , Células Madre Mesenquimatosas/metabolismo , Envejecimiento/genética , Metilación de ADN/genética , Enfermedad/genética , Humanos
19.
Biomaterials ; 196: 18-30, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29122279

RESUMEN

Restoration of extensive bone loss and defects remain as an unfulfilled challenge in modern medicine. Given the critical contributions to bone homeostasis and diseases, mesenchymal stem cells (MSCs) have shown great promise to jumpstart and facilitate bone healing, with immense regenerative potential in both pharmacology-based endogenous MSC rescue/mobilization in skeletal diseases and emerging application of MSC transplantation in bone tissue engineering and cytotherapy. However, efficacy of MSC-based bone regeneration was not always achieved; particularly, fulfillment of MSC-mediated bone healing in diseased microenvironments of host comorbidities remains as a major challenge. Indeed, impacts of diseased microenvironments on MSC function rely not only on the dynamic regulation of resident MSCs by surrounding niche to convoy pathological signals of bone, but also on the profound interplay between transplanted MSCs and recipient components that mediates and modulates therapeutic effects on skeletal conditions. Accordingly, novel solutions have recently been developed, including improving resistance of MSCs to diseased microenvironments, recreating beneficial microenvironments to guarantee MSC-based regeneration, and usage of subcellular vesicles of MSCs in cell-free therapies. In this review, we summarize state-of-the-art knowledge regarding applications and challenges of MSC-mediated bone healing, further offering principles and effective strategies to optimize MSC-based bone regeneration in aging and diseases.


Asunto(s)
Enfermedades Óseas/patología , Enfermedades Óseas/terapia , Regeneración Ósea , Microambiente Celular , Células Madre Mesenquimatosas/citología , Animales , Humanos , Trasplante de Células Madre Mesenquimatosas , Ingeniería de Tejidos
20.
Exp Mol Med ; 50(12): 1-14, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30559383

RESUMEN

Osteoporosis develops with high prevalence in both postmenopausal women and hypogonadal men. Osteoporosis results in significant morbidity, but no cure has been established. Mesenchymal stem cells (MSCs) critically contribute to bone homeostasis and possess potent immunomodulatory/anti-inflammatory capability. Here, we investigated the therapeutic efficacy of using an infusion of MSCs to treat sex hormone-deficient bone loss and its underlying mechanisms. In particular, we compared the impacts of MSC cytotherapy in the two genders with the aim of examining potential gender differences. Using the gonadectomy (GNX) model, we confirmed that the osteoporotic phenotypes were substantially consistent between female and male mice. Importantly, systemic MSC transplantation (MSCT) not only rescued trabecular bone loss in GNX mice but also restored cortical bone mass and bone quality. Unexpectedly, no differences were detected between the genders. Furthermore, MSCT demonstrated an equal efficiency in rectifying the bone remodeling balance in both genders of GNX animals, as proven by the comparable recovery of bone formation and parallel normalization of bone resorption. Mechanistically, using green fluorescent protein (GFP)-based cell-tracing, we demonstrated rapid engraftment but poor inhabitation of donor MSCs in the GNX recipient bone marrow of each gender. Alternatively, MSCT uniformly reduced the CD3+T-cell population and suppressed the serum levels of inflammatory cytokines in reversing female and male GNX osteoporosis, which was attributed to the ability of the MSC to induce T-cell apoptosis. Immunosuppression in the microenvironment eventually led to functional recovery of endogenous MSCs, which resulted in restored osteogenesis and normalized behavior to modulate osteoclastogenesis. Collectively, these data revealed recipient sexually monomorphic responses to MSC therapy in gonadal steroid deficiency-induced osteoporosis via immunosuppression/anti-inflammation and resident stem cell recovery.


Asunto(s)
Resorción Ósea/terapia , Hormonas Esteroides Gonadales/deficiencia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Osteoporosis/terapia , Linfocitos T/inmunología , Animales , Remodelación Ósea , Resorción Ósea/inmunología , Castración , Autorrenovación de las Células , Células Cultivadas , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Mediadores de Inflamación/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Osteogénesis , Osteoporosis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA