Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(8): e2206687, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642842

RESUMEN

CO2 cycloaddition with epoxides is a key catalytic procedure for CO2 utilization. Several metal-based catalysts with cocatalysts are developed for photo-driven CO2 cycloaddition, while facing difficulties in product purification and continuous reaction. Here, poly(ionic liquid)s are proposed as metal-free catalysts for photo-driven CO2 cycloaddition without cocatalysts. A series of poly(ionic liquid)s with donor-acceptor segments are fabricated and their photo-driven catalytic performance (conversion rate of 83.5% for glycidyl phenyl ether) outstrips (≈4.9 times) their thermal-driven catalytic performance (17.2%) at the same temperature. Mechanism studies confirm that photo-induced charge separation is promoted by the donor-acceptor segments and can accelerate the CO2 cycloaddition reaction. This work paves the way for the further use of poly(ionic liquid)s as catalysts in photo-driven CO2 cycloaddition.

2.
Angew Chem Int Ed Engl ; 62(3): e202214143, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36401588

RESUMEN

Integrating a molecular catalyst with a light harvester into a photocatalyst is an effective strategy for solar light conversion. However, it is challenging to establish a crystallized framework with well-organized connections that favour charge separation and transfer. Herein, we report the heterogenization of a Salen metal complex molecular catalyst into a rigid covalent organic framework (COF) through covalent linkage with the light-harvesting unit of pyrene for photocatalytic hydrogen evolution. The chemically conjugated bonds between the two units contribute to fast photogenerated electron transfer and thereby promote the proton reduction reaction. The Salen cobalt-based COF showed the best hydrogen evolution activity (1378 µmol g-1 h-1 ), which is superior to the previously reported nonnoble metal based COF photocatalysts. This work provides a strategy to construct atom-efficient photocatalysts by the heterogenization of molecular catalysts into covalent organic frameworks.

3.
Angew Chem Int Ed Engl ; 61(51): e202210975, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36271496

RESUMEN

Triplet exciton-based long-lived phosphorescence is severely limited by the thermal quenching at high temperature. Herein, we propose a novel strategy based on the energy transfer from triplet self-trapped excitons to Mn2+ dopants in solution-processed perovskite CsCdCl3 . It is found the Mn2+ doped hexagonal phase CsCdCl3 could simultaneously exhibit high emission efficiency (81.5 %) and long afterglow duration time (150 s). Besides, the afterglow emission exhibits anti-thermal quenching from 300 to 400 K. In-depth charge-carrier dynamics studies and density functional theory (DFT) calculation provide unambiguous evidence that carrier detrapping from trap states (mainly induced by Cl vacancy) to localized emission centers ([MnCl6 ]4- ) is responsible for the afterglow emission with anti-thermal quenching. Enlightened by the present results, we demonstrate the application of the developed materials for optical storage and logic operation applications.

4.
ACS Appl Mater Interfaces ; 14(41): 46857-46865, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36149762

RESUMEN

Mixed-halide (Cl and Br) perovskite nanocrystals (NCs) are of particular interest because they hold great potential for use in high-efficiency blue light-emitting diodes (LEDs). Generally, mixed-halide compounds are obtained by either a one-step synthesis with simultaneous addition of both halide precursors or a postsynthetic anion exchange using the opposite halogen. However, both strategies fail to prevent the formation of deep-level Cl vacancy defects, rendering the photoluminescence quantum yields (PLQYs) typically lower than 30%. Here, by optimizing both thermodynamic and kinetic processes, we devise a two-step hot-injection approach, which simultaneously realizes Cl vacancy filling and efficient anion exchange between Cl- and Br-. Both the identity of Br precursors and their injection temperature are revealed to be critical in transforming those highly defective CsPbCl3 NCs to defect-free CsPb(Cl/Br)3. The optimally synthesized NCs exhibit a saturated blue emission at ∼460 nm with a near-unity PLQY and a narrow emission bandwidth of 18 nm, which represents one of the most efficient blue emitters reported so far. The turn-on voltage of the ensuing LEDs is ∼4.0 V, which is lower than those of most other mixed-halide perovskites. In addition, LEDs exhibit a stable electroluminescence peak at 460 nm under a high bias voltage of 8.0 V. We anticipate that our findings will provide new insights into the materials design strategies for producing high-optoelectronic-quality Cl-containing perovskites.

