Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
J Ethnopharmacol ; 336: 118723, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181285

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Mountain-cultivated Panax ginseng C.A.Mey. (MCG) with high market price and various properties was valuable special local product in Northeast of Asia. MCG has been historically used to mitigate heart failure (HF) for thousand years, HF is a clinical manifestation of deficiency of "heart-qi" in traditional Chinese medicine. However, there was little report focus on the activities of extracted residue of MCG. AIM OF THE STUDY: A novel glycopeptide (APMCG-1) was isolated from step ethanol precipitations of alkaline protease-assisted extract from MCG residue. MATERIALS AND METHODS: The molecular weight and subunit structure of APMCG-1 were determined by FT-IR, HPLC and GPC technologies, as well as the H9c2 cells, Tg (kdrl:EGFP) zebrafish were performed to evaluated the protective effect of APMCG-1. RESULTS: APMCG-1 was identified as a glycopeptide containing seven monosaccharides and seven amino acids via O-lined bonds. Further, in vitro, APMCG-1 significantly decreased reactive oxygen species production and lactate dehydrogenase contents in palmitic acid (PA)-induced H9c2 cells. APMCG-1 also attenuated endoplasmic reticulum stress and mitochondria-mediated apoptosis in H9c2 cells via the PI3K/AKT signaling pathway. More importantly, APMCG-1 reduced the blood glucose, lipid contents, the levels of heart injury, oxidative stress and inflammation of 5 days post fertilization Tg (kdrl:EGFP) zebrafish with type 2 diabetic symptoms in vivo. CONCLUSIONS: APMCG-1 protects PA-induced H9c2 cells while reducing cardiac dysfunction in zebrafish with type 2 diabetic symptoms. The present study provides a new insight into the development of natural glycopeptides as heart-related drug therapies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glicopéptidos , Insuficiencia Cardíaca , Panax , Pez Cebra , Animales , Panax/química , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratas , Línea Celular , Glicopéptidos/farmacología , Glicopéptidos/química , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cardiotónicos/farmacología , Cardiotónicos/química , Cardiotónicos/aislamiento & purificación , Cardiotónicos/uso terapéutico , Miocitos Cardíacos/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos
2.
Food Funct ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39380384

RESUMEN

Cod protein isolate (CPI), a by-product of the cod processing industry, represents a novel source of high value-added products. However, off-flavors in cod protein such as bitterness and fishy odor reduce its acceptability to consumers. Here, CPI was first debittered using aminopeptidase from Streptomyces canus (ScAPase) and then deodorized through probiotic fermentation. This is the first reported demonstration of complete removal of the bitterness of CPI using ScAPase. Subsequently, Syn3 and Syn4, as aromatic CPI (ACPI), were prepared from debittered CPI (DCPI) via fermentation with Lactobacillus acidophilus and Bifidobacterium longum, respectively. These products, DCPI and ACPI, were characterized by the absence of bitterness and fishy odor, along with a strong aromatic scent and high overall acceptability. Additionally, these products exhibited improved physicochemical properties, including enhanced oil-holding capacity, emulsifying activity, and resistance to digestion, compared to untreated CPI. However, significant differences were observed in their radical scavenging activities. The highest scavenging activity was detected in Syn3 against DPPH˙ (63.5%) and ˙OH (79.2%), in DCPI against O2- (32.0%), and in post-digestion Syn4 against ABTS˙+ (95.2%). Furthermore, after digestion treatment, these products significantly promoted the proliferation of probiotics. Notably post-digestion Syn4 showed the most substantial proliferation effect on Lactobacillus reuteri, Lactobacillus rhamnosus, and Bifidobacterium breve compared to other post-digestion samples. These results indicate that the treated CPI has the potential for applications in health food products.