5.
J Phys Chem Lett ; 13(36): 8613-8619, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36073976

RESUMEN

Halide double perovskites have aroused substantial research interest because of their unique optical properties and intriguing flexibility for various compositional adjustments. Herein, we report the synthesis and photophysics of rare-earth element yttrium (Y)-based double perovskite single crystals (SCs) and nanocrystals (NCs). The pristine Cs2NaYCl6 bulk SCs exhibit a weak sky-blue emission with a low photoluminescence quantum yield (PLQY) of 7.68% based on the self-trapped exciton (STE), while no PL emission was observed for NCs. Excitingly, the STE emission of SCs and NCs is greatly enhanced via Sb3+ doping. The optimized Cs2NaYCl6:Sb3+ SCs and NCs exhibit high PLQYs up to 82.5% and 51.8%, respectively. Theoretical calculations and charge-carrier dynamic studies demonstrate that the giant emission enhancement after Sb3+ doping is related with the enhancement of the sensitization of the emissive STE states, the passivating of the nonradiative carrier trapping processes, and the regulation of carrier-phonon coupling.

6.
J Phys Chem Lett ; 13(40): 9255-9262, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36173316

RESUMEN

Self-referencing optical thermometry based on the fluorescence intensity ratio (FIR) have drawn extensive attention as a result of their high sensitivity and non-invasively fast response to temperature. However, it is a great challenge for luminescent materials to achieve simultaneously high absolute and relative temperature sensitivity based on the FIR technique. Herein, we developed a novel optical thermometer by designing hybrid lead-free metal halide (TTPhP)2MnCl4:Sb3+ (TTPhP+ = tetraphenylphosphonium cation) single crystals with multimodal photoluminescence (PL). The large TTPhP+ organic chain resulted in isolated [MnCl4]2- and [SbCl5]2- in the single crystal, which leads to a negligible energy trasfer process within them. Therefore, the two PL bands (band 1 from [MnCl4]2-) with a peak at 518 nm and band 2 (from [SbCl5]2) with a peak at 640 nm exhibit different thermal-quenching effects, which resulted in excellent temperature sensitivity, with the maximum absolute and relative sensitivities reaching 0.236 K-1 and 3.77% K-1 in a temperature range from 300 to 400 K. Both the absolute and relative sensitivities are among the highest values for luminescence thermometry.

7.
J Phys Chem Lett ; 13(25): 5794-5800, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35726880

RESUMEN

The prominent thermal quenching (TQ) effect of organic-inorganic metal halides limits their applications for lighting and imaging. Herein, we report an organo-metal halide scintillator (TTPhP)2MnCl4 (TTPhP+ = tetraphenylphosphonium cation), which exhibits a weak TQ effect up to 200 °C under ultraviolet-visible light (efficiency loss of 5.5%) and X-ray radiation (efficiency loss of 37%). The light yield of the (TTPhP)2MnCl4 scintillator (37 000 photons MeV-1 at 200 °C) under X-ray radiation is >2 times that of the commercial scintillator LuAG:Ce (15 000 photons MeV-1 at 200 °C). The microscopic mechanism of the weak TQ effect is demonstrated to be the scintillator having the ability to compensate for the emission losses from trapped charges and the large Mn-Mn distance (10.233 Å) suppressing nonradiative recombination at high temperatures. We further demonstrate the applications of (TTPhP)2MnCl4 as high-power white-light-emitting diodes operated at currents of ≤300 mA and X-ray imaging at 200 °C with a high spatial resolution.

8.
Nat Commun ; 13(1): 1355, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292646

RESUMEN

Photocatalytic hydrogen production has been considered a promising approach to obtain green hydrogen energy. Crystalline porous materials have arisen as key photocatalysts for efficient hydrogen production. Here, we report a strategy to in situ photodeposit platinum clusters as cocatalyst on a covalent organic framework, which makes it an efficient photocatalyst for light-driven hydrogen evolution. Periodically dispersed adsorption sites of platinum species are constructed by introducing adjacent hydroxyl group and imine-N in the region of the covalent organic framework structural unit where photogenerated electrons converge, leading to the in situ reduction of the adsorbed platinum species into metal clusters by photogenerated electrons. The widespread platinum clusters on the covalent organic framework expose large active surface and greatly facilitate the electron transfer, finally contributing to a high photocatalytic hydrogen evolution rate of 42432 µmol g-1 h-1 at 1 wt% platinum loading. This work provides a direction for structural design on covalent organic frameworks to precisely manipulate cocatalyst morphologies and positions at the atomic level for developing efficient photocatalysts.