3.
J Immunother Cancer ; 12(10)2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39366752

RESUMEN

BACKGROUND: HBM4003 is a novel anti-CTLA-4 heavy chain-only antibody, designed to enhance Treg ablation and antibody-dependent cell-mediated cytotoxicity while ensuring a manageable safety profile. This phase I trial investigated the safety, pharmacokinetics, immunogenicity and preliminary efficacy of HBM4003 plus with anti-PD-1 antibody toripalimab in patients with advanced solid tumors, especially focusing on melanoma. METHODS: The multicenter, open-label phase I trial was divided into two parts: dose-escalation phase (part 1) and dose-expansion phase (part 2). In part 1, HBM4003 was administered at doses of 0.03, 0.1, 0.3 mg/kg in combination with toripalimab with fixed dosage of 240 mg every 3 weeks. The recommended phase II dose (RP2D) was used in the expansion phase. Primary endpoints were safety and RP2D in part 1 and objective response rate (ORR) in part 2. Biomarkers based on cytokines and multiplex immunofluorescence staining were explored. RESULTS: A total of 40 patients received study treatment, including 36 patients treated with RP2D of HBM4003 0.3 mg/kg plus toripalimab 240 mg every 3 week. 36 participants (90.0%) experienced at least one treatment-related adverse event (TRAE), of which 10 (25.0%) patients experienced grade ≥3 TRAEs and 5 (12.5%) experienced immune-mediated adverse events (irAEs) with maximum severity of grade 3. No grade 4 or 5 irAEs occurred. Efficacy analysis set included 32 melanoma patients treated with RP2D and with available post-baseline imaging data. The ORRs of anti-PD-1/PD-L1 treatment-naïve subgroup and anti-PD-1/PD-L1 treatment-failed subgroup were 33.3% and 5.9%, respectively. In mucosal melanoma, the ORR of the two subgroups were 40.0% and 10.0%, respectively. Baseline high Treg/CD4+ratio in the tumor serves as an independent predictive factor for the efficacy of immunotherapy. CONCLUSIONS: HBM4003 0.3 mg/kg plus toripalimab 240 mg every 3 week demonstrated manageable safety in solid tumors and no new safety signal. Limited data demonstrated promising antitumor activity, especially in PD-1 treatment-naïve mucosal melanoma. TRIAL REGISTRATION NUMBER: NCT04727164.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Melanoma , Humanos , Masculino , Femenino , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/farmacocinética , Persona de Mediana Edad , Anciano , Adulto , Antígeno CTLA-4/antagonistas & inhibidores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología
4.
Clin Neurol Neurosurg ; 246: 108579, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39395280

RESUMEN

PURPOSE: To explore the clinicopathological and radiological characteristics associated with false-positive and false-negative results in the identification of isocitrate dehydrogenase (IDH) mutations in gliomas using the T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign. METHODS: In 1515 patients with cerebral gliomas, tumor location, restricted diffusion using diffusion-weighted imaging, and the T2-FLAIR mismatch sign were retrospectively analyzed using preoperative magnetic resonance imaging. Moreover, both the false-positive and false-negative results of the T2-FLAIR mismatch sign were obtained. Univariate and multivariate logistic analyses were performed to evaluate the risk factors associated with false-positive and false-negative results. RESULTS: The overall false-positive rate was 3.5 % (53/1515), and its independent risk factors were the patient's age (adjusted odds ratio [OR], 0.977; 95 % confidence interval [CI], 0.957, 0.997; P = 0.027) and non-restricted diffusion (adjusted OR, 1.968; 95 % CI, 1.060, 3.652; P = 0.032). The overall false-negative rate was 39.7 % (602/1515); its independent risk factors were the patient's age (adjusted OR, 1.022; 95 % CI, 1.005, 1.038; P = 0.008), 1p/19q co-deletion (adjusted OR, 3.334; 95 % CI, 1.913, 5.810; P < 0.001), and telomerase reverse transcriptase promoter mutation (adjusted OR, 2.004; 95 % CI, 1.181, 3.402; P = 0.010). For the mismatch sign in idiopathic IDH, the area under the receiver operating characteristic curve (AUC) was 0.602. The combined AUC for the T2-FLAIR mismatch sign and risk factors was 0.871. CONCLUSIONS: Clinicopathological and radiological characteristics can lead to the misinterpretation of IDH status in gliomas based on the T2-FLAIR mismatch sign. However, this can be avoided if careful attention is paid.

5.
Chin Med ; 19(1): 131, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327620

RESUMEN

BACKGROUND: Xuefu Zhuyu decoction (XFZYD) has been extensively utilized to treat traumatic brain injury (TBI). However, the bioactive compounds and the underlying mechanisms have not yet been elucidated. OBJECTIVES: This study aimed to investigate the bioactive constituents of XFYZD that are absorbed in the blood and the mechanisms in treating TBI. METHODS: The study presents an integrated strategy in three steps to investigate the material basis and pharmacological mechanisms of XFZYD. The first step involves: (1) performing metabolomics analysis of XFZYD to obtain the main functions and targets; (2) screening the blood-entry ingredients and targets of XFZYD from databases; (3) obtaining the potential components targeting the key functions by integrated analysis of metabolomics and network pharmacology. The second step involves screening pharmacological effects with active ingredients in vitro. In the third step, the effects of the top active compound were validated in vivo, and the mechanisms were explored by protein antagonist experiments. RESULTS: Metabolomics analysis revealed that XFZYD treated TBI mice mainly through affecting the functions of blood vessels. We screened 62 blood-entry ingredients of XFZYD by network pharmacology. Then, we focused on 39 blood-entry ingredients related to vascular genes enriched by XFZYD-responsive metabolites. Performing the natural products library, we verified that hydroxysafflor yellow A (HSYA), vanillin, ligustilide, paeoniflorin, and other substances promoted endothelial cell proliferation significantly compared to the control group. Among them, the efficacy of HSYA was superior. Further animal studies demonstrated that HSYA treatment alleviated neurological dysfunction in TBI mice by mNSS and foot fault test, and decreased neuronal damage by HE, nissl, and TUNEL staining. HSYA increased the density of cerebral microvessels, raised the expression of angiogenesis marker proteins VEGFA and CD34, and activated the PI3K/Akt/mTOR signaling pathway significantly. The angiogenic effects disappeared after the intervention of PI3K antagonist LY294002. CONCLUSION: By applying a novel strategy of integrating network pharmacology of constituents absorbed in blood with metabolomics, the research screened HSYA as one of the top bioactive constituents of XFZYD, which stimulates angiogenesis by activating the PI3K/Akt/mTOR signaling pathway after TBI.

6.
Foods ; 13(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39335882

RESUMEN

This study explored the polymorphism of the leucine aminopeptidase (LAP3) gene and its relationship with milk quality characteristics in Gannan yak. A cohort of 162 Gannan yak was genotyped utilizing the Illumina Yak cGPS 7K BeadChip, and the identified single nucleotide polymorphisms (SNPs) were evaluated for their association with milk protein, casein, lactose, and fat concentrations. The results showed that four SNPs (g.4494G > A, g.5919A > G, g.8033G > C, and g.15,615A > G) in the LAP3 gene exhibited polymorphism with information content values of 0.267, 0.267, 0.293, and 0.114, respectively. All four SNPs were in Hardy-Weinberg equilibrium (p > 0.05). The g.4494G > A and g.5919A > G SNPs were significantly associated with protein content (p < 0.05), with homozygous genotypes showing significantly higher protein content than heterozygous genotypes (p < 0.05). The g.8033G > C SNP was significantly associated with casein content, protein content, non-fat solids, and acidity (p < 0.05), with the CC genotype having significantly higher casein, protein, and non-fat solids content than the GG and GC genotypes (p < 0.05). The g.15,615A > G SNP was significantly associated with average fat globule diameter (p < 0.05). In general, the mutations within the LAP3 gene demonstrated a positive impact on milk quality traits in Gannan yak, with mutated genotypes correlating with enhanced milk quality. These results indicate that the LAP3 gene could be a significant or candidate gene affecting milk quality traits in Gannan yak and offer potential genetic markers for molecular breeding programs in this species.