9.
Nano Lett ; 22(2): 636-643, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35019656

RESUMEN

The three-precursors approach has proven to be advantageous for obtaining high-quality metal halide perovskite nanocrystals (PNCs). However, the current halide precursors of choice are mainly limited to those highly toxic organohalides, being unfavorable for large-scale and sustainable use. Moreover, most of the resulting PNCs still suffer from low quality in terms of photoluminescence quantum yield (PLQY). Herein we present all-inorganic germanium salts, GeX4 (X = Cl, Br, I), serving as robust and less hazardous alternatives that are capable of ensuring improved material properties for both Pb-based and Pb-free PNCs. Importantly, unlike most of the other inorganic halide sources, the GeX4 compound does not deliver the Ge element into the final compositions, whereas the PLQY and phase stability of the resulting nanocrystals are significantly improved. Theoretical calculations suggest that Ge halide precursors provide favorable conditions in both dielectric environment and thermodynamics, which jointly contribute to the formation of size-confined defect-suppressed nanoparticles.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120383, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34536893

RESUMEN

In this work, we explore the excited-state intramolecular proton transfer (ESIPT) mechanisms and relative solvent effects for three novel 3-hydroxylflavone derivatives (i.e., HOF, SHOF, and NSHOF) in acetonitrile, dichloromethane, and toluene solvents. Through calculations, we optimize the structures of HOF, SHOF, and NSHOF. Through the analysis of a series of structural parameters related to hydrogen bonding interactions, it could be found that the hydrogen bonds of the three derivatives are all enhanced in the S1 state, and more importantly, the excited-state hydrogen bonds of HOF are stronger than those of SHOF and NSHOF. In order to explore the effects of solvent polarity, we analyze the core-valence bifurcation (CVB) index, infrared (IR) vibration spectrum, and the potential energy curves. We find that for HOF, SHOF, and NSHOF, the strength of the excited-state hydrogen bonds increases as the solvent polarity decreases. The solvent polarity dependent ESIPT mechanisms pave the way for further designing novel flavonoid-based solvatofluorochromic probes in future.


Asunto(s)
Flavonoides , Protones , Enlace de Hidrógeno , Modelos Moleculares , Solventes
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120296, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34454130

RESUMEN

ESIPT behavior has attracted a lot of eyes of researchers in recent years because of its unique optical properties. Due to its large Stokes shift and double emission fluorescence, white light can be generated in the fluorophore based on the excited state intramolecular proton transfer (ESIPT) principle. The excited state proton transfer behavior of hydroxylated benzoxazole (BO-OH), benzothiazole (BS-OH) and benzoselenazole (BSe-OH) have been investigated in heptane, chloroform and DMF solvents. By comparing the infrared vibration spectra and the variation of bond parameters from the S0 to S1 states, and analyzing the frontier molecular orbitals, the influence of hydrogen bond dynamics, the solvent polarity, charge redistribution and the effects of different proton acceptors on proton transfer were observed. The only structural difference among the three substituted hydroxyfluorenes is the heteroatom in the azole ring (oxygen, sulfur and selenium, respectively). We have scanned the potential energy curve of the ESIPT process, and compared the potential barrier, it is found that the heavier chalcogen atoms are more favorable for proton transfer. At the same time, the potential application of changing heteroatoms in the azole ring by walking down the chalcogenic group in crystal luminescence color regulation is also discussed.


Asunto(s)
Calcógenos , Protones , Azoles , Enlace de Hidrógeno , Modelos Moleculares
12.
Nano Lett ; 21(20): 8671-8678, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34633829

RESUMEN

For inorganic semiconductor nanostructure, excitons in the triplet states are known as the "dark exciton" with poor emitting properties, because of the spin-forbidden transition. Herein, we report a design principle to boost triplet excitons photoluminescence (PL) in all-inorganic lead-free double-perovskite nanocrystals (NCs). Our experimental data reveal that singlet self-trapped excitons (STEs) experience fast intersystem crossing (80 ps) to triplet states. These triplet STEs give bright green color emission with unity PL quantum yield (PLQY). Furthermore, efficient energy transfer from triplet STEs to dopants (Mn2+) can be achieved, which leads to white-light emitting with 87% PLQY in both colloidal and solid thin film NCs. These findings illustrate a fundamental principle to design efficient white-light emitting inorganic phosphors, propelling the development of illumination-related applications.