7.
Analyst ; 149(20): 5131-5138, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39240188

RESUMEN

DNA conformations, which encompass the three-dimensional structures of the DNA strand, play a crucial role in genome regulation. During DNA translocation in a nanopore, various conformations occur due to interactions among force fields, the fluidic environment, and polymer features. The most common conformation is folding, where DNA moves through the nanopore in a two-strand or multi-strand manner, influencing the current signature. Factors such as hydrodynamic drag, ionic environments, and DNA length significantly affect these conformations. Notably, conical nanopores, with their asymmetrical geometry, impose unique constraints on DNA translocation. Our findings reveal that during forward translocation, from the narrow (cis) end to the wide (trans) end, DNA experiences less resistance, resulting in shorter translocation times and higher blockade currents. Conversely, backward translocation, from the wide (trans) end to the narrow (cis) end, leads to longer translocation times and more complex conformations due to increased hydrodynamic drag and geometric constraints. This study employs molecular ping-pong methods to confine DNA, further highlighting the intricate dynamics of DNA folding within nanopores. These insights enhance the understanding of DNA behavior in confined environments, contributing to advancements in nanopore-based sensing and sequencing technologies, with implications for genome regulation and biomedical applications.


Asunto(s)
ADN , Nanoporos , Conformación de Ácido Nucleico , ADN/química , Hidrodinámica
8.
Virology ; 600: 110214, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39243656

RESUMEN

Pseudorabies virus is a swine alpha-herpesvirus. We demonstrated that alpha-herpesvirus infection downregulates HSF1, a master transcription factor in the heat shock response. The serine/threonine protein kinase activity of late viral protein UL13 is indispensable for HSF1 depletion and phosphorylation, and UL13 does not degrade HSF1 posttranslationally but inhibits the HSF1 mRNA level. Importantly, UL13 increased HSF1 activity even though it reduced HSF1 mRNA. Furthermore, viral replication markedly decreased in the HSF1 knockout cell line or in the presence of an HSF1-specific inhibitor. Interestingly, HSF1 knockout accelerated the activation of NF-κB and p38MAPK. The K96 loci of UL13 are important to induce high levels of IL-6, TNF-α, and IL-ß cytokines while playing a crucial role in promoting mild interstitial pneumonia, liver necrosis, and severe inflammatory cell infiltration in the footpad. Thus, UL13 steers the heat shock response to promote viral replication and the inflammatory response. IMPORTANCE: PRV is a ubiquitous pathogen that infects a variety of mammals, such as pigs, ruminants, carnivores, and rodents as well as human beings, causing enormous economic losses in the swine industry. Here, we employed PRV as a model to determine the relationship between α-herpesvirus and the inflammatory response. Overall, our findings indicated that PRV infection inhibits the level of HSF1 mRNA via the serine/threonine protein kinase activity of UL13. Additionally, we discovered that HSF1 was involved in NF-κB activation upon PRV infection. PRV UL13 orchestrates the level of HSF1 mRNA, HSF1 protein phosphorylation, and priming of the inflammatory response. Our study reveals a novel mechanism employed by UL13 serine/threonine protein kinase activity to promote the inflammatory response, providing novel clues for therapy against alpha-herpesvirus infection.

9.
J Neuroinflammation ; 21(1): 221, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267080

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) is common following surgery in elderly patients. The role of the preoperative gut microbiota in POCD has attracted increasing attention, but the potential underlying mechanisms remain unclear. This research aimed to investigate the impact of the preoperative gut microbiota on POCD. METHODS: Herein, we analyzed the preoperative gut microbiota of POCD patients through a prospective specimen collection and retrospective blinded evaluation study. Then, we transferred the preoperative gut microbiota of POCD patients to antibiotic-treated rats and established POCD model by abdominal surgery to explore the impact of the preoperative gut microbiota on pre- and postoperative cognitive function and systemic inflammation. The gut microbiota was analyzed using 16S rRNA sequencing analysis. The Morris water maze test was performed to evaluate learning and memory abilities. The inflammatory cytokines TNF-α, IL-1ß and IL-6 in the serum and hippocampus were measured by ELISA. Microglia were examined by immunofluorescence staining for Iba-1. RESULTS: Based on the decrease in the postoperative MMSE score, 24 patients were identified as having POCD and were matched with 24 control patients. Compared with control patients, POCD patients exhibited higher BMI and lower preoperative MMSE score. The preoperative gut microbiota of POCD patients had lower bacterial richness but a larger distribution, decreased abundance of Firmicutes and increased abundance of Proteobacteria than did that of control patients. Compared with rats that received preoperative fecal samples of control patients, rats that received preoperative fecal samples of POCD patients presented an increased abundance of Desulfobacterota, decreased cognitive function, increased levels of TNF-α and IL-1ß in the serum, increased levels of TNF-α and greater microglial activation in the hippocampus. Additionally, correlation analysis revealed a positive association between the abundance of Desulfobacterota and the level of serum TNF-α in rats. Then, we performed abdominal surgery to investigate the impact of the preoperative gut microbiota on postoperative conditions, and the surgery did indeed cause POCD and inflammatory response. Notably, compared with rats that received preoperative fecal samples of control patients, rats that received preoperative fecal samples of POCD patients displayed exacerbated cognitive impairment; increased levels of TNF-α, IL-1ß and IL-6 in the serum and hippocampus; and increased activation of microglia in the hippocampus. CONCLUSIONS: Our findings suggest that the preoperative gut microbiota of POCD patients can induce preoperative and aggravate postoperative cognitive impairment and systemic inflammation in rats. Modulating inflammation by targeting the gut microbiota might be a promising approach for preventing POCD.


Asunto(s)
Microbioma Gastrointestinal , Inflamación , Complicaciones Cognitivas Postoperatorias , Microbioma Gastrointestinal/fisiología , Animales , Ratas , Complicaciones Cognitivas Postoperatorias/etiología , Masculino , Humanos , Femenino , Anciano , Ratas Sprague-Dawley , Persona de Mediana Edad , Estudios Retrospectivos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/microbiología
10.
J Hazard Mater ; 480: 135895, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39312844

RESUMEN

Polyethylene terephthalate (PET) is one of the most widely used plastics, but its fragmentation into microplastics poses significant environmental challenges. The recycling of PET microplastics is hindered by their low solubility and widespread dispersion in the environment, making microbial in-situ degradation a promising solution. However, existing PET-degrading strains exhibited the limited effectiveness, primarily due to the diffusion of secreted hydrolases away from the PET surface. In this study, Stenotrophomonas pavanii JWG-G1 was engineered to achieve the targeted aggregation of PET hydrolase PETase on the cell surface by fusing it with an endogenous anchor protein. This approach aims to maximise the local concentration of PETase around PET, thereby increasing the overall rate of PET degradation. The PETase surface-aggregated system, S. pavanii/PaL-PETase, demonstrated the highest degradation efficiency, achieving 63.3 % degradation of low-crystallinity PET (lcPET) and 27.3 % degradation of high-crystallinity PET bottles (hcPET) at 30 °C. This represents the highest degradation rate reported for a displayed whole-cell system at ambient temperature. Furthermore, this system exhibited broad-spectrum degradation activity against various polyesters. These findings suggest that this system offers a promising, eco-friendly solution to PET and other polyester pollution, with potential implications for environmental bioremediation strategies.