13.
J Phys Chem Lett ; 12(41): 10052-10059, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34623160

RESUMEN

Thin organic-inorganic MAPbX3 perovskite single-crystal sheets have become the hotspot of smart photodetectors because of their low number of trap states, high carrier mobility, long diffusion length, and effective light-receiving area. However, MAPbX3 single crystals are so fragile that single-crystal perovskite sheets with a thickness of ≤100 µm are hard to obtain by cutting. Thin single-crystal MAPbX3 sheets were synthesized by the biphasic liquid-liquid interface limit method with dimethicone/DMSO biphasic films and could be obtained with an adjustable thickness of 1-50 µm and improved crystal quality of the perovskite sheets. The thin MAPbX3 single-crystal sheet-based photodetector exhibits a superior responsivity of 0.88 A W-1, an external quantum efficiency of 276.8%, and an ultrahigh detectivity of 2.26 × 1011 Jones under 395 nm irradiation at 3 V. These values are more than 500% as high as those of the bulk-crystal-based photodetector. In particular, the sheet-based photodetector could retain long-time stability after 4200 on-off cycles.

14.
Angew Chem Int Ed Engl ; 60(42): 22693-22699, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34355483

RESUMEN

Lead-free halide perovskites have triggered interest in the field of optoelectronics and photocatalysis because of their low toxicity, and tunable optical and charge-carrier properties. From an application point of view, it is desirable to develop stable multifunctional lead-free halide perovskites. We have developed a series of Cs2 Ptx Sn1-x Cl6 perovskites (0≤x≤1) with high stability, which show switchable photoluminescence and photocatalytic functions by varying the amount of Pt4+ substitution. A Cs2 Ptx Sn1-x Cl6 solid solution with a dominant proportion of Pt4+ shows broadband photoluminescence with a lifetime on the microsecond timescale. A Cs2 Ptx Sn1-x Cl6 solid solution with a small amount of Pt4+ substitution exhibits photocatalytic hydrogen evolution activity. An optical spectroscopy study reveals that the switch between photoluminescence and photocatalysis functions is controlled by sub-band gap states. Our finding provides a new way to develop lead-free multifunctional halide perovskites with high stability.

15.
Angew Chem Int Ed Engl ; 60(36): 19653-19659, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34151496

RESUMEN

For display applications, it is highly desirable to obtain tunable red/green/blue emission. However, lead-free perovskite nanocrystals (NCs) generally exhibit broadband emission with poor color purity. Herein, we developed a unique phase transition strategy to engineer the emission color of lead-free cesium manganese bromides NCs and we can achieve a tunable red/green/blue emission with high color purity in these NCs. Such phase transition can be triggered by isopropanol: from one dimensional (1D) CsMnBr3 NCs (red-color emission) to zero dimensional (0D) Cs3 MnBr5 NCs (green-color emission). Furthermore, in a humid environment both 1D CsMnBr3 NCs and 0D Cs3 MnBr5 NCs can be transformed into 0D Cs2 MnBr4 ⋅2 H2 O NCs (blue-color emission). Cs2 MnBr4 ⋅2 H2 O NCs could inversely transform into the mixture of CsMnBr3 and Cs3 MnBr5 phase during the thermal annealing dehydration step. Our work highlights the tunable optical properties in single component NCs via phase engineering and provides a new avenue for future endeavors in light-emitting devices.

16.
Chembiochem ; 22(12): 2161-2167, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33871143

RESUMEN

Photodynamic therapy (PDT) has attracted great interest in cancer theranostics owing to its minimal invasiveness and low side effect. In PDT, photosensitizers are indispensable components that generate cytotoxic reactive oxygen species (ROS). Tremendous efforts have been devoted to optimizing the photosensitizer with enhanced ROS efficiency. However, to improve the precision and controllability for PDT, developing NIR imaging-guided photosensitizers are still urgent and challenging. Here, we have designed a novel photosensitizer 2Cz-BTZ which integrated with intense NIR emission and photoinduced singlet oxygen 1 O2 generation capabilities. Moreover, after loading the photosensitizers 2Cz-BTZ into biocompatible amphiphilic polymers F127, the formed 2Cz-BTZ@F127 nanoparticles (NPs) exhibited good photoinduced therapy as well as long-term in vivo imaging capabilities. Under these merits, the 2Cz-BTZ@F127 NPs showed NIR imaging-guided PDT, which paves a promising way for spatiotemporally precise tumor theranostics.