11.
Small ; : e2405820, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319503

RESUMEN

Photovoltaic photodiodes often face challenges in effectively harvesting electrical signals, especially when detecting faint light. In contrast, photomultiplication type photodetectors (PM-PDs) are renowned for their exceptional sensitivity to weak signals. Here, an advanced PM-PD is introduced based on quasi 2D Ruddlesden-Popper (Q-2D RP) perovskites, optimized for weak light detection at minimal operating voltages. The abundant traps at the Q-2D RP surface capture charge carriers, inducing a trap-assisted tunneling mechanism that leads to the photomultiplication (PM) effect. Deep-lying trap states within the Q-2D RP bulk accelerate charge carrier recombination, resulting in an outstanding rise/fall time of 1.14/1.72 µs for the PM-PDs. The PM-PD achieves a remarkable response level of up to 45.89 A W-1 and an extraordinary external quantum efficiency of 14400% at -1 V under an illumination of 1 µW cm- 2. The intrinsic high resistance of the Q-2D perovskite results in a low dark current, enabling an impressive detectivity of 4.23 × 1012 Jones based on noise current at -1 V. Furthermore, the practical application of PM-PDs has been demonstrated in weak-light, high-rate communication systems. These findings confirm the significant potential of PM-PDs based on Q-2D perovskites for weak light detection and suggest new directions for developing low-power, high-performance PM-PDs for future applications.

12.
Angew Chem Int Ed Engl ; : e202415092, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39290153

RESUMEN

Chiral supramolecular aggregates have the potential to explore circularly polarized lasing with large dissymmetry factors. However, the controllable assembly of chiral superstructures towards deterministic circularly polarized laser emission remains elusive. Here, we design a pair of chiral organic molecules capable of stacking into a pair of definite helical superstructures in microcrystals, which enables circularly polarized lasing with deterministic chirality and high dissymmetry factors. The microcrystals function as optical cavities and gain media simultaneously for laser oscillations, while the supramolecular helices endow the laser emission with strong and opposite chirality. As a result, the microcrystals of two enantiomers allow for circularly polarized laser emission with opposite chirality and high dissymmetry factors up to ~1.0. This work demonstrates the chiral supramolecular assemblies as an excellent platform for high-performance circularly polarized lasers.

13.
Biomacromolecules ; 25(9): 6007-6016, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39207087

RESUMEN

Two multimodular endoglucanases in glycoside hydrolase family 5, ReCel5 and ElCel5, share 73% identity and exhibit similar modular structures: family 1 carbohydrate-binding module (CBM1); catalytic domain; CBMX2; module of unknown function. However, they differed in their biochemical properties and catalytic performance. ReCel5 showed optimal activity at pH 4.0 and 70 °C, maintaining stability at 70 °C (>80% activity). Conversely, ElCel5 is optimal at pH 3.0 and 50 °C (>50% activity at 50 °C). ElCel5 excels in degrading CMC-Na (256 U/mg vs 53 U/mg of ReCel5). Five domain-truncated (TM1-TM5) and four domain-replaced (RM1-RM4) mutants of ReCel5 with the counterparts of ElCel5 were constructed, and their enzymatic properties were compared with those of the wild type. Only RM1, with ElCel5-CBM1, displayed enhanced thermostability and activity. The hydrolysis of pretreated corn stover was reduced in most TM and RM mutants. Molecular dynamics simulations revealed interdomain interactions within the multimodular endoglucanase, potentially affecting its structural stability and complex biological catalytic processes.


Asunto(s)
Celulasa , Hidrólisis , Celulasa/química , Celulasa/metabolismo , Celulasa/genética , Celulosa/metabolismo , Celulosa/química , Dominios Proteicos , Dominio Catalítico , Especificidad por Sustrato , Zea mays/química , Simulación de Dinámica Molecular , Estabilidad de Enzimas
14.
Chemosphere ; 364: 143177, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39182733

RESUMEN

Rapid urbanization considerably alters soil environment, biodiversity, and stability of terrestrial ecosystems. Soil microbial community, a key component of global biodiversity, plays a pivotal role in ecosystem stability and is highly vulnerable to urbanization. However, effects of urbanization on the diversity, stability, and network structure of soil microbial community remain poorly understood. Herein, we investigated the diversity and stability of soil microbial communities, including bacteria, fungi, and protists, across three regions with different levels of urbanization-urban, suburb, and ecoregion-using high-throughput sequencing techniques. Our results revealed that urbanization led to a notable decrease in the alpha diversity of soil microbial community, causing a significant reduction in soil stability, as assessed by the average variation degree (AVD). The loss of stability was linked to the diminished alpha diversity of the soil fungal and protistan communities, along with weakened interactions among bacteria, fungi, and protists. Notably, the majority of keystone species identified through network analysis were classified as bacteria (Proteobacteria) and displayed a strong positive correlation with the environmental factors influencing AVD. This highlights that the variability of bacteria and the immutability of fungi and protists are important to sustain soil microbial stability. Furthermore, structural equation models indicated that protistan diversity primarily drove soil microbial stability across all regions studied. In the suburban and ecoregion areas, soil microbial stability was directly influenced by the soil properties, bacterial diversity, and keystone species, as well as indirectly affected by heavy metals. These results underscore how urbanization can reduce the stability of soil microbial community via declined diversity and network complexity, whereas the establishment of ecoregions maybe contribute to preserve the diversity and stability of soil microbial community.


Asunto(s)
Bacterias , Biodiversidad , Hongos , Microbiota , Microbiología del Suelo , Suelo , Urbanización , Bacterias/clasificación , Bacterias/genética , Hongos/genética , Suelo/química , Ecosistema
15.
Ultrasonics ; 143: 107425, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094386

RESUMEN

Guided Wave (GW)-based Multiple Signal Classification (MUSIC) damage imaging presents several advantages, such as high resolution, which makes it a promising technique for localizing damage in composite structures. However, the application of this technology in aircraft is confronted with various challenges. The variability in performance of MUSIC array sensors is attributed to material and manufacturing process dispersion. Additionally, the conventional wiring of MUSIC array sensors adds considerable weight and is not compatible with complex structural configurations. Furthermore, within intricate configurations, the attenuation of scattering signals induced by structural damage impacts the accuracy of imaging. Moreover, the manual and individual placement of sensors on structures, along with structural anisotropy, may introduce phase errors in the signals detected by MUSIC array sensors. This can lead to a reduction in the accuracy of MUSIC imaging and result in compromised long-term sensor reliability. This paper proposes a high-precision integrated MUSIC array for the diagnosis of complex composite damage. This approach aims to address the challenges related to damage imaging in materials with complex structures. Impedance curve screening and surface-mount co-curing technology are utilized to manage the performance variation of MUSIC array sensors, enhance layout uniformity, and improve long-term stability. Subsequently, a focus compensation algorithm is proposed within the integrated MUSIC design to enhance precision, reduce weight, and adapt to complex structures. The effectiveness of the proposed method is confirmed through experimental validation on an actual complex composite wing box segment, demonstrating a maximum error of 2 cm in locating impact damage.

17.
Angew Chem Int Ed Engl ; 63(42): e202407135, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39018249

RESUMEN

Herein we report on circularly polarized luminescence (CPL) emission originating from supramolecular chirality of organic microcrystals with a |glum| value up to 0.11. The microcrystals were prepared from highly emissive difluoroboron ß-diketonate (BF2dbk) dyes R-1 or S-1 with chiral binaphthol (BINOL) skeletons. R-1 and S-1 exhibit undetectable CPL signals in solution but manifest intense CPL emission in their chiral microcrystals. The chiral superstructures induced by BINOL skeletons were confirmed by single-crystal XRD analysis. Spectral analysis and theoretical calculations indicate that intermolecular electronic coupling, mediated by the asymmetric stacking in the chiral superstructures, effectively alters excited-state electronic structures and facilitates electron transitions perpendicular to BF2bdk planes. The coupling increases cosθµ,m from 0.05 (monomer) to 0.86 (tetramer) and triggers intense optical activity of BF2bdk. The results demonstrate that optical activity of chromophores within assemblies can be regulated by both orientation and extent of intermolecular electronic couplings.