Asunto(s)
Antineoplásicos/farmacología , Imagen Óptica , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Rayos Infrarrojos , Ratones , Estructura Molecular , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Tamaño de la Partícula , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo
17.
Dalton Trans ; 50(16): 5624-5631, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908961

RESUMEN

Here, Au@mSiO2 core-shell nanoparticles were easily synthesized by a one-pot method. Positively charged alkyl chains with different lengths were modified on the surface of the particles. Thus composite nanoparticles with different potentials and hydrophilic interface properties were prepared. Based on the charge properties of the shell surface, the process of loading dyes was simplified by the strong electrostatic adsorption between the particle surface and the heterogeneous negatively charged dyes. The fluorescence intensity and fluorescence lifetime of the loaded fluorescent dyes showed that the dyes could not produce effective tunneling in the mesoporous materials, which was limited to the surface of the particles, which is beneficial for the subsequent research on the loading or release of nanoparticles. After loading, the nanoparticles still exhibit a high fluorescence intensity, enabling dual-mode microscopic imaging (TEM and fluorescence).

18.
J Phys Chem Lett ; 12(10): 2660-2667, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33689354

RESUMEN

Charge transport in an organic semiconductor is strongly dependent on the molecular packing motif, which could be modified by the molecular substitutions and molecular isomerization. We constructed a series of benzodithiophene-based organic semiconductor molecules with different silyethyne substitutions and isomers. The existence of different conformations of these molecules is supported by a low isomerization energy barrier from density functional theory. By using Marcus semiclassical theory calculation, we make a comprehensive assessment for the effect of molecular substitution and isomerization on charge transport. We found that the hole mobility of cis-isomer molecular packing can be enhanced by increasing the length of silylethyne substitutions. We demonstrated that a favorable charge-transport material would possess an identical direction of induced ring currents, stable induced magnetic fields, and dominant π-π stacking interaction in their molecular packing motif to ensure good π-overlap area. Our findings will provide direct guidance for developing organic semiconductor materials.

19.
Biomater Sci ; 9(7): 2533-2541, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33566054

RESUMEN

Porphyrin-based metal coordination polymers (MCPs) have attracted significant attention due to their great promise for applications in phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT). However, the detailed self-assembly process of porphyrin-based MCPs is still poorly understood. This work provides a detailed study of the self-assembly process of MCPs constructed from Mn2+ and TCPP (TCPP: 5,10,15,20-tetrakis(4'-carboxyphenyl)porphyrin) in aqueous solution. Unlike the traditional nucleation and growth mechanism, we discover that there is a metastable metal-organic intermediate which is kinetically favored in the self-assembly process. And the metastable metal-organic intermediate nanotape structures could convert into thermodynamically favored nanosheets through disassembling into monomers followed by a reassembling process. Moreover, the two structurally different assemblies exhibit distinct photophysical performances. The intermediate Mn-TCPP aggregates show good light-induced singlet oxygen 1O2 generation for PDT while the thermodynamically favored stable Mn-TCPP aggregates exhibit an excellent photothermal conversion ability as photothermal agents (PTAs). This study could facilitate the control of the self-assembly pathway to fabricate complex MCPs with desirable applications.


Asunto(s)
Fotoquimioterapia , Porfirinas , Fototerapia , Terapia Fototérmica , Polímeros
20.
Adv Mater ; 33(8): e2007215, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33470489

RESUMEN

The colloidal synthesis of a new type of lead-free halide quadruple-perovskite nanocrystals (NCs) is reported. The photoluminescence quantum yield and charge-carrier lifetime of quadruple-perovskite NCs can be enhanced by 96 and 77-fold, respectively, via metal alloying. Study of charge-carrier dynamics provide solid demonstrate that the PL enhancement is due to the elimination of ultrafast (1.4 ps) charge-carrier trapping processes in the alloyed NCs. Thanks to the high crystallinity, low trap-state density, and long carrier lifetime (193.4 µs), the alloyed quadruple-perovskite NCs can serve as the active material for high-performance photodetectors, which exhibit high responsivity (up to 0.98 × 104 A W-1 ) and an external quantum efficiency (EQE) of 3 × 106 %. These numbers are among the highest for perovskite-NC-based photodetectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...