18.
Sci Total Environ ; 948: 174649, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39025138

RESUMEN

BACKGROUND: Significant efforts have been devoted to assess the effects of the poly-gamma-glutamic acid (γ-PGA) on crop growth, yield and quality, soil water retention and fertilizer use efficiency. However, few studies have evaluated the effects of γ-PGA on greenhouse gas (GHG) emissions and grain yield from paddy fields with different rice varieties. METHODS: In the present study, a split-plot field experiment was performed to comprehensively evaluate the effects of γ-PGA concentrations (i.e., no application [P0] and 25.0 kg ha-1 of γ-PGA fermentation solution [P1]) and rice varieties (i.e., conventional rice [Huanghuazhan, H], red rice [Gangteyou 8024, R] and black rice [Black indica rice, B]) on the grain yield, GHG emissions, global warming potential (GWP), greenhouse gas intensity (GHGI), net ecosystem economic profit (NEEP) and carbon footprint (CF) during 2022 and 2023 rice-growing seasons in central China. RESULTS: Application of γ-PGA significantly affected the GHGs emissions, NEEP and CF. Compared with P0 treatments, P1 treatments significantly increased the NEEP by 1.2-11.2 %, and decreased the GWP by 12.9-35.4 %, the GHGI by 16.5-35.9 % and the CF by 13.8-26.2 % in 2022-2023. Application of γ-PGA showed a tendency to increase the yield. Under γ-PGA application condition, R treatment exhibited the lowest GWP, GHGI and CF, and the highest yield and NEEP compared with B and H treatments. CONCLUSION: Our results suggest that γ-PGA application is an ecological agricultural management to increase rice yield, reduce greenhouse gas emission and increase economic benefit, and its advantage is more significant for red rice than for other rice varieties.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Oryza/crecimiento & desarrollo , Gases de Efecto Invernadero/análisis , China , Ácido Poliglutámico/análogos & derivados , Agricultura/métodos , Fertilizantes , Grano Comestible/crecimiento & desarrollo , Calentamiento Global
19.
Org Lett ; 26(28): 5978-5983, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38967298

RESUMEN

Current methods for the asymmetric α-sulfenylation of carbonyls cannot be applied to acyclic carbonyls that have two similar substituents at the α-position. This research demonstrated that the electrophilic sulfenylation of geometry-defined acyclic ß,ß-disubstituted enesulfinamides using S-aryl or S-alkyl benzenethiosulfonates can be highly stereoselective. This process results in enantioenriched α,α-disubstituted α-sulfenylated ketone surrogates with sulfur-containing acyclic tetrasubstituted carbon stereocenters bearing two electronically and sterically similar substituents (e.g., methyl and ethyl). Furthermore, by employing the corresponding stereoisomers of enensulfinamides, any of the four stereoisomers of α-sulfenylated ketimines can be selectively accessed.

20.
ACS Nano ; 18(27): 17547-17556, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38935688

RESUMEN

Achieving high power conversion efficiency in perovskite solar cells (PSCs) heavily relies on fabricating homogeneous perovskite films. However, understanding microscopic-scale properties such as current generation and open-circuit voltage within perovskite crystals has been challenging due to difficulties in quantifying intragrain behavior. In this study, the local current intensity within state-of-the-art perovskite films mapped by conductive atomic force microscopy reveals a distinct heterogeneity, which exhibits a strong anticorrelation to the external biases. Particularly under different external bias polarities, specific regions in the current mapping show contrasting conductivity. Moreover, grains oriented differently exhibit varied surface potentials and currents, leading us to associate this local current heterogeneity with the grain orientation. It was found that the films treated with isopropanol exhibit ordered grain orientation, demonstrating minimized lattice heterogeneity, fewer microstructure defects, and reduced electronic disorder. Importantly, devices exhibiting an ordered orientation showcase elevated macroscopic optoelectronic properties and boosted device performance. These observations underscore the critical importance of fine-tuning the grain homogenization of perovskite films, offering a promising avenue for further enhancing the efficiency of PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...